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Abstract: In various machining processes, the vibration signals are studied for tool condition monitoring often 

referred as wear monitoring. It is essential to overcome unpredicted machining trouble and to improvise the 

efficiency of the machine. Tool wear is a vital problem in materials such as nickel based alloys as they have high 

hardness ranges. Though they have high hardness, a nickel based alloy Inconel 718 with varying HRC (51, 53, and 

55), is opted as work material for hard turning process in this work. Uncoated carbide, coated carbide and ceramic 

tools are employed as cutting tools. Taguchi’s L9 orthogonal array is considered by taking hardness, speed, feed 

and depth of cut as four input parameters, the number of experiments and the combinations of parameters for every 

run is obtained. The vibration signals are recorded at various stages of cutting, till the tool failure is observed. 

Taking this vibration signal data as input to ANOVA and Grey relation analysis (GRA) which categorizes the 

optimal and utmost dominant features such as  Root Mean Square (RMS), Crest Factor (CF), Skewness (Sk), 

Kurtosis (Ku), Absolute Deviation (AD), Mean, Standard Deviation (SD), Variance, peak, Frequency and Time in 

the tool wear process. 
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1 Introduction 

In aerospace applications Nickel-based super alloys are widely used due to their magnificent 

corrosion resistance and mechanical properties maintained at high temperature. Especially 

Machining of Ni based alloys is still a challenge in dry machining. Super alloys characteristics 

like high temperature, tensile strength, shear strength, strain hardening, decrease in thermal 

conductivity, built up edge formation and the occurrence of abrasive particles in their 

microstructures etc. are induce high thermo-mechanical loads at the tool-chip interface resulting 

in important wear of the tool [1]. Cemented carbide inserts were not suitable to machine Ni 

based alloys at high speed since they cannot survive the conditions of acute high temperature 

and stress in the cutting zone. In general, the suggested range of cutting speeds up to 30 m/min 

for uncoated tools and up to 100 m/min when machining Ni-based alloys using cemented 

carbide inserts properly coated [2].  Ceramic tools have been used gradually more  

 In metal-cutting processes tool wear is a complex phenomenon occurring in various ways. 

Normally, the surface finish is mainly affected by a worn tool and therefore there is a necessity 

to build up tool condition monitoring (TCM) systems that alert the machinist to the tool wear 

state, thereby avoiding adverse effects [3]. TCM systems that were improved in the past are 

comprehensively reviewed in a number of articles.   

 A good quality cutting TCM system [4] should be characterized by (i) gradual tool wear 

(crater and flank) caused by abrasion due to friction between cutting tool and work piece (flank 

wear) and cutting tool and chip (crater wear), (ii)tool chipping (cutting edge breakage) and (iii) 
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fast recognition of impact or collisions, (i.e., unwanted movement between tool and work piece) 

Tool wear sensing methods are generally classified into two types: direct and indirect tool wear 

monitoring methods  The direct methods can be applied when cutting tools are not in contact 

with the work piece [5] like radioactive, microscope, camera vision and so on. These indirect 

methods can be developed to an industrial problem, but they have a lower sensitivity compared 

to direct methods However, a problem in TCM system is selection of proper sensor and its 

location. The sensors have to be placed as close to the tool tip being monitored. It is exciting to 

note that an indirect TCM system [6] consists of four steps: (i) collection of data in signals from 

sensors such as cutting force, vibration, temperature, acoustic emission and/or motor current, 

(ii) features extraction from the signals, (iii)tool wear estimation using pattern recognition, 

fuzzy logic, neural networks, or regression analysis, and (iv) implement of an adaptive system 

to control the machining process based on data from the sensors[7,8]. The present work is going 

to be use vibration indirect method.  

