
DOI: 10.1515/SBEEF-2019-0011

INNOVATIVE DEVOPS FOR ARTIFICIAL INTELLIGENCE

R. CIUCU1, F.C. ADOCHIEI1, IOANA-RALUCA ADOCHIEI 2, F. ARGATU1, G.C. SERIȚAN1,

B.ENACHE1, S. GRIGORESCU1, VIOLETA VASILICA ARGATU 1
1 University POLITEHNICA of Bucharest, Romania, 2 Technical Military Academy “Ferdinand I” Bucharest Romania

E-mail: felix.adochiei@upb.ro

Abstract. Developing Artificial Intelligence is a labor-

intensive task. It implies both storage and computational

resources. In this paper, we present a state-of-the-art service-

based infrastructure for deploying, managing and serving

computational models alongside their respective data-sets and

virtual environments. Our architecture uses key-based values

to store specific graphs and datasets into memory for fast

deployment and model training, furthermore leveraging the

need for manual data reduction in the drafting and retraining

stages. To develop the platform, we used clustering and

orchestration to set up services and containers that allow

deployment within seconds. In this article, we cover high-

performance computing concepts such as swarming, GPU

resource management for model implementation in

production environments with emphasis on standardized

development to reduce integration tasks and performance

optimization.

Keywords: Artificial Intelligence; HPC; Clustering; PAAS;

Orchestration; DevOps;

1. INTRODUCTION

Since the emergence of Deep Learning frameworks,
teams of researchers have been developing computational
models that can synthesize natural language, recognize
handwriting and objects and classify specific objects
based on learned and identified characteristics [1-2].

Development operations (DevOps) is a new field in
software system engineering that tackles with concepts
such as "agile infrastructure" and "agile operations", and
it deals with all the stages of development, deployment,
and production of services and micro services
architectures [3].

We decided to build this platform to bring together a
team of professionals from different fields and
backgrounds to streamline the development,
management, and training of computational models.

While neural networks provide potent means to process
data, the frameworks themselves are highly dependent on
hardware resources such as graphical processing units
(GPU), development environments and the core
programming language. Out of the many
implementations of neural networks, two distinguished
players emerged. The first one is Python, which provides
digital capabilities (NumPy), ComputerVision (dlib,
OpenCV) [5] and data parsing (PyCSV, Pickle). The
second one is TensorFlow (TF), which is a relatively new

AI framework developed by Google and had widespread
success over the past three years [4-6].

While Python and TF provide a flexible approach to
developing applications and scripting specific tasks, the
combination is highly version dependent, with libraries
that are ported over from other languages like C and
LUA, many of them requiring to be compiled and built
for the machine.

We propose to store specific datasets and parameters in a
standardized way, to ease the data flow to the
computational models and ensure that each computing
session can be addressed individually by the data is
processed and the final output.

In the materials and methods section, we describe our
approach to distribute the virtual environment and
datasets into a containerized format, the way we built our
high-availability cluster to support the proposed platform
and the hardware components of the system.

The results section deals with the integrated software
services and micro services that govern each computing
session and orchestrate the swarm of containers that run
at any given time within our platform.

We conclude the paper by discussing the performance
and the scalability of the proposed architecture,
emphasizing the future model implementations and data
flow optimizations.

2. MATERIALS AND METHODS

The three main principles of DevOps, as stated by Agile
Admin [3], are:

 Infrastructure Automation – Create, configure and

package each application to be automated

 Continuous Delivery – Build test and deploy within

an agile environment

 System Reliability Engineering – Operation,

orchestration, and monitorization of each container

In past years multiple Artificial intelligence frameworks
emerged such as TensorFlow (TF), Caffe, Apache
SINGA, Microsoft Cognitive Toolkit, and Torch.
Devops for such frameworks deals mostly with the
environment setup and dataset management.

58

Scientific Bulletin of the Electrical Engineering Faculty – Year 19 No.1 (40) ISSN 2286-2455

2.1 TensorFlow VirtualEnvironment

The virtual environment is a bridge between assets and
resources such as libraries and the application
dependencies. TF has two device layers; one dedicated to
the GPU component and the other to the CPU. Therefore,
two virtual environments must be developed [7].

The TF kernel encapsulates the computational operations
which are called as jobs and tasks by the client
application. Thus having multiple jobs and workers a
parallelized computing session can be implemented in
each model [7].

To each graph within a session, a section of the GPU
resources is allocated. To scale the application session
arguments need to be exposed as environment variables.
Modifying those values affects the performance and the
training times of the model. The primary values that the
session attributes to the graph are the allocated memory
per process and the device that runs each operation [8].

2.2 TensorFlow Models as a Service

For passing the input data from python to TF, the objects
need to be serialized and transformed into vector values.
If the given model has a known data structure, the local
Pickle and SVM files can be leveraged for a distributed
resource approach.

