Blood-based biomarkers in Alzheimer’s disease: an overview on proteomic and lipidomic approaches

Biomarkeri sanguini în boala Alzheimer: abordări proteomice și lipidomice

Geanina Andreea Ilinoiu1,2,3, Raluca Tirintica1, Cosmin Lungu4, Adriana Mihai1,5,*

1University of Medicine and Pharmacy Tîrgu Mureş, România, Psychiatry Department;
2Central Military Hospital “Dr Carol Davila”, Bucharest, Romania, Psychiatry Department;
3Department of Adult Mental Health Inpatient, Lanchester Road Hospital, Durham, United Kingdom;
4Sociology and Psychiatry Faculty, „Spiru Haret” University, Bucharest, Romania;
5Psychotherapy and Personal Development Institute, Tîrgu Mureş, Romania.

Abstract

Alzheimer’s disease (AD) remains one of the most challenging pathologies since its etiology is not completely known, its progression is slow and there are no disease-changing pharmacological agents available yet. One other important characteristic is that the progression of AD pathology starts long before any symptoms are experienced by patients. This is where the need for early detection biomarkers comes from. Although there are biomarkers that have been intensely studied and are now included in research criteria, most of these biomarkers are either invasive or unaffordable. Blood-based biomarkers could be a viable alternative of accessible and acceptable biomarkers, and have been much studied in the past decade. Among them proteomics and lipidomics seem to be two most promising fields for biomarker development. The paper aims to offer an overview of developments in the field during the past 5 years highlighting the most promising biomarkers.

Keywords: blood biomarkers, Alzheimer’s disease, proteomics, lipidomics.

Rezumat

Boala Alzheimer (BA) ramâne una dintre cele mai intrigante patologii neurocognitive deoarece etiologia ei nu este complet elucidată, progresia ei este lentă și nu există terapii care să modifice cursul bolii la momentul actual. O altă caracteristică importantă este aceea că debutul BA are loc cu mult înainte ca primele simptome să fie resimțite de către pacient. Aici intervenie nevoia de biomarkeri de detecție precoce. Cu toate că există markeri biologici care au fost intens cercetați și care acum sunt incluși în criteriile de cercetare, cei mai mulți dintre aceștia sunt fie invazivi, fie prea costisitori. Biomarkerii sanguini ar fi o alternativă viabilă de biomarkeri accesibili și acceptabili, și au fost studiați intens în ultima decadă. În această categorie domeniile proteomicii și lipidomicii sunt cele mai promițătoare. Lucrarea de față are ca scop prezentarea unei imagini de ansamblu a rezultatelor obținute în acest domeniu în ultimii 5 ani cu accent pe acei biomarkeri care au avut rezultatele cele mai încurajatoare.

Cuvinte cheie: biomarkeri sanguini, boala Alzheimer, proteomica, lipidomica.

Received: 16th November 2015; Accepted: 26th March 2016; Published: 28th April 2016.

* Corresponding author: Adriana Mihai, University of Medicine and Pharmacy Tg Mures, Psychiatry, Gh Marinescu 38, Tg Mures, Romania, e-mail: dradrianamihai@yahoo.com
Introduction

It is now a well-known fact that Alzheimer’s (AD) disease is the most common cause of dementia worldwide. A report of the Alzheimer’s Association shows that AD accounts for approximately 60 to 80% of the cases and about half of these cases involve only AD pathology (1). In 2012 the World Health Organization (WHO) estimated that there were about 35.6 million people living with dementia and predicted that the number will double by 2030 as a result of an aging population (2). In the European Union reports show an average of 1.55% (3) of the population diagnosed with AD as compared to 11% in the USA (1). It would seem that the situation is better in Europe, but the small percentage of diagnosed patients may only represent a higher number of undiagnosed ones on which no data is available.

AD represents one of the most challenging pathologies among other fast growing worldwide epidemics because its etiology is still uncertain, its progression is slow and the first clinical symptoms appear long after the pathological processes have begun (4).

Decades of AD research bring some light over the underlying pathophysiology of this disease: amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs). AD drug development failed to come up with potentially disease-modifying therapies so far (5), but there are still ongoing Phase II and III trials that seem encouraging (6,7) (Figure 1).

Biomarkers – old and new

While waiting for efficient AD therapies, biological markers (biomarkers) are growing in significance since they appear to be able to reveal underlying disease processes and thus ensure an earlier intervention on disease progression.

