
Volume 66, No. 2, (2016) 2016 SjF STU Bratislava 67

PARALLEL COMPUTATION ON MULTICORE PROCESSORS USING

EXPLICIT FORM OF THE FINITE ELEMENT METHOD AND C++

STANDARD LIBRARIES

REK Václav1, NĚMEC Ivan2

1 Brno University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics, Veveří

331/95, 602 00 Brno, Czech Republic, e-mail: RekV@seznam.cz
2 Brno University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics, Veveří

331/95, 602 00 Brno, Czech Republic, e-mail: nemec@fem.cz

Abstract: In this paper, the form of modifications of the existing sequential code written in C or C++

programming language for the calculation of various kind of structures using the explicit form of the Finite

Element Method (Dynamic Relaxation Method, Explicit Dynamics) in the NEXX system is introduced. The

NEXX system is the core of engineering software NEXIS, Scia Engineer, RFEM and RENEX. It has the

possibilities of multithreaded running, which can now be supported at the level of native C++ programming

language using standard libraries. Thanks to the high degree of abstraction that a contemporary C++

programming language provides, a respective library created in this way can be very generalized for other

purposes of usage of parallelism in computational mechanics.

KEYWORDS: Finite Element Method, Parallel Computing, C++ Standard Libraries

1 Introduction

Thanks to rapid advances in computer technology in the field of multicore and

multiprocessor technology, during the last decade a lot of attention has been devoted to the

parallel processing of data in many scientific and industrial sectors. It is in contrast with the

past decades when an increase in computing power, especially in personal computers, was

achieved by increasing the clock speed of processors. This type of technological evolution has

its limitations compared to multi-processors and multi-core computer architectures

respectively. Many older applications designed to run sequentially have begun to become

obsolete, mainly due to the performance of available hardware.

As in the past, and even now, development tools for the development of software

applications are slightly lagging behind the choices of available hardware. Alternatives of

how to benefit from multi-core processors were commercial technologies from the company

Intel, or other free available technologies. Another possibility was to use an application

interface provided directly for the respective operating system such as Win32 API [1] for

Windows or POSIX [2] for Unix-like operating systems, which are often quite cumbersome

and limited to the possibilities of C programming language [8].

Since the year 2011, when the new standard of C++ programming language was

introduced, developers have been given the possibility to use threads and all other necessary.

resources to support thread synchronization on the level of the native programming language

using its standard libraries [3].

Journal of MECHANICAL ENGINEERING
 – Strojnícky časopis

VOLUME 66, NO 2, 2016

pp. 67 – 78

DOI:10.1515/scjme-2016-0020

Print ISSN 0039-2472

On-line ISSN 2450-5471

68 2016 SjF STU Bratislava Volume 66, No. 2, (2016)

Using the new version of the C++ programming language has been possible for some time

in Microsoft Compiler since the Microsoft Visual Studio 2010 IDE (abbrev. for Integrated

Development Environment) or in some freely available compilers.

The new standard libraries of the C++ programming language already provide an effective

interconnection of strong object-oriented programming language and multithread running,

which until recently, had been largely limited. Computational software tools that are already

written in C or C++ programming languages are now able to enrich the possibility to use

parallelism while maintaining the portability of code. In a field of an explicit form of the

Finite Element Method ([6], [7]) or explicit meshless methods [16] the possibility of usage of

parallelism is more than desirable, mainly because of time-consuming calculations, which is

caused by the conditional stability of explicit methods used for the direct integration of

equations of motion.

2 Explicit form of the Finite Element Method

The Explicit form of the Finite Element Method is based on a reformulation of the problem

of static equilibrium to an artificial problem of dynamics with damping. Damping can be

considered both explicitly with damping coefficients, and implicitly [13], [14].

There are generally more ways to derive the governing equations of motion. Namely, it is

the Principle of Virtual Work, Hamilton’s Principle and Hamilton’s Law of Varying Action

and Principle of Balance of Mechanical Energy respectively. These principles are well

described in [9], both continuum and the dynamics of the particles.

Hamilton’s Principle and Hamilton’s Law of Varying Action, which are based on the

formulation of scalar functions of potential and kinetic energy respectively, are probably the

most well-known principles in theoretical physics.

The result is a well-known semi-discrete second-order differential equations of motion,

which are then solved by direct integration using the method of central differences [9], [15].

3 Governing equations

Governing equations are based on The Principle of Conservation of Linear Momentum [9],

[10]. Let us consider the body Ω with mass density ϱ = ϱ(𝐱, t) in motion, which is subjected

to body forces 𝐛(𝐱, t) and the traction force 𝐭(𝐱, t) acting on a surface 𝜕Ω. Let 𝐮̇(𝐱, t) be the

Eulerian velocity field, then linear momentum I of the body Ω is defined as

𝐈 = ∫ ϱ𝐮̇(𝐱, t)
Ω

 𝑑𝑉

The principle of conservation of linear momentum as a counterpart to Newton’s second

law states that the rate of change of the linear momentum of an arbitrary part of a continuous

medium is equal to the resultant force acting on the part under consideration, then:

∫ 𝐭(𝐱, t)
𝜕Ω

 𝑑𝐴 + ∫ 𝐛(𝐱, t)
Ω

 𝑑𝑉 =
𝐷

𝐷𝑡
∫ ϱ𝐮̇(𝐱, t)

Ω
 𝑑𝑉.

Using the 𝐭 = σ . 𝐧, Gauss’s divergence theorem, rearranging the resulting equation and

considering the fact that the equation is also valid locally, so we get Cauchy’s first law of

motion (Eulerian description). For completeness it is necessary to consider prescribed

Neumann’s, Dirichlet boundary condition and initial state of body in time 𝑡0

∇ . 𝜎 + 𝜚𝐛 − 𝜌𝐮̈ = 0 in Ω (1)

𝐮(𝑡0) = 𝐮̅, 𝐮̇(𝑡0) = 𝐮𝟎̅̅ ̅̇, 𝐭 = 𝛔 . 𝐧 in 𝜕Ω𝑁, 𝐮 = 𝐮𝟎 in 𝜕Ω𝐷 ,

Volume 66, No. 2, (2016) 2016 SjF STU Bratislava 69

Where ϱ𝐛 and ϱ𝐮̈ represent the density of body forces and material time derivative of

Eulerian velocity field respectively. With respective initial conditions at time 𝑡0 for

displacement 𝐮 and velocity field 𝐮̇ and natural boundary condition for traction forces 𝐭 acting

on boundary 𝜕Ω𝑁 and prescribed displacement field 𝐮𝟎 on boundary 𝜕Ω𝐷 it leads to a

complete formulation of the initial boundary value problem.

Cauchy’s equation of motion is a formal vector representation of the governing equations

of motion. It is a principle in continuum mechanics, which is analogous to D’Alembert’s

principle in the dynamics of particles.

4 Discretization of governing equations by the Finite Element Method

To get a suitable form of Cauchy’s equations of motion for the finite element analysis let

us use Hamilton’s law of varying action which is deduced from an analogy to the Lagrangian

form of D’Alembert’s principle [9].

Discretization in space is carried out in the sense of Galerkin projection. Hamilton’s

principle or Hamilton’s law of varying action naturally results in a weighted residual form in

time, and the governing equation in time equals the finite element equation of motion.

Let us consider Cauchy’s equilibrium equations under the Lagrangian formulation,

particularly due to suitability for a solution of the generally nonlinear problems occuring in

mechanics of deformable bodies.

The spatial configuration of the body Ω is defined as invertible mapping 𝛘𝑡: Ω → ℝ3 for

fixed time 𝑡. The position of a continuum particle (material point) constituting the

undeformed body is denoted by Cartesian coordinates 𝑿 = (𝑋1, 𝑋2, 𝑋3) ∈ Ω ⊂ ℝ3. Within a

close interval of time Τ = 〈0, 𝑇〉, a smooth motion of a body Ω is described as mapping

𝛘(𝑿, 𝑡): Ω → ℝ3 × Τ → Ω̅ ⊂ ℝ3, ∀𝑡 ∈ Τ, where Ω̅ denotes a set of infinite particles of the

body in the spatial or current configuration. The space occupied by a set of all configurations

in the dynamical motion is called the configuration space

𝐶 = {
𝛘(𝑿, 𝑡): Ω → ℝ3 × Τ → Ω̅ ⊂ ℝ3|𝛘 ∈ 𝑊2

𝑚(Ω) = 𝐻m(Ω)

𝛘𝑋(𝑡): 𝐶2(Τ), 𝑚 > 2, |∇𝛘| > 0, and 𝛘|𝜕Ω 𝛘 = 𝛘̅
,

where ∇𝛘 =
𝜕𝛘

𝜕𝑿
 and 𝛘̅ denotes prescribed displacement on boundary 𝜕Ω 𝛘. Every

configuration is infinite dimensional manifold, the second derivative of the motion must be

square integrable in the Lebesgue sense up to the m-th order derivative with respect to the

space independent variables (𝛘 ∈ 𝐻m(Ω)).

Cauchy’s equations of motion can then be reformulated to the Lagrangian form as follows

∇ . 𝐏(𝑿, 𝑡) + 𝜚𝐁(𝑿, 𝑡) − 𝜌𝛘(𝑿, 𝑡)̈ = 0 in Ω

𝐓(𝑿, 𝑵, 𝑡) = 𝐏(𝑿, 𝑡) . 𝑵(𝑿, 𝑡) on 𝜕Ω𝑁, 𝛘 = 𝛘𝟎 on 𝜕Ω𝐷 ,
𝛘(𝑡0) = 𝛘̅, 𝛘̇(𝑡0) = 𝛘𝟎̅̅ ̅̇,

where 𝐏(𝑿, 𝑡) is the first Piola-Kirchhoff stress tenzor, 𝐁(𝑿, 𝑡) denotes body forces,

𝐓(𝑿, 𝑵, 𝑡) is prescribed traction on boundary 𝜕Ω𝑁 in direction of outward normal 𝑵 to the

surface in current configuration, 𝛘𝟎 and 𝛘𝟎̅̅ ̅̇ denote initial state and velocity of the body in time 𝑡0.

For the purpose of application of Hamilton’s law of varying action it is needed to compose

kinetic 𝒦 and potential 𝒰 energy of the respective continuum body.

𝒰(𝛘) = ∫ 𝜚0Ω
𝚿(𝐅) 𝑑𝑉 − ∫ 𝐓(𝑿, 𝑵) .

𝜕Ω
𝛘(𝑿, 𝑡) 𝑑𝐴 − ∫ 𝐁(𝑿) . 𝛘(𝑿, 𝑡)

Ω
𝑑𝑉

70 2016 SjF STU Bratislava Volume 66, No. 2, (2016)

𝒦(𝛘̇) =
1

2
∫ 𝜚0Ω

𝛘̇ . 𝛘̇ 𝑑𝑉 ,

where 𝜚0𝚿(𝐅) is density of the Helmholtz free energy and 𝐅 is deformation gradient

respectively. Then Hamilton’s law of varying action has a form

𝛿𝒦(𝛘̇) − 𝛿𝒰(𝛘) −
𝑑

𝑑𝑡
∫ 𝜚0𝛘̇ .

Ω
𝛿𝛘 𝑑𝑉 = 0

𝛿ℒ(𝝌, 𝛘̇) −
𝑑

𝑑𝑡
∫ 𝜚0𝝌̇ .