A memory resident database (MRDB) is a type of
database that stores keys and values in-memory for fast
access. It allows for a flexible data structure design, class-
object relations, and asynchronous transactions. Rediscan
be used as a task execution queue and fast data serving
[9-10].

In Figure 1 is illustrated the MRDB model structure; each
model is categorized by their specific type, while the
stored weights can be generational and are serialized.

Tf graphs depend on the session in which are called, the
operations executed within the blocks of the graph and
the resource allocation that is specific to the session.

Serializing such a request can be done using a JSon
(JavaScript Object Notation) object then passed as an
execution command to the data intake node.

Figure 1. Redis Tree View of Generational Models

2.3 Persistent Memory Operations

Persistent memory (PMEM) programming is a relative
new field in computer engineering. Historically RAM
mapping and persistent memory have been used in order
to study and analyses software behavior during
malfunctions by analyzing what was stored or what was
the state of the software at the moment of a crash or a
fatal error. Persistent memory allows for instant delivery
of information from certain data structures by using a
MRDB specialized for storing and altering data directly
into the memory [11].

2.4 Container pipeline

The container development workflow implies a set of
conventions such as environment variables, packaged
dependencies, and local storage data tables.

The containers can depend on resources that are shared
and called locally within the compose file thus deploying
a bundle of containers that are interlinked.

Containers can be built automatically by the orchestration
engine on specific triggers which alter environment
changes [8].

The pipeline consists of developing and adapting each
model to a preferred state, packaging the dependencies
using package managers such as NPM, PIP and building
local caches of libraries and assets.

The Container is built as an image which contains a
Linux kernel, a set of instructions for the container engine
(compose.yaml) and the application itself.

Each image is stored within a registry or a local volume
from which the orchestration software pulls, deploys and
monitors the container.

The container lifetime depends on the initialization
parameters and the exit code. Each container should be
built with a Command Line Interface Logging component
to monitor activities such as API-Calls, debugging
information and process states.

2.5 Container Orchestration

Orchestration implies the organizing and planning,
containers runtime.

The container engine provides a set of tools which are
iterated upon for load balancing and runtime
optimization. A lot of empiric data based on logs can be
useful for manual balancing, but for long-term training
sessions with a model that span multiple layers and data
processes, automated load balancing is employed.

A typical orchestration architecture employs two types of
nodes [12]:

 The worker nodes primarily execute the machine

learning tasks with load balancing

59

Scientific Bulletin of the Electrical Engineering Faculty – Year 19 No.1 (40) ISSN 2286-2455

 Manager nodes do the routing tasks and request

handling, based on the runtime conditions

The proposed orchestration is illustrated in Figure 2. The
architecture was implemented on three swarm nodes,
with each node having a swarm manager container. The
central manager node acts as a bridge between the swarm
of containers and the PMEM database. By managing
requests with an execution queue, the serving process can
be insured [13].

Figure 2. Proposed Swarm Architecture

Another aspect of the orchestration service is that each
new container that is deployed is allocated to a swarm
that follows a set of rules from on a container distribution
table. The set of rules can also be implemented as a task
scheduler or event scheduler based on API Calls or data
flow inputs. As mentioned above, based on the container
exit code, runtime parameters can be set manually by
processing the log file and querying each request made to
the database node.

2.6 Hardware and Software Resources

The bare-metal hardware consists of two 8 core CPUs
with 16 threads and 68 GB of DDR4 Ram Memory for
each of the three machines. Two of the servers used two
Nvidia TitanV GPU cards while the production machine
used 2 Nvidia Quadro integrated graphics cards.

To orchestrate our architecture, we used the open-source
virtualization and containerization engine Docker CE.
The services implemented to handle each request and
event within our stack are based on node.js with
WebSocket pipelines and docker API integration.

For the first layer of clustering, virtualization and
persistent memory partitioning was used VMWare ESXi
and each node ran on Ubuntu CE server 18.04.

2.7 Machine Learning Pipeline

A production pipeline is often used to train and deploy
computational models. The pipeline is centered on the
main container which is connected to the microservices
that govern and feed serialized datasets. The main player
is the fast access to data through a persistent memory
database and a set of parameters that are constantly
checked by using an event listener type microservice. The
final results and constant statistics are sent to the frontend
for analysis.

3. RESULTS AND DISCUSSIONS

Into our container stack, we integrated software services
that handle each requested object and managed each
computing session. The software services ensure the data
flow between the in-memory data structures components
and each container. Container orchestration is done
within a dedicated swarm manager per cluster; in total we
have three swarms. The first two swarms are used for
training and managing datasets while the third is used for
production operations. Our training clusters have a direct
GPU and RAM allocation, addressed by the event
handler service (Figure 3).