Figure 1. Amyloid cascade hypothesis

APP – amyloid beta precursor protein; *PSEN1,2* – presenilin genes; *ApoE* – apolipoprotein E; *Aβ* – amyloid beta.
A biomarker represents “an objective indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention” (8). Up to the present day there are at least six investigation procedures (biochemical measurements or scanning procedures) used as biomarkers in detecting AD and included in the most recent research criteria (9). There are three imaging biomarkers – namely hippocampal atrophy (evaluated by structural magnetic resonance imaging - MRI), decreased uptake of a radiotracer called [18F]-2-fluoro-2-deoxy-D-glucose (FDG) in certain regions on positron emission tomography (FDG-PET) and an increased retention of an amyloid tracer (PIB-PET). The other three biomarkers are cerebrospinal fluid (CSF) biomarkers: low levels of Aβ42, elevated levels of total tau proteins (t-tau) and phosphorylated tau (p-tau).

Along these biomarkers that are included in the diagnostic and research criteria there are also genetic biomarkers: mutations in certain genes - amyloid precursor protein (APP) genes, presenilin genes (PSEN1 and PSEN2); ε4 apolipoprotein E (APOE) phenotype (10,11).

One set of biomarkers that have been regarded as an effective way to boost the utility of both CSF and imaging biomarkers are the blood based biomarkers. Their analysis represents the first step in a complex process of screening and diagnostic (12). Blood based biomarkers are both time and cost efficient, non-invasive and a good source for repeated measurements. Given that not many people are keen to undergo a lumbar puncture (LP) procedure for CSF sampling, the development of a reliable blood biomarker appears to be a valuable tool worth researching.

The aim of this review is to present the most recent developments in both old and novel blood based biomarkers focusing on two main domains: proteomics and lipidomics. We searched PubMed database using the following words: “blood biomarkers”, “Alzheimer’s disease”, “proteomics”, “lipidomics”. Out of a total number of 2058 articles, we included only clinical trials, published in the last 5 years. We excluded review articles and meta-analysis articles. There were a total number of 24 research articles that fit the inclusion criteria and were included in the review analysis (Figure 2).

Figure 2. Diagram flow of the literature search process
A summary of analyzed records and the level of correlation with AD pathology of certain potential biomarkers is shown in Table 1.

Proteomics

A brain-related pathology is more likely to be reflected in brain proteins. However, the blood-

<table>
<thead>
<tr>
<th>BLOOD BASES BIOMARKERS</th>
<th>Article included (Year of publication)</th>
<th>Level of correlation</th>
<th>Use for early detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteomic approaches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ApoE plasma levels</td>
<td>Teng E et al. (2015)[13]</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Gupta et al. (2011)[14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1M, ApoE, BNP, IL16, SGOT</td>
<td>Guo LH et al. (2013) [16]</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NT proBNP</td>
<td>Marksteiner J et al. (2014) [17]</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>ApoE, BNP, CRP, pancreatic polypeptide</td>
<td>Hu WT et al. (2012) [18]</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Cortisol, pancreatic polypeptide, IGFBP2, homocysteine/ ApoE, epidermal growth factor, hemoglobin, IL17, albumin</td>
<td>Doecke JD et al. (2012) [19]</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>EGF, PDG-BB and MIP-1δ</td>
<td>Bjorkgqvist M et al. (2012)[20]</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>IGF II and IGF BP2</td>
<td>Hertze et al. (2014) [22]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amyloid-beta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sotolongo-Grau O et al. (2014) [23]</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lewczuk P et al. (2010) [24]</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lui JK et al. (2010) [25]</td>
<td>±</td>
<td>±</td>
<td></td>
</tr>
<tr>
<td>Cosentino SA et al. (2010) [26]</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Laske C et al. (2010) [27]</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Yaffe K et al. (2011) [28]</td>
<td>+</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Wu G et al. (2012) [31]</td>
<td>±</td>
<td>±</td>
<td></td>
</tr>
<tr>
<td>Tau proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noguchi-Shinohara M et al. (2011)[32]</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Zetterberg H et al. (2013) [33]</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Lipidomic approaches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatty acids, C26:0</td>
<td>Zarrouk A et al. (2015) [36]</td>
<td>±</td>
<td>?</td>
</tr>
<tr>
<td>Ceramids, sphingomyelins</td>
<td>Han X et al. (2011) [37]</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sphingomyelin/ceramide ratio</td>
<td>Mielke MM et al. (2011) [38]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Baierle M et al. (2014) [40]</td>
<td>+</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>EPA, DHA, omega 3 fatty acids</td>
<td>Freund Levi Y et al. (2014) [41]</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10 lipid panel</td>
<td>Mapstone M et al. (2014) [42]</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ - positive correlation/use in early detection; ± - uncertain correlation/use in early detection; – - no correlation/use in early detection; ? - no data available.
brain barrier (BBB) stands between the peripheral blood circulation and the brain, protecting it from harmful substances in the blood and it doesn’t seem to be particularly affected by AD pathology (13). Still, a small quantity of brain proteins are absorbed from the CSF into the bloodstream and this is how their detection in plasma is possible.