1.1  Vibration Signature: 

vibrations happen as a result of rubbing action between the work piece and chip against the 

tool in turning operation. If the tool wear increases, variation will be observed in tool signature 

provided by these vibrations. The vibration free cutting processes greatly effects the operation 

of machine tool in terms of its performance. The increase of deterioration rate and inaccuracies 

with respect to time can be certainly measured by vibration monitoring in a machine tool. In 

general, these vibration signals can be recorded by means of a sensing device named 

accelerometer. These vibration monitoring techniques [9,11–16] are reviewed by the 

researchers Dan and Mathew [10] as more economical, efficient and practical, also stated the 

merits and demerits. Teti et al. [17] also described various vibration sensing techniques [18,19] 

to monitor flank wear in their full comprehensive survey conducted on machine monitoring 

techniques. Rajesh and Narayanan Namboothiri [20] conducted nonlinear time series analysis 

by examining the vibration signals which are occurred all through the cutting process. Ding 

and He [21] also researched on tool condition monitoring information attained from cutting 

tool vibration signals, Acoustic Emission signals, servo motor current signals, spindle and 

microscopy technique, based on which they developed a model among tool wear states and 

reliability. The developed model provides more effective assessment for tool reliability.  

Quantifying the vibration signal is easy but the recorded signals are significantly dependent on 

all the cutting conditions, material of the work piece and machine structure.  

2 Methodology 

The proposed methods were tested using a single point cutting tool in an industrial high-

speed turning lathe machine Lokesh TL200. Vibration measurements are noted over a period 

using vibration sensor. During the measuring period, the tool is periodically removed from the 

chuck, and tool wear is measured using ‘Tool Makers microscope’. This produced a baseline 

time plot of actual tool wear versus time. Eleven features, generally used for machinery 

monitoring in industries, are calculated from the measured vibration data. ANOVA was applied 

to observe the most contributing feature among the eleven features. The GRA method was then 

used to observe the optimal feature values with the help of Artificial Neural network (ANN).  

3 Experimental work 

3.1  Work material, Tools and measurement of flak wear  

The present work is completed on CNC lathe Lokesh TL250. All the turning operations are 

conducted on a round bar (50 mm dia and 10kg weight) of Inconel 718, hardness (51,53 and 

55HRC) with uncoated cemented carbide insert (TNMG160408 MS SW05), coated cemented 
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carbide insert (TNMG160408 MS PR1305) and ceramic tool (TNMG160408 A65) with tool 

holder MTJNL 2020K16 without cutting fluid for this investigation. 

 The flank wear of three tool inserts is determined using Tool maker’s microscope (LT-24) 

by Elshaddai Engineering Equipment’s. The specifications of the microscope include a 

Magnification of 30X with X-Y movement on ball bearing slides, 25mm graduated micrometers 

and least count of 0.001mm. In this work, for every 120mm length of cut the tool flank wear is 

measured for each workpiece. 

3.2 Cutting conditions 

The present work focusses on the comparison of extracted dominant features of flank wear 

with uncoated coated and ceramic inserts with dry machining. Experiments are conducted 

taking four cutting parameters (speed, feed rate, depth of cut and hardness) into account with 

three levels for every parameter. The details are clearly mentioned in the Table1.  

                                Table.1 Experimental Factors and their levels 
Levels of 
the 
experimental 
factors 

Factors 

Speed, 
N (rpm) 

Feed rate, 
f 
(mm/rev) 

Depth of 
cut, d 
(mm) 

Hardness 
(HRC) 

1 50 0.05 0.15 51 

2 65 0.075 0.2 53 

3 80 0.1 0.25 55 

3.3 Measurement and processing of cutting vibration signals 

By means of Taguchi’s L9 orthogonal array the number of experiments and the combinations 

of parameters for every run is obtained. The vibration signals are recorded at different stages of 

cutting, till the tool failure is observed. 

The vibration signals were measured using a Kistler8704B100M1uni-axial accelerometer 

have been mounted on top of the tool holder with magnetic clamp (Kistler 8443B), and placed 

possibly near to the tool insert. The frequency range of accelerometer is 1 Hz to 10 kHz and the 

sensitivity of the accelerometer is 50 mV/g (±5%) The accelerometer detected the vibration 

signals in z-direction. In the end the trained signal is directed to laptop with LabVIEW software 

in order to display and storage. The vibration signal data is collected and stored in an excel file, 

can be processed and analyzed later. 

4. Results and discussion 

The nine experimental runs were performed based on the combinations from Table 1 with 

each experimental run carried for a length of 120 mm. All the operations on CNC were 

performed using numerical control part programming. By using high resolution Tool maker’s 

microscope, the tool flank wear is measured. The tool wear obtained from tool maker’s 

microscope were given in the table 2. The uncoated carbide cutting tool vibration signals of 

Fig.1 have been captured for all the combinations cited in Table 1 (similarly coated carbide tool 

signals also captured) cutting speed, feed, depth of cut and hardness of the material. 