3.1 Event Handler

Within each container, several environment variables are
exposed. Those are specific values and parameters such
as which port is mapped for the PMEM database
connector, Boolean indicators that tell the handler if the
session uses either GPU or CPU training or what dataset
the client container has requested.

Figure 3. Pipeline Overview

60

Scientific Bulletin of the Electrical Engineering Faculty – Year 19 No.1 (40) ISSN 2286-2455

After all the values are parsed, a new session is recorded
in PMEM, and the declared dataset is served into the
requesting container. By using serialized objects into our
database, each dataset can be transferred through JSON
arrays into the container and interpreted into the specific
computational structure. Objects such as pictures are
stored as byte-arrays with the adjacent fields storing
dimensional attributes and the corresponding unique
keys. Serializing SVM files is done by exposing the label
tensors as entity names and the following fields parsed as
numeric vector values between the database and the
container. Building the service as a request handler
ensures that the pipeline between each resource can be
indirect queried and the response time can be measured to
ensure the lifetime of the container. Direct links can
cause surges of requests, without any load-balancing
measures one session can take more resources than
needed and thus harming the performance of each node.

The event handler is implemented as a separate container,
introduced within the stack as a manager node. The
WebSocket server is built with Node.js leveraging the
need to integrate API-Calls to the orchestration engine
manually. Mediating the requests is the PMEM
component which creates a cache list of each active
session, along with each parameter. We developed and
archiving component which stores every event passed to
the database along with the execution and exit code of
each container. Such logs can be used to optimize
performance and monitor the behavior of each
implemented model (Table 1).

 Table 1. Platform Metrics

Deployment

Metrics

Container

Metrics

Swarm Metrics

Boot time ~5 s 120 s

AVG Memory

Allocation

2.5 GB RAM

/Container

64GB /Node

CPU Allocation 2CPU / Container

Min Or Requested

4 /Manager Node

GPU Allocation Model Dependant Per Container

Size 780 MB / Image 128 GB Total/

Node

3.2 Event Listener

The event listener service has two purposes, one is to pass
the requests to the event handler through a WebSocket

connection, and the other is to bridge the software
resources to the event handler. This service directly
implemented within each production unit. Specific
structure tables and object deserialization procedures are
directly implemented to ensure that the data passed from
PMEM is formatted for TF. SVM injection within
specific layers of the model is done if the data reduction
stages have already been performed and the dataset has
already been processed. The event listener also parses the
requests between the shell execution and the frontend
(Figure 4).

Our event listener node uses a simple decision tree based
on the success rate and weights comparison. The
microservices can interrupt the session and flag each
specific container if and exit code is given during training
times. The event listener takes the following parameters
into consideration: the state of the operational
environment (training, deep learning or production), how
fast the state or stage changed and what is the order of
operations before this state. Since weights are generated
on each dataset and specific layers of parameters can be
instated we considered creating manually intervals in
which we accept a specific model or we end the session.

3.3 Data Intake Node and Production pipeline

The production pipeline depends heavily on how the
persistent memory is used in order to facilitate the dataset
loading and model management.

We integrated a database connector that has direct access
to the persistent memory of the cluster, up to this point no
further studies on persistent memory use were published
so we entered an uncharted territory. On the other hand
RAM memory has its advantages while it can cause
memory leaks from the container system so we leveraged
our key-based system in order to maximize the data
intake of this component.

This microservice bundles serialized objects coming from
direct queries and fast access to storage on-the-go for
session related data such as: order of operations, epoch
information and container hardware usage. Our personal
contribution to this microservice is the combination of
neural networks and persistent memory data structures. In
future works we will try to implement a short-term and
long-term memory system for training neural networks

Figure 4. Dashboard for the Training Session

61

Scientific Bulletin of the Electrical Engineering Faculty – Year 19 No.1 (40) ISSN 2286-2455

on specialized subjects and also benchmark our pipeline
using this approach.

The data intake microservice feeds all the dataset from
memory to multiple containers that house the
computational model. Using a persistent memory system
we can also store layers of hyper-parametrization and
weights without altering the production model and
allowing the reuse of a container collection without
building it every time we need to be retrain and deploy a
model for a study or application.

3.4 Discussions

We developed this platform to ensure continuous
development of computer vision algorithms. We tested
some public models, from the implementations stages
into our data structure. For each model a section of GPU
resources was manually allocated if the model was
compatible with a GPU implementation. Tighter load
balancing operations can be made by allocating CPU
resources directly to the container. Training operations
that exceed more than 5 hours are automatically passed to
a low priority node. Shortest GPU benchmark took 4.5
seconds on the Inception Resnet V1 model with a dataset
of 250.00 serialized and labeled objects.