𝛺

𝛿𝝌 𝑑𝑉 = 0 ,

where ℒ(𝝌, 𝛘̇) is the autonomous Lagrangian ℒ(𝝌, 𝛘̇): 𝑇𝐶 → ℝ3. Now let us consider the

approximation of displacement field

𝛘̃(𝑿, 𝑡) ≈ 𝝌̃ℎ = 𝑿 + ∑ 𝐍𝑖(𝑿)𝐔𝑖
𝑒

𝒏

𝒊=𝟏

(𝑡) = 𝑿 + 𝐍𝑒(𝑿)𝒒𝑒 (2)

𝒒𝑒(𝑡) = {𝐔1
𝑒(𝑡), … , 𝐔𝑛

𝑒 (𝑡)}.

where 𝐔𝑖
𝑒(𝑡), 𝒒𝑒(𝑡) denote nodal displacement vector and a set of generalized coordinates

and 𝐍𝑖(𝑿) denotes linear combination of coordinate polynomial shape functions [11], [12],

[15]. Interpolating shape functions are defined over the domain of each finite element which

interpolate within each element 𝑒 the displacement of element node 𝑖 (trial functions of class

𝐶𝑚−1(Ω)). For the entire domain of interest, we introduce a configuration space with

generalized coordinates

𝑄 = {𝒒|𝒒(𝑡) = (𝑈1(𝑡), … , 𝑈𝑛𝐷𝑜𝑓(𝑡)) ∈ ℝ3n} .

and the generalized velocities which belong to a tangent space

𝑇𝑝𝑄 = {𝒒̇|𝒒̇(𝑡) = (𝑈̇1(𝑡), … , 𝑈̇𝑛𝐷𝑜𝑓(𝑡)) ∈ ℝ3n} .

Then the velocity phase space (tangent bundle) is defined as follows

𝑇𝑄 = {(𝒒, 𝒒̇)|𝒒 ∈ 𝑄 and 𝒒̇ ∈ 𝑇𝑝𝑄} = ⋃ 𝑇𝑝𝑄

𝒒∈𝑄

.

By means of equation (2), Hamilton’s law of varying action within the 𝑒-th element domain

Ω𝑒 can be discretized in space as follows:

∫ ((
𝜕ℒΩ𝑒

ℎ

𝜕𝒒𝑒
) −

𝑑

𝑑𝑡
(

𝜕ℒΩ𝑒
ℎ

𝜕𝒒̇𝑒
))

𝑡2

𝑡1
 . 𝛿𝒒𝑒(𝑡) 𝑑𝑡

Hence, in terms of generalized coordinates equation (15), leads to form

𝑑

𝑑𝑡
(

𝜕ℒΩ𝑒
ℎ

𝜕𝒒̇𝑒
) − (

𝜕ℒΩ𝑒
ℎ

𝜕𝒒𝑒
) + (

𝜕𝒟Ω𝑒
ℎ

𝜕𝒒̇𝑒
) = 0.

𝒟Ω𝑒

ℎ is the Rayleigh dissipation function, which denotes damping forces, which consider the

friction effect of the surroundings and the internal friction of viscose material, where it

denotes the dissipative rate naturally in a more general form. For the problem of the damping

effect in terms of material friction it would get the form of material described by Kelvin’s

rheological model. Here we consider the simple form of Rayleigh’s dissipative potential in the

form 𝒟Ω𝑒

ℎ =
1

2
𝒒̇𝑒

𝑇𝐶𝒒̇𝑒. Damping is artificially added to the equations of motion due to the

Volume 66, No. 2, (2016) 2016 SjF STU Bratislava 71

convergence rate control of calculation. For simplicity we consider simple linear elastic

material with infinitesimal strains and displacements. At the end we get semi-discrete second-

order differential equations of motion, which we use for direct integration by the finite

difference method

𝑀𝒒̈ + 𝐶𝒒̇ + 𝐾𝒒 = 𝐹𝐸 . (3)

Where 𝒒̈, 𝒒̇ and 𝒒 are vectors containing nodal accelerations, velocities and displacements

respectively. 𝐾𝒒 represents internal forces (𝐹𝐼) and (𝐹𝐸) the external forces. 𝑀 is the lumped

mass matrix and 𝐶 is the damping diagonal matrix.