Various Features were calculated by using Lab View software and MATLAB for each and 

every signals collected by accelerometer. These features and corresponding outputs (tool wear, 

surface roughness and temperature) trained with Neural Network by considering the parameters 

and got high accuracy of 98%. After obtaining satisfactory relation between features and 

outputs in neural network training, we simulated the results for different variations in the 

features and obtained the outputs which was presented in the following figures 2 to 10. 

4.1 Grey relation Analysis for Vibration  
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The average grey relational grade of each factor at each level was obtained by taking the 

average of the grey relational grades for the required factor at the required level. The best level 

for each factor was obtained based on ‘higher is better’ characteristic. The trend of grey 

relational grade of the experimental runs was graphically represented in Fig.11. The dominant 

feature was attained by taking the extreme value of all factors. Fig.12 shows the sequence of 

dominant features. AD is the manipulating feature of tool wear for two tool inserts and values 

are maximum for coated carbide tool insert, minimum for uncoated carbide tool insert. 

Table.2 Manual Tool Wear for uncoated, coated and ceramic tool inserts from Tool maker’s 

microscope 

 

Fig.1 Vibration Signal Captured in Turning  Fig.2 Performance graph for vibration signals 
(uncoated) 

4.2 Analysis of variance (ANOVA) 

ANOVA examines the null proposition that the population means of every level are equal, 

versus the alternate hypothesis that minimum one of the level means are not equal. This is 

obtained by splitting the overall changeability of grey relational grades. It is stately by the sum 
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        [mm] 

1 50 0.05 0.15 51 0.245 0.19 0.129 

2 50 0.075 0.2 53 0.185 0.175 0.149 

3 50 0.1 0.25 55 0.2 0.16 0.14 

4 65 0.05 0.2 55 0.2 0.19 0.19 

5 65 0.075 0.25 51 0.2 0.145 0.118 

6 65 0.1 0.15 53 0.22 0.14 0.116 

7 80 0.05 0.25 53 0.21 0.19 0.193 

8 80 0.075 0.15 55 0.175 0.17 0.122 

9 80 0.1 0.2 51 0.2 0.14 0.111 
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of squared deviations from the total mean of grey relational grade, into contributions from every 

turning parameters and errors.  

Fig. 3 Training state graph for vibration     

(uncoated) 
Fig. 4 Regression Graph for vibration signal 

(uncoated) 

Fig. 5 Performance graph for vibration 

signals (coated) 

Fig. 6 Training state graph for vibration 

signal (coated) 

In addition, the F-test is used to determine what turning factors have a key effect on the 

output responses. Commonly, the change of turning parameter has main effect on the output 

response when the F- value is higher. Fig.13 shows sequence of percentage contribution of ach 

feature. Also in ANOVA, AD is found to be the utmost manipulating feature of tool wear. For 

all three tools, AD is the most dominant feature even after comparing with GRA.  
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Fig. 7 Regression Graph for vibration signal 

(coated) 
Fig. 9 Training state graph for vibration 

signal (ceramic) 

Fig. 8 Performance graph for vibration 

signals (ceramic) 

Fig.10 Regression Graph for vibration 

signals (ceramic) 

 

Fig.11 Grey relational grades of experimental runs for Vibration Signals 
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Fig 12. Level of sequence of features Fig 13. Percentage contribution of features 

CONCLUSIONS  

From the present investigation it can be concluded that 

➢ Using both the methods Taguchi and GRA dominant features are observed to find the 

tool wear in TCM. 

➢ Various Features are assessed from the LAB VIEW and MAT LAB software.  

➢ In MATLAB, a neural network technique is developed to train the remaining features 

in order to get the relation between tool wear and the dominant features, around 98 % 

accuracy is observed. 

➢ Tool wear is calculated by Simulating Neural Network, dominant features considered 

as input data from L27 Taguchi orthogonal array.   

➢ The Simulated data is analyzed by Grey relational method and attained grey grade, 

which is used to observe the dominant feature for the TCM.   

➢ Absolute Deviation is found to be the most dominant feature for vibration signal.  

➢ ANOVA analysis is accepted for the simulated data and grey codes, recognized that the 

same feature is obtained for Vibration signal.  
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