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Abstract. Developing Artificial Intelligence is a labor-

intensive task. It implies both storage and computational 

resources. In this paper, we present a state-of-the-art service-

based infrastructure for deploying, managing and serving 

computational models alongside their respective data-sets and 

virtual environments. Our architecture uses key-based values 

to store specific graphs and datasets into memory for fast 

deployment and model training, furthermore leveraging the 

need for manual data reduction in the drafting and retraining 

stages. To develop the platform, we used clustering and 

orchestration to set up services and containers that allow 

deployment within seconds. In this article, we cover high-

performance computing concepts such as swarming, GPU 

resource management for model implementation in 

production environments with emphasis on standardized 

development to reduce integration tasks and performance 

optimization. 
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1. INTRODUCTION  
 
Since the emergence of Deep Learning frameworks, 
teams of researchers have been developing computational 
models that can synthesize natural language, recognize 
handwriting and objects and classify specific objects 
based on learned and identified characteristics [1-2]. 
 
Development operations (DevOps) is a new field in 
software system engineering that tackles with concepts 
such as "agile infrastructure" and "agile operations", and 
it deals with all the stages of development, deployment, 
and production of services and micro services 
architectures [3]. 
 
We decided to build this platform to bring together a 
team of professionals from different fields and 
backgrounds to streamline the development, 
management, and training of computational models. 
 
While neural networks provide potent means to process 
data, the frameworks themselves are highly dependent on 
hardware resources such as graphical processing units 
(GPU), development environments and the core 
programming language. Out of the many 
implementations of neural networks, two distinguished 
players emerged. The first one is Python, which provides 
digital capabilities (NumPy), ComputerVision (dlib, 
OpenCV) [5] and data parsing (PyCSV, Pickle). The 
second one is TensorFlow (TF), which is a relatively new 

AI framework developed by Google and had widespread 
success over the past three years [4-6]. 
 
While Python and TF provide a flexible approach to 
developing applications and scripting specific tasks, the 
combination is highly version dependent, with libraries  
that are ported over from other languages like C and 
LUA, many of them requiring to be compiled and built 
for the machine. 
 
We propose to store specific datasets and parameters in a 
standardized way, to ease the data flow to the 
computational models and ensure that each computing 
session can be addressed individually by the data is 
processed and the final output. 
 
In the materials and methods section, we describe our 
approach to distribute the virtual environment and 
datasets into a containerized format, the way we built our 
high-availability cluster to support the proposed platform 
and the hardware components of the system. 
 
The results section deals with the integrated software 
services and micro services that govern each computing 
session and orchestrate the swarm of containers that run 
at any given time within our platform. 
 
We conclude the paper by discussing the performance 
and the scalability of the proposed architecture, 
emphasizing the future model implementations and data 
flow optimizations. 
 

2. MATERIALS AND METHODS 
 
The three main principles of DevOps, as stated by Agile 
Admin [3], are: 

 Infrastructure Automation – Create, configure and 

package each application to be automated 

 Continuous Delivery – Build test and deploy within 

an agile environment  

 System Reliability Engineering – Operation, 

orchestration, and monitorization of each container 
 
In past years multiple Artificial intelligence frameworks 
emerged such as TensorFlow (TF), Caffe, Apache 
SINGA, Microsoft Cognitive Toolkit, and Torch. 
Devops for such frameworks deals mostly with the 
environment setup and dataset management. 
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2.1 TensorFlow VirtualEnvironment 
 
The virtual environment is a bridge between assets and 
resources such as libraries and the application 
dependencies. TF has two device layers; one dedicated to 
the GPU component and the other to the CPU. Therefore, 
two virtual environments must be developed [7]. 
 
The TF kernel encapsulates the computational operations 
which are called as jobs and tasks by the client 
application. Thus having multiple jobs and workers a 
parallelized computing session can be implemented in 
each model [7]. 
 
To each graph within a session, a section of the GPU 
resources is allocated. To scale the application session 
arguments need to be exposed as environment variables. 
Modifying those values affects the performance and the 
training times of the model. The primary values that the 
session attributes to the graph are the allocated memory 
per process and the device that runs each operation [8]. 
 
