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Abstract: The computational procedure for investigation vibration stability of a flexible rotor consisting of an 

asymmetric shaft, one disc, and supported by ball bearings is developed in this work. Lagrange equations of the 

second kind were used for derivation of the motion equation. The vibration response stability of the Jeffcott-like 

rotor was studied by means of eigenvalues of a transition matrix. Three different methods for approximation of 

the transition matrix have been investigated. The presented simulations are focused on studying the influence of 

parametric excitation produced by the shaft asymmetry and self-excitation vibration caused by the shaft material 

damping. The numerical results proved the applicability of the developed procedure, which has been verified by 

the direct integration of the motion equation. 
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1 Introduction 

In rotating machinery with parametric excitation, large growth of a vibration response 

amplitude is observed at certain intervals of operating speed. Parametric excitation occurring 

at rotor systems is generated by different causes such as: (i) asymmetric cross-section of a 

rotor, (ii) rotor with a cracked shaft, (iii) geared rotor-bearing system, (iv) technological 

processes, etc. The coefficient matrices in a motion equation of the system with parametric 

excitation are periodically time-dependent [1, 2]. Another undesirable and sometimes 

dangerous vibration in the rotor systems can be caused by self-excitation vibration initiated by 

various sources such as: (i) material damping of rotors, (ii) dry friction, (iii) elements such as 

journal bearings, seals, etc., (iv) flow-induced vibration of elastic bodies, etc. The linearized 

motion equation of the system with self-excitation is characterised by a circulatory matrix, 

which other authors also call a non-conservative positional force [3-8]. 

Only in some cases it is possible to supress effectively the vibration response of a large 

amplitude or undesirable vibrations, for example using the concept of active vibration control 

[9] or by semi-active damping devices [10-13].  

Nevertheless, for reliable operation of the rotor system, it is necessary to precisely know 

the regions of stable/unstable vibration response caused by the parametric excitation and self-

excitation. Srinath, et al. [14] presented an approach to derive generalized criteria for 

determining the stability/instability regions of any asymmetric rotating shaft system and 

showed its applicability for comparison with experimental results and other practical 

applications. In [15], the stability analysis of an asymmetric shaft discretized by finite 
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elements is evaluated using Floquet theory. The stability of the rotor system is improved here 

by tuning of radial active magnetic bearing parameters. 

Also, the lateral stability of spherical parallel manipulators [16] used as robotic joint and 

the stability of the feedback controller for the planar robot [17] is investigated by means of an 

approach based on the utilization of the Floquet transition matrix method. 

In the presented work, the effect of an asymmetric cross-section of a rotor shaft and a 

material damping is investigated, with regard to vibration response stability. To study the 

vibration stability of the motion equation, the coefficient matrices of which are periodic 

functions of time, the Floquet theory [18-20] is used. In this work, a computational procedure 

for investigation of the vibration stability of a Jeffcott-like rotor was developed and its results 

were verified by means of a direct integration of the motion equation. 

2 Floquet theory and approaches for assembly of the transition matrix in rotor 

dynamics 

Investigation of the vibration stability in rotor dynamics is characterized by solving a 

homogeneous differential equation of the second order with variable coefficients, describing 

time history of deviations of a disturbed motion 

𝐌(𝑡)∆�̈� + 𝐁(𝑡)∆�̇� + 𝐊(𝑡)∆𝐱 = 𝟎. (1) 

𝐌(𝑡), 𝐁(𝑡), 𝐊(𝑡) denote the matrix of mass, damping, and stiffness, respectively, which are 

square of order n and dependent on time t, ∆�̈�, ∆�̇�, and ∆𝐱 are the vectors of deviations of 

generalized accelerations, velocities, and displacements of the disturbed motion, respectively, 

𝟎 is zero vector, and (∙) denotes the first derivative with respect to time.  

The disturbed motion equation is transformed into the state space 

�̇� = 𝐀(𝑡)𝐲,     𝐀(𝑡) = [−𝐌−1(𝑡)𝐁(𝑡) −𝐌−1(𝑡)𝐊(𝑡)
𝐈 𝐎

],     𝐲 = [∆�̇� ∆𝐱]T. (2) 

𝐈 is a unit matrix, 𝐎 is a zero matrix, and matrix A(t) is a continuous function of time with the 

period of T. 