Plasma Apolipoprotein E (ApoE) Levels

While the correlation between ApoE genotype and AD has been strongly demonstrated over the time, there are still uncertainties related to the use of ApoE plasma levels. The link between plasma ApoE levels and the hippocampal volume was recently assessed in a study (14). Lower plasma levels of ApoE turned out to correlate significantly with a smaller hippocampal size. There have also been prior reports that lower ApoE plasma levels correlate with a greater cortical retention of Pittsburgh Compound B (PIB). These findings reveal that plasma ApoE levels might be considered as a peripheral marker for AD pathology in early stages of the disease, especially in carriers of ApoE ε4 allele. What is more, altered ApoE plasma levels also seem to be correlated with the advancement of the pathology (15).

Other proteomic approaches

A German study from 2013 analyzed seven plasma proteins and compared their levels between control and AD groups. The assessed plasma proteins were: alpha-1-microglobulin (A1M), apolipoprotein E (ApoE), brain natriuretic peptide (BNP), betacellulin (BTC), eotaxin-3, interleukin-16 (IL16) and serum glutamic oxaloacetic transaminase (SGOT). Five of the seven proteins appeared to be involved in AD pathology (A1M, ApoE, BNP, IL16 and SGOT), but over a 5 year follow-up of a population with MCI, only ApoE resulted in significant lower concentrations (16).

An analysis of 27 proteins in the peripheral blood led to the conclusion that among them, the N-terminal pro-brain natriuretic peptide (NT-proBNP) could be a viable candidate for a biomarker of both diagnosis and progression in AD (17). The Gene/Environment Susceptibility (AGES)–Reykjavik Study analysed measured the NT-proBNP serum levels in over 4000 elderly individuals. Results show that high levels of serum NT-proBNP are independently linked with structural and functional alterations of the brain (18).

Another study made on two large cohorts with normal cognition and cognitive impairment identified ApoE, BNP, C-reactive protein (CRP) and pancreatic polypeptide levels to be associated with MCI or AD diagnosis and correlated with CSF biomarker profiles for AD (19). However, the researchers admit the limitations of the study given by alterations of these analytes in shared pathologies (vascular disease, acute stroke). But assessed routinely for screening purposes and correlated with CSF biomarkers they appear to be a useful tool.

A community-based, prospective, longitudinal study of aging identified a biomarker panel which included markers that were increased significantly (such as cortisol, pancreatic polypeptide, insulin growth factor binding protein 2, carcinoembryonic antigen, homocysteine and others) or decreased (ApoE, epidermal growth factor, hemoglobin, IL17, albumin) in AD patients (20). Researchers have tried to reproduce the analysis of different plasma protein panels (21) starting from the first panel ever proposed in 2007 by Ray et al. (22) with promising results.

Insulin-like Growth Factor (IGF) is known to be involved in neurodegeneration and cell repair. A study performed on AD and healthy controls
found significantly lower plasma levels of IGF-II and IGF binding protein 2 in AD patients as compared with controls, while being significantly increased in the CSF of the same patients (23).

Serum amyloid β (Aβ)

In a recent study conducted by Sotolongo-Grau et al. (24) an association between certain Aβ fractions and the hippocampal volume were found. The study shows correlations between cell-bound blood Aβ 1-40 levels and alterations in the left hippocampus, an important site for the AD pathology.

Research projects that studied AD and mild cognitive impairment of AD type (MCI-AD) patients show that they had significantly lower Aβ1-42 plasma concentrations and lower Aβ1-42/1-40 ratios as compared to patients with other types of MCI or dementias (25-27). What is more there have been found correlations between Aβ plasma levels and the rate of cognitive decline independent of baseline psychological scores, age or treatment intake, but dependent on history of stroke and myocardial infarction (28).

An interesting development in the field of Aβ plasma levels is brought by a study that shows lower levels of Aβ42/40 being associated with a greater cognitive decline in elderly without dementia over a follow-up period of 9 years (29).

It is worth mentioning that there have been conflictual opinions on the implications of Aβ levels in AD pathology over time. Some studies have shown an increased risk of AD with increased Aβ40 and Aβ42 (30, 31) while others reported a higher risk with decreased levels of Aβ. As shown before, the data from the last five years seem to agree on an increased risk when Aβ plasma levels are decreased.

