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Abstract: During the gas turbine exploitation the presence of small defects can cause very high vibration 

amplifications, localized on the components of this rotating machine. For this, a diagnostic process is necessary 

for decision-making during the monitoring of failures caused by vibration phenomena, which consists in 

observing the system by comparing its current data with the data coming from a normal operation. These 

indicators help engineer to determine the symptoms for the failing components of the system. This work deals 

with problems related to these vibrations, with the aim of developing a system of detection of failures using 

dynamic neural networks approach. The originality of this contribution is to calculate the various alarms based 

on this system which used the determined vibration models in order to ensure a reliable and safe operation of the 

gas compression installation using the examined gas turbine. 
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1 Introduction 

Vibration monitoring is still a hot topic in most industrial sectors, using rotating machines, 

this domain is designed to provide protective measures against these basic instability 

phenomena and provides the same level of information for their diagnosis of the thorough 

dynamic behavior performed on these rotating machines. For this end, this work aims to 

increase the capacity to monitor the vibratory behavior of a gas turbine under examination. 

We will focus on the model causes of the axial and radial vibrations of the bearings of this 

rotating machine, because presence of small defects in these components can lead to very 

large vibratory amplifications, localized on the whole turbine, with the aim of developing a 

system of detection of failures using dynamic neural networks, based on the use of actual site 

data, we will treat the example of the gas compression station at Hassi R'Mel Algeria. This 

will allow us to better manage the failures caused by vibrations, by detecting defects at an 

early stage, before they become critical and describe the parameters related to vibration and 

represents the state of the vibratory motion. In order to find the optimum vibration band 

which minimizes the vibration thresholds for the diagnosis of defects and to ensure reliable 

and safe operation in gas compression installations to the economic recovery of the 

transported gas. 

Indeed, in several industrial applications there are methods which have already been 

developed previously for improving the gas turbine monitoring systems to give the status and 
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operating information of a gas turbine from these signals vibrations [1-5]. Nonetheless, these 

methods have several disadvantages in their starting to integrate the source of vibration into 

these monitoring systems. However, when a fault occurs on an equipment, the experts go to 

the site to look for indications that could help them to identify the actual causes of the failure. 

Specifically, having an idea of the type of failure, they look for the probable causes for the 

eliminated. To this end, the detection process has the role of predicting the future situation of 

a process after each detection of change in behavior of the process. 

Recently in 2018, Delvecchio S. et al. in [6] proposed a vibro-acoustic state control 

strategy for internal combustion engines, Yongjia Wu et al. in [7] used the thermoelectric 

energy modeling for proposed a detection and monitoring system for gas turbines and 

Zhiyang Guo et al. in [8] analyzed the effects of non-linear instability of a rotor supported by 

leaf bearings to see their influence on sub-synchronous vibrations. In 2017, several works 

were realized on the modeling of these rotating machines for the purposes of diagnosis and 

detection of defects in the objective of avoiding degradation of the performances of the 

system; product quality, availability and stability. Among these works, Pesaresi L. et al. in 

[9], proposed a modeling of the nonlinear behavior of a turbine, Nadji Hadroug et al. in [10] 

linearized the dynamic model of two gas turbine shafts through their input / output data 

around equilibrium points, Mohammadreza Tahan et al. in [11] carried out a system of 

monitoring the state of a gas turbine, in two aspects (diagnoses and prognosis), applied to the 

conditional maintenance of gas turbines. 

Although other and different works have been done in this area of diagnosis to evaluate the 

performance of the industrial system based on performance indicators, using methods to 

detect and isolate the cause of performance degradation of the system, and allows to predict 

the causes of these degradations. 

In this work, the development of axial and radial vibration models of the turbine bearings 

is carried out to analyze the vibratory behavior of this machine based on dynamic neural 

networks, for efficient decision-making during the gas turbine monitoring from the actual 

operation data of this machine. For reliable analysis and identification of turbine system 

vibration indicators, to avoid deterioration of their performance, approved by robust testing 

and validation. This method makes it possible to obtain the information on the states of the 

system which is useful for its monitoring, while ensuring their performance, which are 

strongly linked to the functional states during the implementation of this surveillance strategy. 

2 Gas turbine installation 

In the industry, several types of gas turbines are used, for example in gas transportation, 

chemical processes, electricity generation, the aerospace industry and other applications. 