The fundamental matrix [18] of solution of Eq. (2) can be expressed as 

𝐅(𝑡) = 𝐙(𝑡)e𝑡𝐑. (3) 

𝐅(𝑡) denotes the fundamental matrix, 𝐙(𝑡) is a regular periodic matrix with the period of 𝑇, 

and 𝐑 is a constant matrix. Matrix e𝑡𝐑 is called the monodromy matrix [18], and its 

eigenvalues are called characteristic multipliers of the system. The eigenvalues of matrix 𝐑 

are called the characteristic exponents (sometimes called Floquet exponents). 

Solution of the linear differential Eq. (2) with the initial condition 𝐲(𝑡0), 𝑡0 = 0 s is 

𝐲(𝑡) = 𝐇(𝑡, 𝑡0)𝐲(𝑡0), 𝐇(𝑡, 𝑡0) = 𝐅(𝑡)𝐅−1(𝑡0), (4) 

where 𝐇(𝑡, 𝑡0) is the transition matrix that maps initial condition at time 𝑡0 to the state of the 

system at time 𝑡. 

After substituting (3) into (4) for the time of one period (𝑡0 = 0 s, 𝑡 = 𝑇) and considering 

condition 𝐙(𝑇) = 𝐙(0) due to the periodicity of matrix 𝐙(𝑡), the transition matrix of the 

solution of Eqs. (1) and (2) has the following form 

𝐇(𝑇, 0) = 𝐙(0)e𝑇𝐑𝐙−1(0). (5) 
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All eigenvalues of the monodromy matrix e𝑇𝐑 and the transition matrix 𝐇(𝑇, 0) are the same 

because relation (5) represents a similarity transformation. 

The stability of solution of the Eqs. (1) and (2) can thus be judged by the eigenvalues of 

the transition matrix (5), assembled over the span of time of one period. If the modulus of 

eigenvalue | 𝜆i| < 1 for 𝑖 = 1, 2, … ,2𝑛, then the solution is asymptotically stable. However, if 

the modulus of eigenvalue | 𝜆i| ≤ 1 for 𝑖 = 1, 2, … ,2𝑛, then the solution is only Lyapunov 

stable. In all other cases, though, the solution is unstable. Therefore, the stability is evaluated 

by the locations of the eigenvalues on unit circle in the complex plane [18]. According to the 

point, at which the largest eigenvalue of the transition matrix crosses the unit circle, it is 

possible to determine the type of instability [19]. 

There exists a number of methods [18-20] for the construction of the transition matrix (5). 

One of them is to obtain the transition matrix by a repeated solution for differently chosen 

initial conditions. Then the transition matrix has the following representation 

𝐇(𝑇, 0) = 𝐘(𝑇)𝐘−1(0). (6) 

𝐘(0) is the fundamental matrix, the columns of which are vectors of initial conditions, and 

𝐘(𝑇) is a matrix, the columns of which are vectors of solutions at time 𝑇. 

The second method represents an approximation of the transition matrix and requires 

repeated computation of exponential matrices. The time interval of period T is divided into N 

time subintervals, and it is assumed that matrix A(t) of the system is constant in each of them 

and therefore, the transition matrix can be expressed as a product of exponential matrices 

𝐇(𝑇, 0) = e(𝑇−𝑡N−1)𝐀N …e(𝑡i−𝑡i−1)𝐀i …  e(𝑡1−𝑡0)𝐀1 , for 𝑖 = 1, 2, … , 𝑁. (7) 

In this study, the last method for the approximation of the transition matrix is based on 

kinematic relations of the Newmark integration technique. As in the previous case, the time 

interval of 𝑇 is divided into 𝑁 time subintervals, see [18]. 

3 The studied rotor system and its equations of motion 

The Jeffcott-like rotor has been investigated and its arrangement can be seen in Fig. 1. 