Interestingly, plasma β-site amyloid precursor proteins (APP) cleaving enzyme activity (BACE1) and soluble APP proteins were found elevated in the plasma of AD patients (32). This finding is of potential pharmacodynamical importance in the study of secretase inhibitors.

Tau proteins in plasma

Serum tau does not appear to accurately reflect the level of CSF tau as shown in multiple studies (33, 34). Transient increases in plasma tau levels may appear as a result of ischemic stroke, hypoxic or traumatic brain injury (35, 36) and thus interfere with an accurate measurement in AD pathology. Zetterberg and colleagues (34) have shown a relative overlap between measurements in patients with AD, MCI and normal controls, and progression to AD of MCI patients could not be determined.

Autolysosomal proteins

Preliminary results of a study expanding over more than 10 years which measured different autolysosomal proteins in neutrally derived blood exosomes in AD patients compared to healthy controls are at least intriguing. The investigation is meant to point out abnormal neuronal autophagy and the production of several proteins such as lysosome-associated membrane protein 1 (LAMP-1) and ubiquitinylated proteins. Levels of autolysosomal proteins turned out to be higher in AD patients as compared to controls and seemed to be present up to 10 years before the clinical onset of the disease (37).

Lipidomics

Several lipid metabolism alterations have been found in the brain and in the plasma of AD patients. Zarrouk and colleagues (38) found significant alterations of fatty acid levels in patients with AD and a significant accumulation of hexacosanoic acid (C26:0) in plasma.
Also alterations in ceramides and sphingomyelins have been considered to be involved in amyloid genesis and neuronal apoptosis. In light of this knowledge Han and colleagues (39) analyzed over 800 molecular species of lipids in AD and cognitively normal individuals. They observed a disruption in sphingomyelin and ceramide mass plasma levels in AD patients, observation which may be used in future to develop the potential of metabolomics as plasma biomarkers. Even though the observations seem promising, another study showed that an increased ratio of sphingomyelin/ceramide might predict a slower progression of the disease in demented patients (40).

Data from some research projects (41, 42) show that low levels of docosahexanoic acid (DHA) and low levels of omega-3 fatty acids in plasma may represent a risk factor for cognitive impairment. It has recently been shown that dietary supplementation with omega-3 fatty acids can lead to a significant increase in CSF and plasma eicosapentanoic acid (EPA), DHA and total omega-3 fatty acids in patients with AD suggesting the possibility of their transition through the blood-brain barrier (43).

A more recent study showed some controversial and intriguing results describing a panel of 10 lipids from the peripheral blood reflecting cell membrane integrity that predict conversion to AD within 2-3 years with an accuracy of 90% (44).

As a whole, lipidomics has clearly shown that two important structural lipid classes are decreased in patients with AD: glycerophospholipids and sphingolipids, but the importance of these deficits for the pathophysiology of AD still remains under discussion.

Conclusions

In summary, blood-based biomarkers appear to be fairly accessible for researchers and acceptable to patients.

The most promising class of biomarkers seems to be the development of proteomics. With future development of biotechnology there will be greater capacity to assess and investigate a higher number of datasets in order to better identify, stage and maybe even treat AD.

Lipidomics shows great potential as AD biomarker. However, much work needs to be performed in order to understand lipid dysregulation in AD and eventually identify novel therapeutic agents.

Identifying novel blood-based biomarkers for early detection should represent a priority since early interventions could slow down progression and provide the patients a longer time of independence.

Acknowledgements

The first author received a grant from European Social Found, Human Resources Development Operational Program 2007-2013, project no. POSDRU/159/1.5/S/136893.

List of abbreviations

Aβ - amyloid beta
A1M - alpha-1-microglobulin
AD - Alzheimer’s disease
APOE - apolipoprotein E
APP - amyloid precursor protein
BACE 1 - beta-amyloid precursor protein cleaving enzyme
BBB - blood-brain barrier
BNP - brain natriuretic peptide
BTC - betacellulin
CRP - C-reactive protein
CSF - cerebrospinal fluid
DHA - docosahexanoic acid
EPA - eicosapentanoic acid
FDG-PET - fluorodeoxyglucose – positron emission tomography

IGF - insulin-like growth factor

IGF-BP2 - insulin-like growth factor – binding protein 2

IL16 - interleukin 16

MRI - magnetic resonance imaging

NINCSD-ADRDA - National Institute of Neurological and Communicative Disorders and Stroke - Alzheimer’s Disease and Related Disorders Association

NFTs - neurofibrillary tangles

NT-proBNP - N-terminal pro-brain natriuretic peptide

PIB - Pittsburg Compound B

PSEN - presenilin

p-tau - phosphorylated tau proteins

t-tau - total tau proteins

SGOT - serum oxaloacetic transaminase

References:

