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Abstract

In this paper, we present the impact of the data normalization on the classification model
performance. In first part of this paper, we present the structure of our dataset, where we
discuss the features of the data set and basic statistical analysis of the data. In this research,
we worked with the medical data about the patients with the Parkinson disease. In second part
of this paper, we present the process of data normalization and the impact of scaling data on
the classification model performance. In this research, we used the XGBoost model as our
classification model. The main classification task was to classify whether the patient is ill with
Parkinson disease or not. Since the data set contains more numerical parameters of different
scaling, the main aim of this paper was to investigate the impact of the data normalization
(scaling) on the performance of the classification model.
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INTRODUCTION

Data analysis is more and more frequently implemented into various areas, such as
automation, finance or even healthcare. The data analysis can be performed in various methods
and can have different objectives and goals. The main two objectives of data analysis using
machine learning methods are classification and regression. In this paper, we are dealing with
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the classification task of using an XGBoost classification model. The area of interest is
healthcare and in particular, the data about patients with the Parkinson disease.

Machine learning methods perform classification tasks after learning how to classify new
observings. The learning process is performed on the existing known data. However, the data
parameters may differ in character, and, if they are numerical, they may also be in different
units and scales. Some machine learning algorithms and methods may perform worse than
others on raw data. One of the most important steps in the data mining process is the data pre-
processing and especially data normalization (scaling). The aim of this paper is to present the
impact of data normalization on the performance of the XGBoost classification model.

DATA ANALYSIS

In our paper, we are dealing with the medical data about the patients with the Parkinson
disease. This data set consists of biomedical data and is divided into two main categories.
Figure 1 shows the distribution of these two main categories across the whole data set.
The categories are healthy people and patients with the Parkinson disease.

Distribution of target variable
0: Healthy | 1: Parkinson's

75.38%

140

120

100

Count

24.62%

Status

Figure 1 The distribution of the target variable in the data set

The whole dataset consists of 195 records and 23 biomedical parameters. The following
Table shows the particular data parameters.

Table 1 Data set parameters

PARAMETER DESCRIPTION

Name Subject name and recording number
MDVP:Fo(Hz) Average vocal fundamental frequency
MDVP:Fhi(Hz) Maximum vocal fundamental frequency
MDVP:Flo(Hz) Minimum vocal fundamental frequency
MDVP:Jitter(%), MDVP:Jitter(Abs), Several measures of variation in fundamental
MDVP:RAP, MDVP:PPQ, Jitter: DDP frequency

MDVP:Shimmer, MDVP:Shimmer(dB), Several measures of variation in amplitude
Shimmer:APQ3, Shimmer:APQS, MDVP:APQ,

Shimmer:DDA
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NHR, HNR Two measures of ratio of noise to tonal
components in the voice

Status Health status of the subject (one) - Parkinson's,
(zero) - healthy

RPDE, D2 Two nonlinear dynamical complexity measures

DFA Signal fractal scaling exponent

spreadl, spread2, PPE Three nonlinear measures of fundamental

frequency variation

Statistical indicators and character of the data set

Before we start applying the data normalization and classification methods, it is needed to
perform classical statistical analysis of the data. For each parameter, we computed statistical
indicators like mean, standard deviation, minimum value, maximum value
and quantiles. Figure 2 shows the computed values for each indicator.

mean std min 25% 50% 75% max

MDVP:Fo(Hz) 154228641 41.300065 88.333000 117.572000 148.790000 182.769000 260.105000
MDVP:Fhi(Hz) 197.1040913 91.4091543 102145000 1348562500 175823000 224.205500 532.030000
MDVP:Flo{Hz) 116.324631 43521413 65476000 34.291000 104.315000 140.018500 239.170000
MDVP:Jitter(%) 0.006220 0.004543 0.001620 0.003480 0.0045940 0.007385 0.033180
MDVP:Jitter{Abs) 0.000044  0.000035 0.000007 0.000020 0.000030 0.000060 0.000260
MDVP:RAP 0.003306  0.002963 0.000680 0.001680 0.002500 0.0035835 0.021440
MDVP:PPQ 0.003446  0.002759 0.000920 0.001360 0.002690 0.003955 0.019580
Jitter:DDP 0.009920 0.003903 0.002040 0.004985 0.007490 0.011505 0.054330
MDVP: Shimmer 0.029709 0.018857 0.009540 0.016505 0.022970 0.037385 0. 119030
MDVP:Shimmer(dB) 0282251 0194877 0.085000 0.143500 0.221000 0.350000 1.302000
Shimmer: APQ3 0.015664 0.010153 0.004550 0.003245 0.012790 0.02026%5 0.056470
Shimmer:APQ3 0.017873  0.012024 0.005700 0.009580 0.013470 0.022380 0.073400
MDVP:APQ 0.024081  0.016947 0.007190 0.013080 0.013260 0.02%400 0137730
Shimmer:DDA 0.045993  0.030459 0.013540 0.024735 0.033380 0.060795 0.16%420
NHR 0.024347 0.040413 0.000650 0.005925 D.011660 0.025640 0.314520

HNR  21.5385974 4425764 5441000 19993000  22.085000  25.075500  33.047000

status 0.753846 0431873 0.000000 1.000000 1.000000 1.000000 1.000000

RPDE 0.493536 0.103842 0.256570 0.421308 0.405054 0.5875582 0.685151

DFA 0.718099 0.055336 0574282 0.674753 0.722254 0.7615881 0.825283

spread1  -5.584357  1.080208  -7.054054 5450095  -5.720853  -5.046192  -2.434031
spread2 0.226510  0.083406 0.006274 0.174351 0.213385 0.279234 0.450493

D2 2381826 0382799 1.423287 2.009125 2.361532 2.636456 367155

PPE 0.206552  0.090119 0.044539 0.137451 0.1940582 0.252980 0.527367

Figure 2 Statistical indicators for each data set parameter
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Subsequently,

we

also

computed the correlation between each parameter.