5 Direct integration of equations of motion by Central Difference Method

Time derivatives of the equations of motions (3) are approximated by the Central

Difference Method to get explicit formulas for the estimation of acceleration, velocity and

displacement field respectively for time step. It is also possible to use the already existing

integrator based on Newmark- β method (β = 0, γ = 0.5) or Hilber-Hughes-Taylor-

 α method (α = 0 → Newmark- β method).

𝒒̈ ≈ 𝒒̈ℎ
𝑛 =

1

Δ𝑡2
(𝒒ℎ

𝑛+1 − 𝒒ℎ
𝑛 + 𝒒ℎ

𝑛−1), 𝒒̇ ≈ 𝒒̇ℎ
𝑛 =

1

2Δt
(𝒒ℎ

𝑛+1 − 𝒒ℎ
𝑛−1) (4)

Substitution 𝐪̈ and 𝐪̇ from Equations (4) into Equation (3) gives

(
1

Δ𝑡2
𝑀 +

1

2Δt
𝐶) 𝒒ℎ

𝑛+1 = (𝐹𝐸
𝑛 − 𝐾𝑛𝒒ℎ

𝑛) +
2

Δ𝑡2
𝑀𝒒ℎ

𝑛 + (
1

2Δt
𝐶 −

1

Δ𝑡2
𝑀) 𝒒ℎ

𝑛−1 (5)

For the 𝑖th degree of freedom, Equation (5) leads to the explicit formula for new

displacement

𝒒ℎ
𝑛+1 = 𝛼𝑑𝑓(𝐹𝐸,𝑖

𝑛,𝑑𝑓
− 𝐹𝐼,𝑖

𝑛,𝑑𝑓
) + 𝛽𝑑𝑓𝒒ℎ,𝑖

𝑛,𝑑𝑓
− 𝛾𝑑𝑓𝒒ℎ,𝑖

𝑛−1,𝑑𝑓
 (6)

where

𝛼𝑑𝑓 =
2Δ𝑡2

2𝑚𝑖
𝑑𝑓

+ 𝑐𝑖
𝑑𝑓

Δ𝑡
, 𝛽𝑑𝑓 =

4𝑚𝑖
𝑑𝑓

2𝑚𝑖
𝑑𝑓

+ 𝑐𝑖
𝑑𝑓

Δ𝑡
, 𝛾𝑑𝑓 =

2𝑚𝑖
𝑑𝑓

+ 𝑐𝑖
𝑑𝑓

Δ𝑡

𝑚𝑖
𝑑𝑓

+ 𝑐𝑖
𝑑𝑓

Δ𝑡
.

Due to the conditional character of the resulting explicit time approximation of respective

differential equations of motion, it is necessary to fulfill the Courant-Friedrichs-Levy

conditions of stability for time increments Δ𝑡 [9], [15]. Damping coefficients 𝐶 and mass

coefficients 𝑀 respectively may be selected arbitrarily in the sense of the numerical dynamic

relaxation method. Due to material and geometrical nonlinearities, coefficients of viscose

damping must be chosen under consideration of a critically damped dynamic system to get a

non-oscillating response. On the other hand, a dynamic system would experience non-

physical states during solution.

6 Parallel Realization of Explicit Algorithm

The basic form of the explicit algorithm is divided into 2 phases as follows (it is shown

schematically in Fig. 1, 2).

The displacement vector for each finite element is simply composed by code numbers of

finite element nodes. Each thread handles the respective range of finite elements based on the

prepared schedule from the input data.

Due to the explicit character of the respective algorithm, it is necessary to compose

stiffness matrices only without necessity of the explicit assembly of the global stiffness

matrix. The same possibility is also valid for the external force vector which comes from the

72 2016 SjF STU Bratislava Volume 66, No. 2, (2016)

continuous character of forces on respective finite elements. This step is also required for the

calculation of stresses for each finite element and the calculation of the internal force vector

which is used in the next phase for the calculation of residual forces in application of the

explicit formula (6) and convergence check. Associated values of current displacements for

each finite element are stored in a simple data array in successive order of their respective

code numbers. The displacement vector for each finite elements simply composed by code

numbers of finite element nodes. Each thread handles the respective range of finite elements

based on the prepared schedule.