2.2 TensorFlow Models as a Service 
 
For passing the input data from python to TF, the objects 
need to be serialized and transformed into vector values. 
If the given model has a known data structure, the local 
Pickle and SVM files can be leveraged for a distributed 
resource approach. 
 
A memory resident database (MRDB) is a type of 
database that stores keys and values in-memory for fast 
access. It allows for a flexible data structure design, class-
object relations, and asynchronous transactions. Rediscan 
be used as a task execution queue and fast data serving 
[9-10].  
 
In Figure 1 is illustrated the MRDB model structure; each 
model is categorized by their specific type, while the 
stored weights can be generational and are serialized. 
 
Tf graphs depend on the session in which are called, the 
operations executed within the blocks of the graph and 
the resource allocation that is specific to the session. 
 
Serializing such a request can be done using a JSon 
(JavaScript Object Notation) object then passed as an 
execution command to the data intake node. 
 

 
Figure 1. Redis Tree View of Generational Models 

2.3 Persistent Memory Operations 
 
Persistent memory (PMEM) programming is a relative 
new field in computer engineering. Historically RAM 
mapping and persistent memory have been used in order 
to study and analyses software behavior during 
malfunctions by analyzing what was stored or what was 
the state of the software at the moment of a crash or a 
fatal error. Persistent memory allows for instant delivery 
of information from certain data structures by using a 
MRDB specialized for storing and altering data directly 
into the memory [11]. 

 
2.4 Container pipeline 
 
The container development workflow implies a set of 
conventions such as environment variables, packaged 
dependencies, and local storage data tables. 
 
The containers can depend on resources that are shared 
and called locally within the compose file thus deploying 
a bundle of containers that are interlinked. 
 
Containers can be built automatically by the orchestration 
engine on specific triggers which alter environment 
changes [8]. 
 
The pipeline consists of developing and adapting each 
model to a preferred state, packaging the dependencies 
using package managers such as NPM, PIP and building 
local caches of libraries and assets. 
 
The Container is built as an image which contains a 
Linux kernel, a set of instructions for the container engine 
(compose.yaml) and the application itself. 
 
Each image is stored within a registry or a local volume 
from which the orchestration software pulls, deploys and 
monitors the container. 
 
The container lifetime depends on the initialization 
parameters and the exit code. Each container should be 
built with a Command Line Interface Logging component 
to monitor activities such as API-Calls, debugging 
information and process states. 
 
2.5 Container Orchestration 
 
Orchestration implies the organizing and planning, 
containers runtime. 
 
The container engine provides a set of tools which are 
iterated upon for load balancing and runtime 
optimization. A lot of empiric data based on logs can be 
useful for manual balancing, but for long-term training 
sessions with a model that span multiple layers and data 
processes, automated load balancing is employed. 
 
A typical orchestration architecture employs two types of 
nodes [12]: 

 The worker nodes primarily execute the machine 

learning tasks with load balancing   
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 Manager nodes do the routing tasks and request 

handling, based on the runtime conditions 
 
The proposed orchestration is illustrated in Figure 2. The 
architecture was implemented on three swarm nodes, 
with each node having a swarm manager container. The 
central manager node acts as a bridge between the swarm 
of containers and the PMEM database. By managing 
requests with an execution queue, the serving process can 
be insured [13]. 
 

 
Figure 2. Proposed Swarm Architecture 

 
Another aspect of the orchestration service is that each 
new container that is deployed is allocated to a swarm 
that follows a set of rules from on a container distribution 
table. The set of rules can also be implemented as a task 
scheduler or event scheduler based on API Calls or data 
flow inputs. As mentioned above, based on the container 
exit code, runtime parameters can be set manually by 
processing the log file and querying each request made to 
the database node. 

 

2.6 Hardware and Software Resources 
 
The bare-metal hardware consists of two 8 core CPUs 
with 16 threads and 68 GB of DDR4 Ram Memory for 
each of the three machines. Two of the servers used two 
Nvidia TitanV GPU cards while the production machine 
used 2 Nvidia Quadro integrated graphics cards. 

