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Abstract: Comparing Euler-Bernoulli or Tismoshenko beam theory to higher order beam theories, an essential 

difference can be depicted: the additional degrees of freedom accounting for out-of plane (warping) and in-plane 

(distortional) phenomena leading to the appearance of respective higher order geometric constants. In this paper, 

after briefly overviewing literature of the major beam theories taking account warping and distortional 

deformation, the influence of distortion in the response of beams evaluated by higher order beam theories is 

examined via a numerical example of buckling drawn from the literature.  
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1 Introduction 

In engineering practice, Euler – Bernoulli and Timoshenko (classical) beam theories are 

frequently used for the analysis of slender members in cases of negligible or not shear 

deformations, respectively. This is owed to the fact that beam theories have numerous inherent 

advantages over more refined approaches (3d solid, shell models) which summarize to the 

following: 

• less modelling time 

• isolation of structural phenomena and results interpretation (rotations, warping parameters, 

stress resultants etc. are also evaluated in addition to displacements and stress components) 

• easier modelling of supports and application of external loading 

• significantly less number of degrees of freedom (dofs) - less computational time 

• parametric analyses without the construction of multiple models 

Despite the fact that classical beam theories are really popular due to the aforementioned 

reasons, they do not suffice when it comes to cases where intense out-of plane (warping) (e.g. 

[1]) or in-plane (distortional) (e.g. [2]) deformations take place. The reason is the assumption 

of rigid cross-section that makes them unable to take into account warping and distortion. In 

order to overcome this difficulty higher order beam theories have been developed maintaining 

the advantages of classical beam theories and being able to simulate problems with significant 

warping or distortional deformations. 

A well-known phenomenon associated with non-uniform shear warping is shear lag which 

usually occurs in folded or box-shaped beams. It has received a lot of attention from plethora 

of researchers who have studied it some decades ago. For example, Reissner [3] employed 
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energy method approach, Malcolm and Redwood [4] and Moffatt and Dowling [5] used finite 

elements [6] to study shear lag. In contemporary regulations, the importance of shear lag is 

acknowledged. More specifically, in section 2 of EC3-part 1.5 [7], shear lag is taken into 

account by means of the effective breadth. According to this method, the effects of shear lag of 

flanges in global analysis may be taken into account using an effective breadth which can be 

considered as uniform over the length of the span. Although this method is simple, it leads to 

an identical effect of shear lag in every point along the beam independently of the shear flow at 

a specific cross-section. In addition, instructions on how the effects due to shear lag should be 

considered at serviceability and fatigue limit state are provided in Section 3 of EC3-part 1.5 [7]. 

The equations for the evaluation of effective breadth under elastic and inelastic conditions are 

also provided. According to section 5.4 of EC4 [8]-[9] shear lag has also to be taken into account 

in composite steel and concrete structures. However, the cases where shear lag affects 

significantly the global analysis are not specified by the relevant guidelines. In contrast to EC2 

and EC3, European regulations regarding concrete structures (EC2 [10]) do not examine the 

effect of shear lag. All the above, lead to the conclusion that recommendations on shear lag 

effects in beams are based on a simplifying approach which may fail to capture satisfactorily 

the actual structural behavior of the member, since the influence of shear lag phenomenon is 

not constant along the beam length, while apart from the geometrical configuration of the cross-

section it depends also on the type of loading [11]. 

As far as distortional effects in stress and strain distribution of beam members are concerned, 

their significance is also highlighted in up-to-date regulations. However, in most cases the 

guidelines are general without providing specific modelling instructions in order to take into 

account the aforementioned effects. In EC3-Part 1.1 [7], for instance, the most of regulations 

regarding torsion are valid only when distortional deformation can be neglected (section 6.2.7). 