 
Fig. 1. Model of the Jeffcott-like rotor. 
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Two coordinate systems are introduced. The first one (xyz) is the stationary reference 

frame, its origin O coincides with the disc centre, and the x-axis lies on the undeflected 

bearing centreline. The second one (ξηζ) is the rotating reference frame. Its origin coincides 

with the origin of the stationary one, and both η-axis and ζ-axis coincide with the principal 

directions of the shaft stiffness. 

The rotor system is symmetric with respect to the plane passing through the rotor disc and 

perpendicular to the axis of rotation. The following assumptions were made: (i) the stator is 

considered as absolutely rigid body, (ii) the disc is rigid and is fixed to the rotor shaft at the 

midpoint of the bearing span, (iii) the massless flexible shaft is of constant rectangular cross-

section, (iv) the shaft is supported by two identical ball bearings, (v) the damping in bearing 

support and shaft material damping are considered as viscous, (vi) the rotor speed 𝜔 is 

constant, and (vii) the longitudinal and torsional vibrations are insignificant. 

In Ferfecki, et al. [21] the motion equation for similar rotor system is derived by means of 

the Lagrange's equations of the second kind. Exploiting the symmetry of the system, the 

vibration of the investigated rotor system in the stationary coordinate system can be described 

by a set of four differential equations 

𝐌�̈� + 𝐁�̇� + [𝐊(𝑡) + 𝜔𝐊C]𝐪 = 𝐟G + 𝐟A(𝑡), (8) 

𝐌 = [

𝑚 0 0 0
0 𝑚 0 0
0 0 𝑚B 0
0 0 0 𝑚B

] , 𝐁 = [

𝑏M 0 −𝑏M 0
0 𝑏M 0 −𝑏M

−𝑏M 0 𝑏M + 𝑏B 0
0 −𝑏M 0 𝑏M + 𝑏B

], 

𝐊(𝑡) =

[
 
 
 
 

𝑘η𝑐
2 + 𝑘ξ𝑠

2 𝑠𝑐(𝑘η − 𝑘ξ) −(𝑘η𝑐
2 + 𝑘ξ𝑠

2) −𝑠𝑐(𝑘η − 𝑘ξ)

𝑠𝑐(𝑘η − 𝑘ξ) 𝑘η𝑠
2 + 𝑘ξ𝑐

2 −𝑠𝑐(𝑘η − 𝑘ξ) −(𝑘η𝑠
2 + 𝑘ξ𝑐

2)

−(𝑘η𝑐
2 + 𝑘ξ𝑠

2) −𝑠𝑐(𝑘η − 𝑘ξ) 𝑘η𝑐
2 + 𝑘ξ𝑠

2 + 𝑘By 𝑠𝑐(𝑘η − 𝑘ξ)

−𝑠𝑐(𝑘η − 𝑘ξ) −(𝑘η𝑠
2 + 𝑘ξ𝑐

2) 𝑠𝑐(𝑘η − 𝑘ξ) 𝑘η𝑠
2 + 𝑘ξ𝑐

2 + 𝑘Bz]
 
 
 
 

, 

𝐊C = [

0 𝑏M 0 −𝑏M

−𝑏M 0 𝑏M 0
0 −𝑏M 0 𝑏M

𝑏M 0 −𝑏M 0

], 

(9) 

𝐟A(𝑡) = 𝑚𝜔2𝜀[𝑐 cos(𝛽0) − 𝑠 sin(𝛽0), 𝑠 cos(𝛽0) + 𝑐 sin(𝛽0), 0, 0]T, 

𝐟G = 𝑔[0,−𝑚, 0,−𝑚B]T, 
(10) 

𝑠 = sin(𝜔𝑡), 𝑐 = cos(𝜔𝑡). (11) 

KC is the circulatory matrix, 𝐪, �̇�, and �̈� are the vectors of displacements [𝑦, 𝑧, 𝑦B, 𝑧B]T, 

velocities, and accelerations, respectively, 𝐟A is the vector of unbalance forces, 𝐟G is the vector 

of gravity forces, and g is the gravity acceleration. 

The studied rotor is loaded by the disc unbalance and the weight of the disc and bearings. 

The disc and shaft are made from steel and physical parameters of the studied rotor system are 

listed in Table 1 and its parameters are similar to the Bently Nevada Rotor Kit test rig. It is a 

small rotating machine for investigation of operating regimes and a number of machinery 

malfunctions under realistic circumstances.  
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Table 1. Physical parameters of the studied rotor. 