Understanding the vibratory behavior of a turbine is an industrial challenge that has continued 

to increase in importance in these industrial sectors. Uncontrolled dynamic deformation of the 

structures of the bearings and fins of a turbine can lead to premature aging of these 

components or to unacceptable noise and vibratory nuisances with non-linearity's present in 

the turbine system which are of different natures ; Combustion instabilities, such as the air / 

gas ratio which is responsible for the emission of nitrogen dioxide in large quantities and the 

instabilities related to the aero elasticity; Floating which begins with the natural frequency of 

the blade of the rotor with aerodynamic instabilities. These instability can cause deterioration 

of this machine, so it is essential to keep gas turbine operation outside of the instability zone. 

To prevent this phenomenon, gas turbines are equipped with monitoring systems to 

continuously monitor the mode of operation of these machines [12-18]. Indeed, the solutions 

proposed so far to prevent this phenomenon have not given encouraging results, because these 
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systems always present a risk of passage in vibrational phase. In this work, we propose a 

method for the diagnosis of the failures of a gas turbine based on artificial neural networks for 

the improvement of their monitoring. 

This will allow us to develop an original method to maintain and monitor gas turbines, in 

the event of failure or accident to prevent in real time. This approach involves operating the 

turbine within the acceptable vibration margin, close to the instability zone to ensure the 

maximum efficiency of the machine, it is a matter of widening the operating area which can 

reduce the running costs of the turbine. This work is oriented in this way to illustrate and 

show how in a maintenance policy the vibrations are measured, processed, monitored and 

used for diagnosis in order to appreciate the mechanical state of the gas turbine. The 

phenomena of instability and criticism in particular fatigue, wear are amplified by the 

phenomena of vibration of the parts under stress in the gas turbines [19]. 

The examined gas turbine in this work is a two-shaft GE 3002 turbine installed in a gas 

compression station at Hassi R'mel in southern Algeria. This turbine operates at high 

rotational speeds, it is strongly affected by defects caused by their vibrations, consisting of a 

15-stage axial compressor, a combustion chamber arranged (90 °) by supplying to the axial 

high-pressure turbine direction, which comprises a single stage, drives the compressor and its 

auxiliary equipment with a low-pressure turbine driving the load. The configuration of this 

installation is shown in Figure 1 and the examined turbine characteristics are given in Table 1. 

Table 1: MS 3002 Gas turbine technical characteristics  

Manufacturer: General Electric Power Turbine : 80- 9400 CV 

Model: MS 3002 Fuel consumption rate (100% HP on 27C): 2.84 

sm /3  

Serial No: 244370 Max exhaust temperature: 516.6 C 

HP Speed and axial compressor: 7100rpm Exhaust gas pressure: 1.009. 3 bar 

N ° axial compressor stage: 15 Starting system: turbo stator 

Number of wheels HP wheel (s): 01 Direction of rotation: anticlockwise 

Speed LP: 6500 rpm Number of shafts: 02 Twin shaft 

 

Measurements of the vibrations carried out on the examined turbine at full speed using the 

accelerometer shown in Figure 2, the vibrations measured in this machine are primarily 

related to the quality of the dynamic balancing of the rotating parts, the proximity of a critical 

speed, to the stiffness of the bearings. 
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Fig. 1 Two shaft gas turbine 

 

Fig. 2 Accelerometer installed on the tested turbine for vibration measurements 

The particularity of rotating machines is the dependence of the parameters of the vibration 

treatment on the rotational speed. This implies for the system of analysis of the dynamic 

behavior of a turbine the use of reliable vibration models for the treatment of these vibratory 

signals, the objective of which is to determine the amplitude and the phase of the vibrations in 

order to limit the vibrations Vibratory resonance hazards. 

2.1 Vibration of gas turbine components 

The rotating part of the machine is composed of high pressure and low pressure shafts, on 

which are mounted bladed wheels, where the various bodies of the shaft line are supported by 

bearings. As mentioned above, the turbine is sufficiently slender to represent it by rotating 

beams and the shaft can not be perfectly balanced due to the presence of residual unbalances 

on the shaft line. This is taken into account in the proposed modeling by adding point masses. 

In general, and in order to describe the dynamics of a turbine shaft system, the preliminary 

and necessary step of the modeling consists in defining the parameters and the marks 

associated with the rotor movement [11, 14]. Thus, the marks corresponding to a beam in the 

tri-dimensional space, as shown in Figure 3. 
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Fig. 3 Notations for a conventionally used disc 

The proper rotation of the beam w  is composed of the rotation of the rigid body of the 

shaft    and the angle of torsion  . By definition, the rotation speed of the solid is written as 

[10, 14]: 
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As well as the components of the rotation speed in the plane R  are given by: 
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Wherein 


Z  is the neutral axis of the rotor in its initial configuration, 


X  and 


Y  are the 

main axes of inertia of the rotor under consideration, u ,   and w  are respectively the 

displacements along the axes 


X ,


Y  and 


Z  of the point of intersection between the cross- 
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axial axis of the shaft line, ),,(


ZYXRg  is the absolute coordinate system linked to a cross-

section of the beam of the initial configuration, ),,( 1111



zyxR  is an intermediate rotation plane 

and ),,( zyxR


 is the reference point linked to the cross-section of the beam of configuration 

which is deformed in rotation. The transition from the plane gR  to the plane R  is done by 

three successive rotations corresponding to the angles of Euler. 

For an infinitely rigid circular disc subjected to a variable speed of rotation, the disc being 

in-deformable, the result is zero deformation energy. Using the notations introduced in Figure 

3, the displacement field associated with the disk is represented in the following form: 
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By applying the Huygens formula, the kinetic energy of the disk is obtained by adding the 

translation energy of the solid to the rotational energy is given by [2]: 
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Where DM  is the mass of the disk, 
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 is the instantaneous velocity vector 

with O  fixed in gR  and ][ / DOJ  is the inertia operator of the disk. 

The principal axes of the disc being x , y  and z , taking into account the symmetries, the 

inertia operator is written by: 
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Therefore, the exact expression of the kinetic energy will be written by: 
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By placing ourselves within the framework of small perturbations, this quantity can be 

approached by a limited development considering all the angular quantities,   except their 

derivatives, small in front of the unit. It is classical to work with equations of motion 

linearity's, obtained from energies developed in system order 2. 

In the practical case, such an approximation would result in the elimination of terms 

resulting from the gyroscopic effect vu  , as well as the weak coupling between the 

different vibrations of the turbine vu  . This is why we develop this energy by keeping the 

terms of system order 3, then we obtain: 
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In equation (8), the strong coupling between the angular position and the torsional 

vibration can also be noticed with the total rotation term )(    . 
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For the shaft of a gas turbine is modeled by a rotating beam, the general formulation of the 

kinetic energy of the shaft is obtained by extending the case of the disk [10, 11, 14, 20-21]. In 

this case, the energy of a beam slice, of infinitesimal length dz , is that of a disc of the same 

size. Thus, by integrating this formula along the length of the tree, it comes: 
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The deformation energy of a rotating beam is equal to [8]: 
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Where k  is the correction factor for shear stiffness. 

2.2 Unbalance phenomenon  

It is chosen to represent the loss of a fin or a residual unbalance resulting from imperfect 

balancing of the rotor by introducing an unbalance in the form of a point mass mb  situated at 

a distance rb  from the axis of rotation. Considering the notations introduced in Figure 4, the 

displacement field associated with the unbalance is determined by the following relation: 
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Thus the velocity of the unbalance is given by: 
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Fig. 4 Unbalance phenomenon notation 
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The unbalance being considered as a point mass, its internal energy is zero, the expression 

of the kinetic energy of the unbalance is given by the following relation: 

2

/2
gRBb

B

C VmE


  (13) 

Is: 

))]sin()cos()((2)([2 22222   uvrrwvumE bbb

B

C
  (14) 

Equation (14) shows that the unbalance excites the rotor in torsion and reveals a strong 

coupling between the torsion angle and the angular position of the shaft. The angle of torsion 

  could be neglected before the angular position   either    in this equation (14). 