In addition, when it comes to buckling resistance of members (section 6.3.3) the guidelines are 

effective when distortional deformations are absent from the cross-section. The significance of 

distortion is additionally highlighted in section 6.3.5.2 where it is stated that it has to be 

prevented at the plastic hinge location. Distortional effect should be also taken into account 

during the evaluation of nominal stresses from fatigue actions (EC3, Part 1.9, Section 4 [7]) and 

the design of unreinforced joints (Part 1.8 Section 7.5.2.1(7)). As far as design of aluminum 

structures susceptible to fatigue is concerned, according to Eurocodes it is stated that modified 

nominal stresses should be used in place of nominal stresses (EC9 Part 1.3 Section 5.2 [12]). 

Finally, not only does distortion happen in steel and aluminum structures but it also occurs in 

concrete structures. For example, the opening of a joint in a box under certain specifications 

(EC2-Part 2-Section 6.3.2(106) [10]) may change the torsional resisting mechanism from Bredt 

circulatory torsion to a combination of warping torsion and St. Venant torsion. As a result, the 

web shear due to torsion is practically doubled and significant distortion of the section takes 

place.  

The regulations of steel and composite bridges pay more attention to distortional 

phenomenon. Particularly, in Part 2 of EC3 [7] it is clearly stated that for members under 

torsion, both torsional and distortional effects have to be dealt (6.2.7.1(1)). However, it is 

mentioned that the aforementioned effects may be neglected in members where due to cross-

sectional transverse bending stiffness and/or diaphragm action, the effects from distortion do 

not exceed 10% of bending effects. Similarly, attention to distortion matters is given in other 

guidelines as well such as those by American Association of State Highway and Transportation 

Officials (AASHTO) and Hanshin Expressway Public Corporation of Japan. According to these 

the maximum spacing of diaphragms placed in curved girder bridges is controlled so as to 

minimize distortional warping normal stresses in terms of bending normal ones (less than 10% 

for AASHTO, less than 5% for Hanshin Expressway Public Corporation of Japan) [13].  
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2 Higher order beam theories considering warping and distortion 

A lot of research efforts have been published concerning the development of higher order 

beam theories, including distortional effects, the past years. The majority of these researches 

deal with thin-walled profiles; hence, the simplifying assumptions of Thin Tube Theory TTT 

[14] dominate in the formulation of such theories. Adopting the concept of TTT, some of the 

first classical approaches examine the torsional distortion problem by reducing it to an 

equivalent Beam-on-Elastic-Foundation (BEF) one [14]-[16]. This approach clarifies some 

significant factors concerning the mechanism of distortion. Confirming BEF analogy, 

numerous research efforts extended classical Vlasov TTT by formulating corresponding fourth-

order differential equations taking into account torsional distortion, introducing at the same 

time basic notions such as that of distortional warping, distortional center and distortional 

moment [13], [17]-[23]. The connection of the above mentioned additional distortional warping 

with secondary torsional shear stresses has been also highlighted [24]. However, the previous 

studies which focus mainly on box-shaped bridge decks and are not general, because they do 

not include flexural distortional effects, while restrictions are set with respect to cross-sectional 

shape and its deformation (e.g. in-plane shear deformation of plate element of the beam due to 

distortion is ignored). 

GBT (Generalized Beam Theory), formulated by Schardt [2], [25], played an important role 

in generalizing Vlasov’s theory by integrating flexural and torsional distortional effects. In what 

followed, Davies and co-researchers [27]-[30] disseminated GBT through a series of 

publications studying linear static or bucking problems of thin-walled beams. These first GBT 

formulations are based on the hypothesis that the structural member has an open-shaped 