Parameter Symbol Value Unit 

mass lumped at the rotor midpoint 𝑚 0.5 kg 

mass lumped at the bearing stations 𝑚B 0.1 kg 

coefficient of the shaft material damping 𝑏M 0 - 1 000 kg·s-1 

coefficient of damping in the bearing support 𝑏B 0.0012 - 4 800 kg·s-1 

shaft stiffness in η direction 𝑘η 7.392105 N·m-1 

shaft stiffness in ζ direction 𝑘ζ 2.218106 N·m-1 

bearing stiffness in y direction 𝑘By 2107 N·m-1 

bearing stiffness in z direction 𝑘Bz 4107 N·m-1 

eccentricity of the disc centre of mass ε 20 μm 

phase shift of the disc unbalance 𝛽0 0 rad 

4 Results of the numerical simulations 

The task is to study the effect of the shaft cross-section asymmetry, as well as damping in 

the bearing supports, and the shaft material damping on the rotor vibration stability. 

Investigation of the vibration stability of the studied rotor is judged by the stability of solution 

of the motion Eq. (8), which is evaluated by the moduli of eigenvalues of the transition matrix 

assembled over one period. Therefore, the stability was evaluated by the Floquet transition 

matrix method [19], and the direct integration of the motion equation was used to verify the 

rotor vibration stability. 

Three different approaches for the approximation of the transition matrix assembled over 

one solution period were tested. These approaches require repeated: (i) solution of the 

governing equations for different initial conditions, (ii) the product of exponential matrices, 

and (iii) the product of matrices assembled by means of kinematic relations of the Newmark 

integration technique. These approaches provided the same information about the vibration 

stability. Nevertheless, in terms of the solution time and the solution accuracy, the 

approximation of the transition matrix based on kinematic relations of the Newmark 

integration technique proved to be the best. 

 

Fig. 2. Dependency of module ||, real Re and imaginary Im part of the largest eigenvalue 

on the rotor speed. 
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The vibration stability was investigated for the rotor speed ranging up to 30 000 rpm. 

Fig. 2 shows the dependence of the module, real, and imaginary part of the largest eigenvalue 

of the transition matrix on the rotor speed. Vibration in the rotor system is suppressed only by 

the damping in the bearing support. In the investigated range of the rotor speed, one region of 

unstable motion exists due to the shaft asymmetry. The unstable region of the rotor speed is 

denoted by the red line (Fig. 2). 

For the investigated rotor system, the simulations show that the bounds of the region of 

unstable motion are only negligibly influenced by the amount of damping in the bearing 

support, see Table 2. 

Table 2. Effect of damping in the bearing support on the bounds of the unstable region. 

Damping in support 

[kgs-1] 

Damping in shaft 

[kgs-1] 

Lower bound 

[rpm] 

Upper bound 

[rpm] 

0.0012 0 15 439 - 15 441 26 053 - 26 056 

0.12 0 15 439 - 15 441 26 053 - 26 056 

1.2 0 15 439 - 15 441 26 053 - 26 056 

12 0 15 439 - 15 441 26 053 - 26 056 

1 200 0 15 441 - 15 444 26 071 - 26 073 

4 800 0 15 461 - 15 464 26 277 - 26 280 

Stability of the vibration evaluated by the Floquet theorem is confirmed in the vicinity of 

the bounds of the unstable region by direct integration of the motion Eq. (8).  

   

Fig. 3. Orbit (a) and time histories of the displacement components (b) of the rotor disc for the 

rotor speed of 15 461 rpm (left) and 15 464 rpm (right). 

    

Fig. 4. Orbit (a) and time histories of the displacement components (b) of the rotor disc for the 

rotor speed of 26 277 rpm (left) and 26 280 rpm (right). 

a a b b 

a a b b 
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The orbit and the time histories of the horizontal (y) and vertical (z) components of the 

rotor disc displacement are drawn in Figs. 3, 4 (for the damping in support 4 800 kgs-1). As 

evident, the vibration amplitude outside the unstable region bounds diminishes after the 

transition motion. On the contrary, the vibration amplitude inside the bounds of the unstable 

region increases with time. The largest eigenvalue of the transition matrix crossed the unit 

circle through the real axis, and this type of instability is referred to as the cycle saddle-node 

type. In the region of unstable motion, the vibration motion amplitude increases with time. 