The vibratory behavior of rotating machines is extremely varied, each machine is the seat 

of dynamic excitations extremely diverse and specific to its operation. The fixed and movable 

members are vibrating structures, where all these components respond according to its modal 

characteristics and its damping capacities. However, each vibratory regime generates dynamic 

stresses that stress the parts in fatigue, it is impossible that a machine, whose design becomes 

more and more energetic, does not vibrate, but all the know-how of the constructor endeavors 

to ensure that the fatigue strength capacities can admit these alternating stresses. Subsequent 

to this work, a vibrational behavior modeling based on neural networks dynamics will be 

developed to place the influence of the speeds of a gas turbine considering the high and low 

speed of the rotor of this turbine. 

3 Vibrations modeling using dynamic neural networks 

The aim of this work is the use of neural networks for modeling the vibratory behavior of a 

gas turbine as a predictor of the axial and radial vibration models of the turbine shaft being 

examined. The vibration monitoring system, shown in Figure 5, communicates state and 

vibration data to the turbine control adaptation system via a communication adapter module 

and with Location monitoring modules and identification also called detection module. Also, 

proximity detection input modules, depending on the vibration data they transmit, such as the 

radial or axial inputs of the vibration sensors, are used in the vibration defects monitoring 

system of the examined gas turbine. 

In this Figure 5, the identification model is based on dynamic neural networks (NARX), 

used to detect malfunctions of the machine based on the architecture of the multi-layered 

perceptron, with feedback to the input. In order to model the turbine vibration behavior, as a 

predictor of the axial and radial vibration models of the examined gas turbine shaft. 

The neural network is designed to perform the monitoring tasks defined by input sequences 

and sequences of desired values corresponding to the output neurons (reference model) [22-

25]. The NARX dynamic neural network structure proposed in this work is shown in Figure 6. 
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The characteristic equation of dynamic neural networks NARX is given by [22, 26-27]: 
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With )(ku  and )(ky  are respectively the input and the output of the networks at the instant 

k , the input and the output of the system at the time instant n , with 1ud  and 1yd  are the 

input memory and output memory orders with yu dd  . 

The nonlinear activation function f  is approximated by a multilayer perception (PMC), 

the multi-layer neural network is most commonly used for modeling and control with a 

sigmoid and linear function respectively in the hidden layer and the output layer defined by 

the following equations: 
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Where kjw  is the synaptic weight between the hidden layer and the output layer, jiw  is the 

synaptic weight between the input layer and the hidden layer, kiw  the synaptic weight 

between the output layer and the input layer ), ix  is the connection between the input layer 

and the hidden layer, jx  the connection between the hidden layer and the output layer, kx  the 

connection between the output layer and the input layer, 1

jb  is the bias of the neuron j , 1f  is 

the activation of the hidden layer, 2f  is the activation function of the output layer, k  is the 

index of the output layer, j  is the hidden cache layer index, i  is the input layer index. 

The retro-propagation algorithm is used in this work to minimize the objective function E , 

using the gradient method. This training begins with a random choice of the initial vectors of 

the weight. The object of the back-propagation algorithm of the error is to adapt the synaptic 

weights w  to minimize the cost function, using the following algorithm: 
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 k  is iteration number and lr  is the learning step. 

▪ Derivative of the cost function E  by weight ratio 
ijW  is performed by: 

 



T

p
l

ij

l

ij kdW

WdE

dW

WdE

1 )(

)()(
 

▪ Derived from the cost function for the hidden layer 

 
)(

)(
.

)(

)()( 1

1
1

1

kdE

kdE

kdE

WdE

dW

kdE
l

i

l

q
N

p
l

q

p

l

ij

p
l








  

 )()).((
)(

1' kUkPf
dW

kdE
l

j

l

i

l

l

ij

p   

 ))().((.
)(

)()(
1' kUkPf

kdU

WdE

dW

WdE
l

j

l

l

j

p

l

ij

p   

▪ Derived from the cost function for the output layer 

 ))()((
)(

)(
kyky

kdU

kdE
i

d

il

j

p
  

▪ End  

 

The data are generated for several robustness tests of the proposed modeling approach; In 

the absence of noise, in the presence of additive output noise, in the presence of state noise 

and in the presence of output noise and state noise. For each case, the performances of the 

NARX structures, in particular the AIC criterion in training and the validation error, are 

compared in order to check the adequacy between the structure of the nonlinear model and the 

system to be identified.  