(initially un-branched) cross-section consisting of thin rectangular walls/plates; thus thin plate 

theory assumptions are employed for each wall. GBT analysis consists of two phases of 

analysis, namely a cross-sectional analysis and a member analysis. Cross-sectional analysis is 

then based on two stages comprising the establishment of warping modes and the subsequent 

establishment of distortional ones by using Vlasov’s zero-shear stress condition. This method 

becomes more complicated in branched cross-sections (i.e. in cross sections where a node may 

connect more than two plate elements) and in closed-shaped ones where zero-shear stress 

condition cannot be applied. Camotim, Silvestre and co-researchers have systematically 

proposed solutions to face the aforementioned inherent downsides of the method. They 

expanded it to able to study a variety of cross-sections, orthotropic materials, geometrically 

nonlinear and inelastic problems [31]-[41]. The general modal-decomposition-type character 

of its cross-sectional analysis consists an important advantage of GBT. This characteristic 

facilitated the categorization of in-plane modes to global, distortional or local ones. This 

categorization makes easy the comprehension of structural mechanisms and their hierarchical 

classification, confirming an inherent advantage of beam theories over more elaborate yet more 

complicated methods (e.g. 3d solid, shell models). 

Discretization of the cross-section determines the number and the accuracy of in-plane 

deformation modes evaluated by GBT cross-sectional analysis. The cross-sectional shape and 

nodal topology affect this discretization constituting it an undoubtedly complicated task (open-

shaped branched or un-branched, closed-shaped branched or un-branched cross-sections may 

be involved). Other researchers have developed TTT introducing the eigenvalue-type cross-

sectional analysis [42]-[43] establishing deformation modes and permitting their sorting in 

order of significance. Ranzi and Luongo [44], Jönsson and Andreassen [45]-[48] and Vieira et 

al. [49] have employed eigenvalue cross-sectional analysis highlighting the fact that with this 

approach it is not necessary to classify cross-sections according to their geometrical 

configuration (open-, close-shaped, branched or un-branched). Additionally, the resulting 
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modes contain the most significant ones and form a more meaningful and insightful basis of 

functions as compared to GBT ones which exhibit a more local character [44].  

It is worth mentioning that simultaneously with GBT, Finite Strip Method (FSM) has been 

also widely employed for the analysis of slender thin-walled structural members. Analogously 

with GBT, FSM is based on plate theory assumptions which are applied on each wall of the 

cross-section. FSM couldn’t be classified as beam theory but as a general purpose FEM-based 

method. However, studies exploiting the advantages of FSM in combination with GBT in order 

to study buckling problems of beams have been presented by Schafer, Ádány and co-

researchers. For this purpose, kinematical and strain constraints have been applied to 

conventional FSM leading the development of the so-called constrained FSM (cFSM) [50], 

[51]-[56]. cFSM employs specially selected constraints which enforce the member to deform 

according to mechanical constraints that match definitions of global or distortional buckling 

classes [55].  

It is worth noting that, all the above literature incorporates distortional effects in beam 

analysis by means of TTT. Even though TTT offers a simpler formulation, it restricts the range 

of application of relevant models, while it has been observed that its accuracy is questionable 

even in cases of cross-sections that are classified as thin-walled [57]. The problem of 

distortional analysis of beams of arbitrary cross-section, exhibits increased complexity even 

though the basic analysis stages are the same with GBT ones. Regarding sectional analysis, a 

suitable basis of out-of-plane deformation modes (warpings) accompanied by corresponding 

in-plane ones (distortions) has to be established as well; however this task exhibits far more 

complex behavior, since in the case of arbitrary cross section, kinematical considerations and 

constitutive relations cannot be simplified. In contrast, the member analysis is similar to those 

of GBT, since the formulation comprises the expression of displacement field as a linear 

combination of the obtained modes multiplied by relevant parameters which can be perceived 

as generalized coordinates. More specifically, the differences with TTT/GBT concern the 

handling of shear deformation by using of dependent or independent parameters as generalized 

coordinates. 

St. Venant problem of prismatic elastic bodies plays a crucial role for the establishment of 

exploitable warping/distortional functions towards solving the problem for arbitrarily shaped 

homogeneous or composite cross-sections. In these problems the analysis of deformation 

reduces to the evaluation of 2-D functions over the cross-sectional domain often referred to as 

central solutions (e.g. see the studies of Kosmatka and Dong [58] and Ie and Kosmatka [59] for 

St. Venant solutions in anisotropic prismatic bodies). In St. Venant problems, the central 

solution is valid along the examined prismatic body provided that warping/in-plane 

deformations of the root cross-section are not restrained (rigid body movements are though 

prohibited). Nevertheless, central solution is usually applied in more general boundary 

conditions as suggested by Saint-Venant through the “principle of elastic equivalence of 

statically equipollent systems of load” [60]-[62]. This statement establishes the so-called St. 