The shaft material damping introduces another region of unstable motion. The effect of the 

shaft material damping on the transition matrix largest eigenvalue in dependence on the rotor 

speed is drawn in Fig. 5. 

 

Fig. 5. Dependence of the largest eigenvalue on the rotor speed for the material damping 

coefficient 25 kgs-1 and damping in the bearing supports 4 800 kgs-1. 

For the first region of unstable motion, the dependence of the real and imaginary parts of 

the transition matrix largest eigenvalue on the rotor speed for the rotor system without (Fig. 2) 

and with (Fig. 5) the shaft material damping has the same qualitative character. Therefore, the 

unstable motion will be of an identical type.  

 

Fig. 6. Orbit (a) and time histories of the rotor disc displacement components (b) for the rotor 

speed 28 549 rpm at the lower bound of the 2nd region of unstable motion. 

a b 
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At the lower bound of the 2nd region of unstable motion, the transition matrix largest 

eigenvalue exceeds the unit circle as a pair of complex-conjugate multipliers (0.396 ± 0.919i 

for 28 549 rpm), see Fig. 5. The stable vibration becomes unstable and this bifurcation is 

referred to as the secondary Hopf bifurcation [19]. 

It has been shown that at the lower bound of the 2nd region of unstable motion, the rotor 

disc displacement components grow as well as the rotor disc orbit (Fig. 6). In dependence on 

the type of bifurcation, the response will be composed of several component frequencies. 

Individual frequencies are evident from the detail of the time history (Fig. 7a) and its Fourier 

transformation (Fig. 7b). The motion is composed of two main frequencies (Fig. 7b) and their 

mean value is equal to the rotor speed frequency. 

    

Fig. 7. Detail of the time history (a) and the discrete Fourier transform (b) of the horizontal 

displacement of the rotor disc for the rotor speed 28 549 rpm. 

The amount of the material damping is dependent on the loss factor, the shaft stiffness, and 

the shaft deformation frequency [22]. The loss factor of the cast irons and steels [23] is 

approximately equal to (0.2-30)10-3, and value of the material damping can range from units 

to one thousand kgs-1 (see Table 3). For the investigated rotor system, the simulations show 

that the lower bound of the 1st region of unstable motion is only negligibly influenced by the 

amount of material damping (Table 3). However, the bounds of the 2nd region of unstable 

motion are strongly dependent on the amount of the material damping. 

Table 3. Effect of the shaft material damping on the bounds of the unstable regions  

for the damping in bearing supports of 4 800 kgs-1. 

Material damping 

[kgs-1] 

1st lower bound 

[rpm] 

1st upper bound 

[rpm] 

2nd lower bound 

[rpm] 

2nd upper bound 

[rpm] 

0 15 461 - 15 464 26 277 - 26 280 - - 

10 15 461 - 15 464 26 277 - 26 280 - - 

25 15 461 - 15 464 26 273 - 26 298 28 524 - 28 549 30 000 

100 15 461 - 15 464 30 000 - - 

1 000 15 461 - 15 464 30 000 - - 

CONCLUSION 

The effect of the shaft cross-section asymmetry, the damping in bearing supports, and the 

shaft material damping on the vibration stability using the Floquet transition matrix method 

was investigated. Three approaches for assembly of approximation of the transition matrix 

have been tested, and all of them gave the same information about the vibration stability. It 

a b 
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was shown that the interaction between parametric excitation caused by the shaft asymmetry 

and self-excited vibration caused by the shaft material damping can extend the region of 

unstable vibrations. The developed computational procedure for investigation of the vibration 

stability of the Jeffcott-like rotor with asymmetric shaft was verified by the direct integration. 

This procedure can be easily extended for the robots, manipulators, and rotor systems with 

nonlinear elements such as squeeze film dampers lubricated by classical oil or 

magnetorheological liquid. 
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