Fig. 1 Composition of external and internal force vectors

External nodal forces from the input data and integrated internal and external forces from the

first phase are applied in the next phase to calculate current residual forces. Explicit

integration of equations of motion, calculation of new displacement vector and consideration

of boundary conditions respectively are performed in the second phase. Unlike the first phase,

the scheduling of threads is taken as the range of the finite element nodes with their respective

degrees of freedom. External nodal forces from the input data and integrated internal and

external forces from the first phase are applied here to calculate current residual forces. For

each finite element node, the sum of the contributions from the neighboring finite elements

for the respective node is performed. This procedure is simply shown in Figure 2.

Volume 66, No. 2, (2016) 2016 SjF STU Bratislava 73

Fig. 2 Composition of new deflections of finite element nodes

7 Class model of parallel solver

The Sequential solver that was originally written in the C programming language has been

modified and supplemented by subsequent classes. In Fig. 3 and 4 the class templates and

their relationships using the simplified form of UML language are described. Class

“FEVRThreadScheduler” contains all required data for computation. The class

“FEVRThreadFactoryCpp” is responsible for C++ thread creation on CPU according to data

which comes from the “FEVRThreadScheduler” object. Access to input data in each thread is

done by using “FEVRSolverThreadInputData” class instance. The required class is

“FEVRComputeRunner” which contains member function used as a procedure which is called

by every running thread.

Fig. 3 Simplified UML class diagram of parallel solver input data

74 2016 SjF STU Bratislava Volume 66, No. 2, (2016)

Software layer of the parallel solver, which is responsible for the appropriate use of the

functionality which is shown in the previous figure is shown in Fig. 4.

Fig. 4 Simplified UML class diagram of parallel solver input data

Class “FEVRThreadFactory” is responsible for the creation of threads and also their

termination. Also described in the figure is class “FEVRThreadBarrier”, that is used by each

thread to synchronize computing parts when it is necessary to ensure the synchronization of

all threads on the one time level. This is mainly required for the phase between the integration

of finite elements and the calculation of the new displacements.

8 C++ Standard Library

For the purpose of the explicit algorithm running on the CPU threads part of the

functionality of the new C++ standard libraries is used. These standard libraries are part of the

C++ programming language since version 11. New standard libraries support also

asynchronous programming which is useful especially in the case of network communication

and access to peripheral devices (=I/O). The respective class runs the function asynchronously

(potentially in a separate thread which may be part of a thread pool) and returns “std::future”

that will eventually hold the result of that function call. It is useful mainly for the purpose to

hold UI (User Interface) in a responsive state [3].

An important class that is used to create CPU threads is in header file “thread.h”.

Volume 66, No. 2, (2016) 2016 SjF STU Bratislava 75

Fig. 5 Constructor for creation of CPU thread

Creating a C++ thread which is implemented in presented solver is shown in Figure 6. For

comparison the figure shows the creation of the CPU thread using native API of the Windows

operating system. It is shown in the lower part of Fig. 6.

Fig. 6 Creation of the CPU thread by using of C++ standard library and Win32 Api

The last important functionality that is needed in a multi-threaded program is

synchronization of threads. The code used in solver is shown in Fig. 7.

Fig. 7 Synchronization barrier

76 2016 SjF STU Bratislava Volume 66, No. 2, (2016)

For the presented functionality it is needed to include header files as follows:

#include <thread>, #include <vector>, #include <cstdlib>, #include <algorithm>, #include

<memory>, #include <mutex> and #include <condition_variable>.

For a particular idea and purpose of interrelations among the different classes which compose

a layer of parallel solver is used chart of Fig. 8. This shows the links that relate a direct

reference to a particular object (ref.), the links created by the template parameters (templ.) and

inheritance respectively (inh.).