Venant’s Principle according to which the possible restraint near the support of the examined 

prismatic body does not affect the solution away from the support. However, towards expanding 

St. Venant’s theory, various researchers investigate the so-called end-effects (also referred to 

as extremity solutions, eigensolutions or transitional solutions [63]) when the above assumption 

is not maintained (e.g. in case of a clamped beam end). Hence, employing the semi-inverse 

method of St. Venant under static conditions, a displacement field of the following form can be 

assumed [62] 
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According to the above equations, the displacement vector u  of an arbitrary point of the 

cross-section is obtained as the sum of St. Venant solution vector SVu  (e.g. see Kosmatka and 

Dong [58]) combined with a residual displacement vector resu  due to end-effects which are 

responsible for the generation of self-equilibrating stress distributions [61]-[62], [64]-[65]. 

These additional displacements are written as a sum of K  two-dimensional functions iW  

(warping/in-plane deformation functions) multiplied by parameters ia  expressing their 

longitudinal intensity. Stress components due to end-effects are considered to independently 

satisfy the equations of local equilibrium. Thus, applying the three-dimensional elasticity 

equilibrium equations, exploiting the exponentially decaying character of these end-effects and 

introducing a proper discretization scheme of the cross-section, a 2-D quadratic eigenvalue 

problem is formulated. Hence, the concept of self-equilibrating end-effects permits the 

production of a basis of suitable modes of warping and in-plane deformation over the arbitrary 

cross-sectional domain, by combining St. Venant 2-D central solution concept with eigenvalue 

analysis.  

The formulation of advanced beam theories incorporating warping/distortional effects in 

beams of arbitrary cross-sections has received limited amount of literature. In the majority of 

the relevant studies, the concepts described in previous paragraph have been used. Exploiting 

the insight offered by St. Venant solutions, El Fatmi and Ghazouani [66]-[68] employ St. 

Venant in-plane modes with corresponding warping ones for arbitrary orthotropic cross-

sections multiplied by independent parameters, in order to take into account their nonuniform 

distribution along the beam length. The same concept has been applied also by Petrov and 

Geradin [69] who formulated a theory for curved and pre-twisted beams of arbitrary 

homogeneous cross-sections, covering geometrically nonlinear range as well. Nevertheless, 

these formulations include only flexural and axial deformation modes originating from the 

influence of Poisson’s ratio, while torsional distortion is excluded. Thus, it could be stated that 

these research efforts, study Poisson’s ratio effects rather than distortion effects. The concept 

of eigenvalue analysis has been also exploited in some recent research efforts. More 

specifically, Ferradi and Cespedes [70] formulate a beam element performing FEM-based 

eigenvalue analysis concerning the distortional behavior of the cross-section (in-plane problem) 

and compute warping functions separately by employing an expanded equilibrium scheme 

based on a previous study of the same authors [71]. A FEM formulation for cross-sectional 

analysis introducing the concept of zero warping-induced work was presented by Pai [63]. This 

analysis is employed to study isotropic or anisotropic beams undergoing large deformation. 

Additionally, a FEM procedure based on a mixed variational formulation for orthotropic beams 

by developing an eigenvalue cross-sectional problem yielding simultaneously distortional and 

warping functions of the arbitrarily-shaped cross-section was developed by Genoese et al. [72]. 