The correlation matrix is shown in Figure 3.

MDVE:Foi{Hz)
MDVP:Fhi(Hz)
MDVP:Flo{Hz)

MDVE:Jitter(%)

MDVE:Jitter{Abs)

0.08 mﬂ.'lil £0.28 010 010 010

0.08 0.10 0.0

010 0.09 010

Correlation matrix

10 0.07 0.0% 0.07 0.08 0.09 0.02 0.06 0.38 0.3 25 018 0.3

0.04 0.00 0.01 0.00 0.00 16 0.02 0.1 0.08 0.00 0.18 0.07

39 0.24 010 D.34

-08

0.12 0.15 0.10 0.11 0.15 0.11 0.21

MDVP:RAP RIKEEORUEEVRIY 099 O
(YnjVi=R==lolll 0 .11 0.09 0. 080 O
Jtter:DDP  GUGLEEGRUEEVRIN 099 082 1.
MDVP:Shimmer BRURIVEVGIEEVREY 0.77 0.0
MOWVP:Shimmer(dB) 07z o
Shimmer-APQ3 RURERTKER £ 070
shimmer-APQS5 RULGEENERIRG] 0.73 065
MDVP.APC REREG
Shimmer:DDA  QUKERVGIVEIREY 0.75
(WSlsa -0.02 0.16 -0.11 kel 130,54 0.32 0.
HHMR .01
satus QU AT |34 7 0 035 035 O 0.35 k ¥ 0.34
RPDE 034 033 034 0. 041 044 040 045 044 037 0.31 MJJ.'I 1REE 048 0.24
DFA 10 018 006 020 006 016 017 015 021 016 015 0.13 0.01 023 0.1 'lm 017 017
EVCELLIN -0 41 -0.08 069 074 065 072 065 065 065 061 065 067 061 - D.ZCI

1.00 MEESHUEY 0.
065 1.00 - 0.64

prarerirgll 0.25 -0.00 0.24 0.39 0.39 032 041 0.32 045 045 040 046 050 040 0.32 -0.43[045 048 0.17
o2 0043 031 043 041 043 051 0.51 047 0.50 0,54 0.47 047 .60 0.34 0.24 0.17 0.50 052
PPE EX 072 075 067 077 067 0.69 0.70 0.65 0.70 072 065 - 053 055 0.27 PEIGEIE 048 RS
¥ W W ® @ & o o 5 5 0m oW o &4 E® o or 8 9w o 9= oo w
g £ 83388 E8E8 885 ¢E: §8C5F 38 ¢
e £ £ £ § & & § E ©¥ T T & & L £ B
el . o = ] s s ] = E 5 g £ o = =
e o & J £ g g B 2 E g B B E
8 8 8 z & = = e £ E g = E
= = = & = 5 @ £ £ 5
= B 2 & & &
= g
=

Figure 3 Correlation matrix

NORMALIZATION

In this part of our paper, we will present the method we used for data normalization. The
range of values of raw data tends to have different scales. In such a case, in some machine
learning algorithms, objective functions will not perform effectively without the data
normalization. As an example, we can mention, that many classifiers and models calculate
the distance between two points as the Euclidean distance. If one of the data parameters has
a wide range of values, the computed distance will be governed by this particular feature. This
is the reason, why the range of all features should be normalized (scaled) so that each feature
will have values in same range.

Min-max normalization method

Min-max scaling, or also called min-max normalization, is known as the simplest method
based on rescaling the range of values of the features to scale the range of [0, 1] or [—1, 1].
Selection of the target range depends on the nature of the data. The general formula for a min-
max of [0, 1] is given as:
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x — min(x)

[

~ max(x) — min(x)’

(1)

where x is an original value and x* is the normalized value.
When we want to rescale a range between an arbitrary set of values [a, b], the formula can
be described as follows:

, (x — min(x))(b — a) )
=a+

max(x) — min(x)

where a, b are the min and max values.
RESULTS

After performing the data normalization on our dataset, we wanted to compare the accuracy
of the XGBoost classification model with normalized data, and also with the raw data set.
XGBoost stands for “Extreme Gradient Boosting”. It is used for supervised learning problems,
where we use the training data (with multiple features) x; to predict a target variable y:.

We computed the accuracy of the model with the following formula. The closer the
accuracy value is to 1, the more accurate the model is.

, (x —min(x))(b —a)
x=at max(x) — min(x) 3)

The accuracy value for the case where we used the raw data set was equal to 0.976. On the
other hand, the accuracy value for the case where we used the normalized (scaled) data was
equal to 0.786.

CONCLUSION

In this paper, we compared the accuracy of an XGBoost classification model in two cases.
In the first case, raw data set was used with original values, and, in the second case, normalized
data was used. The data after normalization was in same range of values. The main objective
of this paper was to investigate the impact of the data normalization on
the classification model accuracy. As the results show, the XGBoost model performed better
with the raw dataset, which confirms that the XGBoost method is not sensitive to linear
transformation of the data.

However, this may be caused by a relatively small dataset or the character of
the data. Since the results are not general, it can be useful to always investigate the accuracy
parameter of the raw and normalized data.
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