The performances of the learning and validation models are evaluated by the square root of 

the Root Mean Square Error (RMSE) given by [27-28]: 

    
2

1

ˆ
1




N

k

kyky
N

RMS  (17) 

where N  is the number of observations and (.)ŷ  is the output of the model. 

4 Application and investigation results 

Gas turbines are widely used in the gas transport sector and in other industrial fields. 

Nevertheless, these machines are subjected to a very important instability problem caused by 

the presence of vibration, to characterize and identify the defects from the vibratory signals 

measured on these machines, it is necessary to model these vibratory behaviors. This makes it 

possible to elaborate the key steps in the diagnosis of the defects of this type of rotating 

machine. Generally, these vibratory signals of the defects of rotating machines are generally 

non-stationary, affecting the rotor of the machine, in the case of a rotor constituted by a 

flexible shaft and a disk whose center of mass is unbalanced, as is shown in Figure 7, during 

rotation at a rotational speed w . 
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Fig. 7 Movement of a rotating rotor 

The forces applied to the system are the stiffness forces, the damping forces and the inertial 

forces which exert at the center of gravity given by: 
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By derivation we find: 
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The stiffness coefficient applied to point A (the displacement of point A relative to point 

O), the stiffness coefficient of this system depends on (Young's modulus, shaft length, inertia 

of the shaft) for the conservative case, given by [29]:  

OAKF   with 
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x
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








ky

kx
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The damping forces are presented in two external and internal forms, where the external 

damping has a significant influence on the speed of rotation of the turbine shaft: 

dt

OAd
cFc .  with 
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x

dt
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Hence O is the center of rotation, A is the center of geometry of the disk, G is the center of 

gravitation, ),( yx  is the fixed reference and ),( 


 is the mobile reference. 

The rotation of a rotor of a rotating machine generates accelerations which are applied to 

the masses and cause inertia forces. When the axis of rotation does not contain the mass 

barycentre, its centrifugal acceleration causes an imbalance force with periodic movements in 
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the radial direction whose frequency is equal to the speed of rotation w . To identify these 

vibration problems that are difficult to model by analytical methods, the use of techniques 

derived from the field of artificial intelligence appears as a main alternative for these vibration 

problems. 

In this section, vibration behavior modeling of a gas turbine is developed based on 

dynamic neural networks, to identify the nonlinear system dynamics of instability phenomena 

from experimental data to approximate the variables of this nonlinear system By integrating 

the concept of artificial neural networks, to model the dynamics of this rotating machine. 

Using the data collected on the sensors of the five bearings (1-5 xy) of the gas turbine tested, 

as shown in Figure 8. 

 

 

 

 

 

 

 

Fig. 8 Sensor bearing of the examined gas turbine 

The proposed architecture of the NARX neural network algorithm for the vibration 

monitoring task of the examined turbine is shown in Figure 9, this configuration uses a 

predictor learning associated with a multi-input / multi-output process. Since the architecture 

of the network is fixed, the purpose of learning is to estimate the coefficients to best fulfill the 

task for which the network is intended. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Turbine vibration monitoring architecture 

The following two Figures 10 and 11 show the evolution of actual outputs of the speed of 

rotation of the high-pressure turbine HP and the speed of the low-pressure turbine LP used 

subsequently in the axial and radial vibration modeling of the five bearings of this turbine. 
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Fig. 10 Vitesse de turbine haute pression 
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Fig. 11 Vitesse de turbine haute pression 



Volume 68, No. 3, (2018) 2018 SjF STU Bratislava 157 

 

The application data are restricted by the minimum and maximum of each bearing 

vibration variable of the gas turbine under consideration (axial or radial vibration) and 

corresponds to the range of validity of the neural obtained model for each stage. For each 

stage, an interval was defined according to the observed measurement values. 

The obtained results fro vibration modeling of the five bearings show in Figures 12 to 

Figure 21. In Figure 12, the axial vibratory signals of bearing A of the high-pressure turbine 

exceed the tolerance range of 25 um, this allows generated operating alarms in degraded mode 

of the machine and Figure 13, shows the obtained neural model response of stage A, this 

model perfectly reproduces the entire operating mode of the turbine by efficient learning and 

this is given by the modeling error. 