Finally, an advanced beam element in which the so-called sequential equilibrium scheme is 

employed for the computation of warping and distortional functions  
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Table 1. Warping and distortional modes of W250x45 cross-section according to the sequential 

equilibrium scheme. 
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was developed by Dikaros and Sapountzakis [73]. The advantages of this approach over the 

eigenvalue analysis one are that distortional and warping functions are evaluated by the same 

problem and in order of significance, while contrary to eigenvalue analysis, it permits the 
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separate evaluation of axial, flexural and torsional mode groups. Furthermore, in this way, a 

beam formulation is developed employing a relatively small number of unknown functions by 

employing the most “significant” modes (first solutions of the sequential equilibrium scheme) 

in order to keep the simplicity of the formulation to the highest possible level.  

Undoubtedly axial mode is crucial for buckling (and generally non-linear) analysis. As a 

result research efforts concerning higher order beam theories incorporating axial warping (out-

of-plane deformation) and axial distortional (in-plane deformation) modes are noteworthy. 

More specifically, a theory for curved and twisted beams where an axial distortional mode is 

included was developed by Petrov and Géradin [69]. A higher order composite beam theory 

built on Saint-Venant’s solution taking into account an axial distortional mode was developed 

by El Fatmiand Ghazouani [68],[74]. Warping and distortional modes solving eigenvalue 

problems in the context of the Generalized Beam Theory (GBT) were calculated by Jönsson 

and Andreassen [45] as well as Ranzi and Luongo [44]. Thin-walled straight beams with 

generally shaped closed sections using numerically determined sectional deformation functions 

(warping and distortional modes are obtained through an eigenvalue problem) were analyzed 

by Jang et al. [76]. Elastic buckling of uniformly compressed thin-walled regular polygonal 

tubes in the concept of GBT, including axial warping and distortional modes was studied by 

Gonçalves and Camotim [78]. A generalized model for heterogeneous and anisotropic beams 

including section distortions, integrating axial warping and distortional modes for both thin- 

and thick- walled cross-sections through the solution of an eigenvalue problem was presented 

by Genoese et al. [72]. An advanced beam element under longitudinal external loading by BEM 

where the first axial warping mode is evaluated with respect to external loading was presented 

by Sapountzakis et. al. [79]. Finally, a model reduction technique for beam analysis with the 

asymptotic expansion method where the warping and distortional deformation modes are 

determined in function of the applied loads and the limit conditions of the problem, was 

developed by Ferradi et al. [80]. 

However, the majority of the aforementioned beam theories have limitations regarding the 

cross-sectional shape or the loading. In more detail, only the first axial distortional mode is 

employed in [68],[69],[74] , only the first axial warping mode is employed in [79] , while 

assumptions of thin-walled beam theory are adopted in [44],[45],[76],[78]. In addition, warping 

functions are calculated in function of applied loads and limit conditions, requiring a new cross-

sectional analysis for each loading or limit condition, in [80], which is not the concept of a 

higher order beam theory. Moreover, although the cross-section can be thin- or thick- walled 

and assumptions of thin walled beam theory are not adopted in [72], axial modes are calculated 

through the solution of an eigenvalue problem. Finally, Argyridi and Sapountzakis [81] 

developed a higher order beam theory for generally loaded beams of arbitrary cross-section 

where axial warping and distortional modes are evaluated employing the concept of sequential 

equilibrium scheme. In order to exemplify the axial warping and distortional modes of [81] and 

taking into account that in [81] these modes of a hollow rectangular cross section (closed cross-

section) are illustrated, in table 1 warping and distortional modes of W250x45 cross-section 

(open cross-section) are presented according to the sequential equilibrium scheme [81]. In 

contrast, in the numerical example of Section 4, the linear buckling of a hollow rectangular 

cross section, which hasn’t been examined in [82], is examined as a comparison with literature. 

3 Buckling analysis by means of higher order beam theories considering warping and 

distortion  

Unquestionably, elastic stability of beams is one of the most important criteria in the design 

of structures (e.g. [83]). In addition, in stability problems members vulnerable to out-of-plane 

and/or in-plane deformations are more likely to develop such deformations by means of local 
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buckling. Numerous of scientists have been concerned with this issue. Chen and co-workers 

[84] were the first that included a simple analytical model in their beam formulation to account 

for the effects of local buckling of circular cross-section. Since then a lot of research efforts 

have been dealt with buckling including shear lag and distortional effects in the concept of a 

beam theory. A group of researchers have studied local buckling of beams employing GBT. 