Fig.8 Class interconnections and dependencies

9 Class model of parallel solver

A test was performed on a model that consists of 5 000 finite elements (30 906 DOF) with

100 time steps. The effectiveness of the used algorithm was tested on the three different

processors as follows:

 Intel Core2 Duo SU9400 - 1.40 GHz (2 Cores / 2 Threads)

 Intel Core i5-3320M Ivy Bridge - 2.6 GHz (2 Cores / 4 Threads)

 Intel Core i5-4690 3.5 GHz (4 Cores / 4 Threads)

Achieved performance (Sequential time [s] / Parallel time [s]):

 1.986

 1.972

 3.826

Volume 66, No. 2, (2016) 2016 SjF STU Bratislava 77

The observed results from performance tests of the implemented algorithm has been found

that only number of CPU cores affects the performance output. Hardware threads in this case

are irrelevant.

CONCLUSION

The introduced approach to the potential usage of the modern form of the C++

programming language and its new standard libraries allows us to make better use of the

support of parallel computations on the level of native programming language.

Functions written in C or C++ programming language designed for sequential run can be

easily applied in a new C++ code, and thus, the existing computational tool could be adapted

to exploit the opportunities of multicore processors.

Respective tests on different processors proved the effectiveness of the used approach.

REFERENCES

[1] A J. M. Hart: Windows System Programming (Addison-Wesley Microsoft Technology),

Fourth Edition. Addison-Wesley Professional, 2015.

[2] A M. Kerrisk: The Linux Programming Interface: A Linux and UNIX System

Programming Handbook. No Starch Press, 2010.

[3] A. Williams: C++ Concurrency in Action: Practical Multithreading. Manning Publications,

2010.

[4] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, D. Holmes: Java Concurrency in

Practice. Addison-Wesley Professional, 2006.

[5] E. Agafonov. Multithreading in C# 5.0 Cookbook. Packt Publishing, 2013.

[6] S. R. Wu, L. Gu: Introduction to the Explicit Finite Element Method for Nonlinear

Transient Dynamics. Wiley, 2012.

[7] V. Rek, I. Němec: Parallel Computing Procedure for Dynamic Relaxation Method on GPU

Using NVIDIA’s CUDA. Switzerland, Trans Tech Publications. Applied Mechanics and

Materials, 2016, 821, 331-337.

[8] S. Prata. C Primer Plus, Fifth Edition. Sams Publishing, 2004.

[9] J. Har, K. K. Tamma. Advances in Computational Dynamics of Particles, Materials and

Structures. Wiley. 2012.

[10] E. WV Chaves. Notes on Continuum Mechanics (Lecture Notes on Numerical Methods

in Engineering and Sciences), Springer, 2013.

[11] E. O˜nate: Structural Analysis with the Finite Element Method. Linear Statics: Volume 2:

Beams, Plates and Shells (Lecture Noteson Numerical Methods in Engineering and

Sciences), Springer, 2009.

[12] E. O˜nate: Structural Analysis with the Finite Element Method. Linear Statics: Volume 1:

Basis and Solids (Lecture Noteson Numerical Methods in Engineering and Sciences),

Springer, 2013.

[13] J. Rodriguez, G. Rio, J.M. Cadou, J. Troufflard: Numerical study of dynamic relaxation

with kinetic damping applied to inflatable fabric structures with extensions for 3D solid

element and non-linear behavior. Elsevier, Thin-Walled Structures, 2011, 49, 1468-1474.

[14] J. Alamatian: A new formulation for fictitious mass of the Dynamic Relaxation method

with kinetic damping. Elsevier, Computers & Structures, 2012, 91, 42-54.

[15] O. C. Zienkiewicz, R. L. Taylor: Finite Element Method: Volume 1, Fifth Edition,

Butterworth-Heinemann, 2000.

[16] P. Staňák, J. Sládek, V. Sládek.: Analysis of Piezoelectric Semiconducting Solids by

Meshless Method, In Journal of Mechanical Engineering - Strojnícky časopis, Vol. 65, No.

1, 2015, pp.77-92, ISSN 2450-5471

78 2016 SjF STU Bratislava Volume 66, No. 2, (2016)