To orchestrate our architecture, we used the open-source 
virtualization and containerization engine Docker CE. 
The services implemented to handle each request and 
event within our stack are based on node.js with 
WebSocket pipelines and docker API integration. 
 
For the first layer of clustering, virtualization and 
persistent memory partitioning was used VMWare ESXi 
and each node ran on Ubuntu CE server 18.04. 
 
2.7 Machine Learning Pipeline 
 
A production pipeline is often used to train and deploy 
computational models. The pipeline is centered on the 
main container which is connected to the microservices 
that govern and feed serialized datasets. The main player 
is the fast access to data through a persistent memory 
database and a set of parameters that are constantly 
checked by using an event listener type microservice. The 
final results and constant statistics are sent to the frontend 
for analysis. 
 

3. RESULTS AND DISCUSSIONS 
 
Into our container stack, we integrated software services 
that handle each requested object and managed each 
computing session. The software services ensure the data 
flow between the in-memory data structures components 
and each container. Container orchestration is done 
within a dedicated swarm manager per cluster; in total we 
have three swarms. The first two swarms are used for 
training and managing datasets while the third is used for 
production operations. Our training clusters have a direct 
GPU and RAM allocation, addressed by the event 
handler service (Figure 3). 
 
3.1 Event Handler 
 
Within each container, several environment variables are 
exposed. Those are specific values and parameters such 
as which port is mapped for the PMEM database 
connector, Boolean indicators that tell the handler if the 
session uses either GPU or CPU training or what dataset 
the client container has requested. 

 
Figure 3. Pipeline Overview 
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After all the values are parsed, a new session is recorded 
in PMEM, and the declared dataset is served into the 
requesting container. By using serialized objects into our 
database, each dataset can be transferred through JSON 
arrays into the container and interpreted into the specific 
computational structure. Objects such as pictures are 
stored as byte-arrays with the adjacent fields storing 
dimensional attributes and the corresponding unique 
keys. Serializing SVM files is done by exposing the label 
tensors as entity names and the following fields parsed as 
numeric vector values between the database and the 
container. Building the service as a request handler 
ensures that the pipeline between each resource can be 
indirect queried and the response time can be measured to 
ensure the lifetime of the container. Direct links can 
cause surges of requests, without any load-balancing 
measures one session can take more resources than 
needed and thus harming the performance of each node.  
 
The event handler is implemented as a separate container, 
introduced within the stack as a manager node. The 
WebSocket server is built with Node.js leveraging the 
need to integrate API-Calls to the orchestration engine 
manually. Mediating the requests is the PMEM 
component which creates a cache list of each active 
session, along with each parameter. We developed and 
archiving component which stores every event passed to 
the database along with the execution and exit code of 
each container. Such logs can be used to optimize 
performance and monitor the behavior of each 
implemented model (Table 1). 

 
    Table 1. Platform Metrics 

Deployment 

Metrics 

Container 

Metrics 

Swarm Metrics 

Boot time ~5 s 120 s 

AVG Memory 

Allocation 

2.5 GB RAM 

/Container 

64GB /Node 

CPU Allocation 2CPU / Container 

Min  Or  Requested  

4 /Manager Node 

GPU Allocation Model Dependant Per Container 

Size 780 MB / Image 128 GB Total/ 

Node 

 
3.2 Event Listener 
 
The event listener service has two purposes, one is to pass 
the requests to the event handler through a WebSocket 

connection, and the other is to bridge the software 
resources to the event handler. This service directly 
implemented within each production unit. Specific 
structure tables and object deserialization procedures are 
directly implemented to ensure that the data passed from 
PMEM is formatted for TF. SVM injection within 
specific layers of the model is done if the data reduction 
stages have already been performed and the dataset has 
already been processed. The event listener also parses the 
requests between the shell execution and the frontend 
(Figure 4). 
 