GBT was used by Davies and coworkers to investigate the buckling of cold-formed steel (open-

section) profiles [85], while GBT was employed by Camotim and co-workers to study local 

buckling of beams regarding steel and aluminum columns [32], thin-walled regular polygon 

tubes, angle, T-sections and cruciform thin-walled members [36],[78],[87], cold formed steel 

purlins[88], steel-concrete composite beams [75], generally loaded thin-walled members with 

arbitrary flat-walled cross-sections [86]. Another group of researchers, examined buckling of 

beams by means of Finite Strip Method (FSM) [53],[54],[89] that relies on plate theory 

assumptions which are applied on each wall of the cross-section. A model that accounts for 

global behavior and for local buckling as well was formulated by Karamanos and co-workers. 

The global (beam-type) response is described through Lagrange polynomials and the cross-

sectional ovalization/warping in terms of trigonometric functions. This formulation has 

succeeded in simulating local buckling in circular hollow section members [90-93]. Local 

buckling has also been examined for several cases of thin walled sections [e.g. 94-97]. 

Nevertheless, all the aforementioned researches deal with the problem of local buckling 

employing assumptions of TTT and in some cases and the applicability of their methods 

depends on the cross-sectional shape. To overcome these disadvantages, Argyridi and 

Sapountzakis [82] developed a higher order beam theory for the buckling analysis of arbitrarily 

shaped beams where warping and distortional modes (axial additionally to flexural and torsional 

ones) are evaluated employing the concept of sequential equilibrium scheme. This higher order 

beam theory is employed in the present paper to examine the influence of distortion in the 

response of beams evaluated by higher order beam theories. In addition, comparisons with 

models of Euler –Bernoulli, Timoshenko beam theories, and 3d Solid finite elements are 

conducted to highlight the influence of the phenomenon under examination. 

4 Numerical example 

In order to investigate the influence of distortional phenomenon in the response of beams 

evaluated by higher order beam theories a numerical example drawn from the literature [98, 99] 

is examined dealing with linear buckling analysis of beams. Closed cross-section cantilever 

beams (Figure 1a), for length varying from 5.0L m  to 40.0L m , with a homogeneous (
6 210 /E kN m , 0.25  ) rectangular cross-section (Figure 1b) have been analyzed. More 

specifically, the buckling load has been calculated employing the Higher Order Beam Theory 

of [82] for varying number of degrees of freedom of each node ( dofsN  ) with 40 FE and is 

compared with the corresponding results according to Generalized Warping Beam Theory 

(GWBT) with 41 FE (takes into account shear lag both due to flexure and torsion, distortion is 

not taken into account) [98], Euler - Bernoulli Beam Theory including primary torsional 

warping (E/BBT) employing 41 FE [98], Timoshenko Beam Theory taking into account 

primary torsional warping (TBT) employing 50 FE [98], Solid FEM without diaphragms  

(w/out d.) [98] and solid FEM with diaphragms (with d.) [98]. In this example, in the Solid 

FEM with d. model rigid diaphragms in each set of nodes having the same longitudinal 

coordinate have been employed, pointing out that the diaphragms are designed so as each set 
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Figure 1: Boundary conditions and loading (a), cross section (b) and buckling loads of beams 

of numerical example as obtained from E/BBT [98], TBT[98], GWBT [98], Solid 

FEM with and without diaphragms [98], Wang and Li [99] and HOBT of [82]] for 

various Ndofs(c). 

of nodes has the same translation and rotation in the cross-section plane, corresponding to that 

cross-section maintains its shape at the transverse directions during deformation (distortion is 

not taken into account –assumption of E/EBT, TBT, GWBT). In both solid FEM models 1200 

solid FE per meter of length have been employed [98]. The aforementioned results are 

compared with those calculated by Wang and Li [99] which calculated the buckling loads of 

thin walled members taking into account shear lag effect (distortion is not taken into account). 