Container distribution was realized by bundling the

development nodes with the TitanV servers, and the

production of containers with the Quadro server. Models

are passed into production if specific internal

requirements are met, from scalability to dataset

optimization. Using a bigger GPU memory pool (TitanV)

ensures that more containers can be tested on the same

datasets and concurrently.

Other models that are friendly to SVM injection used

pattern recognition for cellular classification, as

“DeepBio”, pattern recognition for time series such as

“Energy Price Forecast", and physiological signs

correlations with convolutional nests [14].

4. CONCLUSIONS

This paper presented innovative software architecture for

managing virtual environments, computational model

resources and data structures for artificial intelligence

applications. Furthermore, we described production

cases, leveraging local computing sessions for a platform

as a service-centric approach, to bring together multiple

computational models with applications in computer

vision, pattern recognition.

By ensuring a standardized workflow, the development

environment is controlled and stable. We provided a

scalable solution for event management that is automated

and can process many requests. Our contribution to the

container platform by serving the datasets and graphs

proved to be successful, because of our data structure

approach where each object can be called directly from

memory. Every node and graph can be executed and

evaluated based on the requests, delivery and execution

times.

4.1 Difficulties

While the graph and dataset serving component that

implemented in PMEM is fast, it inhabits almost all the

available memory as seen in the metrics table. We can

only store serialized objects that have already been

processed by data reduction procedures. Furthermore, the

Docker engine is prone to memory leaks within large

numbers.

4.2 Future Perspectives

In future papers, we will address our internal computer

vision models, and the input data flows of real-time video

capture devices. On the HPC side, we are looking into

migrating the services from Docker containers to

Kubernetes pods. We are confident that our approach

proves that small teams of researchers can develop,

operate and maintain PAAS stacks.

5. ACKKNOWLEDGMENTS

This paper was developed within the program National

Project: GNaC 2018 ARUT no. 19/06.02.2018, Contract

nr. ET01-19-03, Act. 4000.228 from Politehnica

University of Bucharest.

6. REFERENCES

[1] Mo, Y. J., Kim, J., Kim, J.-K., Mohaisen, A. and

Lee, W., Performance of deep learning computation

with TensorFlow software library in GPU-capable

multi-core computing platforms, In: 2017 Ninth

International Conference on Ubiquitous and Future

Networks (ICUFN). doi: 10.1109/icufn.2017.

7993784.

[2] Agile Admin "What is DevOps:

https://theagileadmin.com/what-is-devops/ As of 19

May 2018.

[3] Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan,

Vincent Vanhoucke, Andrew Rabinovich, Computer

Vision and Pattern Recognition Going Deeper with

Convolutions, In: 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

[4] K. Wongsuphasawat et al., Visualizing Dataflow

Graphs of Deep Learning Models in TensorFlow,

IEEE Transactions on Visualization and Computer

Graphics, vol. 24, no. 1, pp. 1-12, Jan. 2018.

[5] Rutkowski, Leszek, Image classification with

recurrent attention models, In: Artificial Intelligence

and Soft Computing, 11th International Conference,

ICAISC 2012, Zakopane, Poland, April 29 - May 3,

2012: Proceedings. Springer, 2012.

[6] Ian Miell, Aidan Hobson Sayers, Docker in

Practice, 1st Manning Publications Co. 2016.

[7] Nishant Shukla, Machine Learning with

TensorFlow Manning Publications Co. 2018.

62

Scientific Bulletin of the Electrical Engineering Faculty – Year 19 No.1 (40) ISSN 2286-2455

[8] Srdjan Grubor, A practical guide to rapidly and

efficiently mastering Docker containers, along with

tips and tricks learned in the field Packt Publishing

Ltd, Nov 22, 2017.

[9] Jeremy Nelson, Mastering Redis, Packt Publishing

Ltd, May 31, 2016.

[10] Maxwell Dayvson Da Silva, Hugo Lopes Tavares,

Redis Essentials, Packt Publishing Ltd, Sep 8, 2015.

[11] P. Mehra and S. Fineberg, Fast and flexible

persistence: the magic potion for fault-tolerance,

scalability and performance in online data stores, In:

18th International Parallel and Distributed

Processing Symposium, 2004.

[12] Fabrizio Soppelsa, Chanwit Kaewkasi Native

Docker Clustering with Swarm, Packt Publishing

Ltd, Dec 20, 2016.

[13] Clouds Andrew J. Younge, Kevin Pedretti, Ryan E.

Grant, Ron Brightwell, A Tale of Two Systems:

Using Containers to Deploy, In: HPC Applications

on Supercomputers and 2017 IEEE 9th International

Conference on Cloud Computing Technology and

Science.

[14] Adochiei Felix Constantin, “Contributions to

Biological Signal Processing using Embedded

Systems”, PhD Thesis, POSDRU CUANTUMDOC

- RESEARCH GRANT.

63