Our event listener node uses a simple decision tree based 
on the success rate and weights comparison. The 
microservices can interrupt the session and flag each 
specific container if and exit code is given during training 
times. The event listener takes the following parameters 
into consideration: the state of the operational 
environment (training, deep learning or production), how 
fast the state or stage changed and what is the order of 
operations before this state. Since weights are generated 
on each dataset and specific layers of parameters can be 
instated we considered creating manually intervals in 
which we accept a specific model or we end the session. 
 
3.3 Data Intake Node and Production pipeline 
 
The production pipeline depends heavily on how the 
persistent memory is used in order to facilitate the dataset 
loading and model management. 
 
We integrated a database connector that has direct access 
to the persistent memory of the cluster, up to this point no 
further studies on persistent memory use were published 
so we entered an uncharted territory. On the other hand 
RAM memory has its advantages while it can cause 
memory leaks from the container system so we leveraged 
our key-based system in order to maximize the data 
intake of this component. 
 
This microservice bundles serialized objects coming from 
direct queries and fast access to storage on-the-go for 
session related data such as: order of operations, epoch 
information and container hardware usage. Our personal 
contribution to this microservice is the combination of 
neural networks and persistent memory data structures. In 
future works we will try to implement a short-term and 
long-term memory system for training neural networks 

 
Figure 4. Dashboard for the Training Session 
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on specialized subjects and also benchmark our pipeline 
using this approach. 
 
The data intake microservice feeds all the dataset from 
memory to multiple containers that house the 
computational model. Using a persistent memory system 
we can also store layers of hyper-parametrization and 
weights without altering the production model and 
allowing the reuse of a container collection without 
building it every time we need to be retrain and deploy a 
model for a study or application. 

 
3.4 Discussions 
 
We developed this platform to ensure continuous 
development of computer vision algorithms. We tested 
some public models, from the implementations stages 
into our data structure. For each model a section of GPU 
resources was manually allocated if the model was 
compatible with a GPU implementation. Tighter load 
balancing operations can be made by allocating CPU 
resources directly to the container. Training operations 
that exceed more than 5 hours are automatically passed to 
a low priority node. Shortest GPU benchmark took 4.5 
seconds on the Inception Resnet V1 model with a dataset 
of 250.00 serialized and labeled objects. 
     

Container distribution was realized by bundling the 

development nodes with the TitanV servers, and the 

production of containers with the Quadro server. Models 

are passed into production if specific internal 

requirements are met, from scalability to dataset 

optimization. Using a bigger GPU memory pool (TitanV) 

ensures that more containers can be tested on the same 

datasets and concurrently.   

 

Other models that are friendly to SVM injection used 

pattern recognition for cellular classification, as 

“DeepBio”, pattern recognition for time series such as 

“Energy Price Forecast", and physiological signs 

correlations with convolutional nests [14]. 

 

4. CONCLUSIONS 
 

This paper presented innovative software architecture for 

managing virtual environments, computational model 

resources and data structures for artificial intelligence 

applications. Furthermore, we described production 

cases, leveraging local computing sessions for a platform 

as a service-centric approach, to bring together multiple 

computational models with applications in computer 

vision, pattern recognition. 

 

By ensuring a standardized workflow, the development 

environment is controlled and stable. We provided a 

scalable solution for event management that is automated 

and can process many requests. Our contribution to the 

container platform by serving the datasets and graphs 

proved to be successful, because of our data structure 

approach where each object can be called directly from 

memory. Every node and graph can be executed and 

evaluated based on the requests, delivery and execution 

times. 
 
4.1 Difficulties 

 

While the graph and dataset serving component that 

implemented in PMEM is fast, it inhabits almost all the 

available memory as seen in the metrics table. We can 

only store serialized objects that have already been 

processed by data reduction procedures. Furthermore, the 

Docker engine is prone to memory leaks within large 

numbers. 
 
4.2 Future Perspectives 

 

In future papers, we will address our internal computer 

vision models, and the input data flows of real-time video 

capture devices. On the HPC side, we are looking into 

migrating the services from Docker containers to 

Kubernetes pods. We are confident that our approach 

proves that small teams of researchers can develop, 

operate and maintain PAAS stacks. 
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