Figure 1c shows the aforementioned buckling loads.  
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The discrepancies between Solid FEM with d. and Solid FEM w/out d. as well as those 

between GWBT and HOBT for 36dofsN   show that for the lengths where the two solutions 

are different local buckling is dominant. Comparing HOBT results with those obtained by Solid 

FEM w/out d. it is obvious that as the dofsN  increases HOBT results approach Solid FEM w/out 

d. solution. Especially for dofsN  equal to 36 and 44 the results are almost the same, so can be 

concluded that HOBT (proposed method) convergences and that for sufficient dofsN  HOBT can 

give as accurate results as Solid FEM w/out d. even in cases of short lengths (e.g. 

Beam Length
1.19

longest side of the cross section
  for 5L m ) where local buckling dominates (Figure 

2a,b). The buckling load calculated from HOBT for 36dofsN  , solid FEM w/out d. and solid 

FEM with d. for 5L m  is 16,672.62P = kNHOBT
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Figure 2: Modeshape for 5L m  (a, b) and 10L m  (c, d) as calculated by HOBT of [82] 

for 36dofsN   and Solid FEM without diaphragms, respectively. 
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Figure 3: Modeshape for 20L m  (a, b), 30L m  (c, d) and 40L m (e, f) as calculated by 

HOBT of [82] for 36dofsN   and Solid FEM without diaphragms, respectively. 
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distortional phenomenon in buckling analysis of beams is apparent. In addition, it is concluded 

that distortional phenomenon is much more important than warping phenomenon. 

Figure 2 presents the buckling modeshapes for 5L m  (Figure 2a,b) and 10L m  (Figure 

2 c,d) as calculated by HOBT for 36dofsN   and Solid FEM without diaphragms, respectively. 

It is obvious that these modeshapes correspond to local buckling which is consistent to the fact 

that the buckling loads of GWBT and HOBT for 36dofsN   are not the same. Comparing HOBT 

with solid FEM w/out d. results can be concluded that the respective modeshapes are identical, 

as expected. 

Figure 3 presents the buckling modeshapes for 20L m  (Figure 3a,b), 30L m  (Figure 

3c,d) and 40L m  (Figure 3e,f) as calculated by HOBT for 36dofsN   and Solid FEM without 

diaphragms, respectively. It is obvious that these modeshapes correspond to global buckling, 

which is consistent with the fact that the buckling loads of GWBT and HOBT for 36dofsN   

are approximately the same. Comparing HOBT with solid FEM w/out d. results can be 

concluded that the respective modeshapes are identical. 

CONCLUSION 

In this paper, after briefly overviewing literature of the major beam theories taking account 

warping and distortional deformation, the influence of distortion in the response of beams 

evaluated by higher order beam theories is examined via a numerical example of buckling 

drawn from the literature. Analysis of members by means of a beam theory consists of two 

steps. In the first step, the geometric constants of the beam cross-section are evaluated via a 

cross-sectional analysis. In the second step, the global equilibrium equations of the beam, using 

the evaluated geometric constants, are solved to calculate the response of the loaded member. 

The way of calculation of cross-sectional characteristics is depicted as the essential reason that 

differentiates currently existing beam theories. In addition, the numerical investigation of the 

influence of distortional phenomenon in the response of beams evaluated by higher order beam 

theories leads to the following conclusions: 

• Distortional phenomenon has great influence in the calculation of the linear buckling load. 

• As far as the evaluation of beams buckling load is concerned, distortional phenomenon is 

much more important than warping phenomenon. 

• The employed higher order beam theory is able to accurately evaluate the buckling load of 

beams even in cases of very short lengths. In cases of such members, 3d theory of elasticity 

could be considered as more appropriate than a higher order beam theory. 
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