Figure 14 shows the axial and radial vibratory signals of bearing B of the high-pressure 

turbine with a peak of 24.5 μm of axial vibration, with the used network structure, a very 

good modeling error can be seen in Figure 15, which confirms the effectiveness of the model 

for the axial and radial vibrations of bearing B. 

Figure 16 shows the axial and radial vibratory signals of bearing C of the high pressure 

turbine with a peak of 17.5 μm of axial vibration and 15.6 μm of radial vibration, these results 

corresponding to the different operating conditions of degraded mode used in the bases 

learning and testing, in order to demonstrate the good behavior of the neural model under all 

conditions and to validate its possibilities for generating the vibration indicators, Figure 17 

shows the obtained neural model response of stage C with an modeling error of zero, which 

confirms the efficiency of the model obtained for the axial and radial vibrations of this 

bearing C. 
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Fig. 12 Variation of axial and radial response of bearing A 
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Fig. 13 Result of obtained neural model of bearing A 
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Fig. 14 Variation of axial and radial response of bearing B 
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Fig. 15 Result of obtained neural model of bearing B 
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Fig. 16 Variation of axial and radial response of bearing C 
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Fig. 17 Result of obtained neural model of bearing C 
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Fig. 18 Variation of axial and radial response of bearing D 
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Fig. 19 Result of obtained neural model of bearing D 
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Fig. 20 Variation of axial and radial response of bearing E 

Figure 18 shows the variations of the axial and radial vibration of the bearing D responses 

of the low-pressure turbine with a 13.5 μm axial vibration peak and Figure 19 shows the 

obtained neural model response of stage D with an acceptable modeling error, which confirms 

the effectiveness of the developed model for the axial and radial vibrations of bearing D. 

Figure 20 shows the variations of axial and radial vibration of the bearing E of the low-

pressure turbine with a peak of 15.3 μm of axial vibration and Figure 21 represents the 

obtained neural model response of bearing E, the verification of the correct functioning of the 

obtained model is done using the neuronal model in loop mode and justify by the obtained 

modeling error, which confirms the efficiency of this model for the axial and radial vibrations 

of bearing E.  

In all cases of the different bearings (A, B, C, D and E) the obtained results in normal or 

degraded mode are very satisfactory but are of major interest for the axial or radial vibration 

modeling of these bearings from tested gas turbine. In a practice way and from the point of 

view of the neural model, we have developed an original architecture, which consists in 

developing a network for each stage of the turbine and then associating these five networks in 

a global model to realize axial and radial vibration predictions of these bearings of the turbine. 

Where, the model inputs are the operating conditions of this rotating machine. The 

performances reported in Table 2 are measured through the back propagation learning 

algorithm, this table shows that all the configurations tested for the different five stages of the 

gas turbine examined see their performances improve by using this type of learning and that 

the squared error results show their acceptable accuracy. 
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Fig. 21 Result of obtained neural model of bearing E 

 

Table 2: Mean square error modeling 

 
Vibration 

Bearing A 

Vibration 

Bearing B 

Vibration 

Bearing C 

Vibration 

Bearing D 

Vibration 

Bearing E 

Mean 

Square 

Error 

8.10e-28 7.27e-19 1.55e-20 4.86e-18 6.047e-29 

 

CONCLUSION 

The increasing complexity of industrial plants using gas turbines and their severe operating 

constraints have increased to the operation of these systems by adding values to these 

supervisory strategies. Moreover, this work is part of an industrial diagnostic context in which 

it is difficult to have knowledge about the phenomena of instability and the opposite of 

acquiring data on this equipment. The interest of the approach proposed in this work was to 

develop a diagnostic system based on dynamic neural networks, using the non-linear self-

regenerating technique with high-quality exogenous input (NARX) for the modeling of the 
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vibrations of a gas turbine and guarantee their profitability. This approach allows real-time 

diagnosis, designed to avoid failures and damage, in order to increase their availability and 

enable them to have good productivity, using the major interest of neural networks, which 

resides in its ability to analyze the failure of the turbine under examination, illustrated on real 

data of this turbine, which allow the synchronization of the actions of the monitoring modules 

of this rotating machine. And to put in place this vibration monitoring strategy, which is a 

challenge for the development of monitoring of the degradation state of these industrial 

systems, taking into account vibration phenomena and fault indicators, also have been used to 

provide the predictions of failure in a specific way. 
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