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Abstract
The photovoltaic technologies have been developed 
year by year in different countries; however, there are 
some countries where this kind of energy is being born, 
such as the Brazilian case. In this paper, some import-
ant parameters are analysed and applied to different 
solar cell materials, identifying that if the fossil fuels 
were substituted by solar cells, it would reduce the CO2 
emissions by 93.2%. In addition, it is shown that the 
efficiency of solar cells is not as farther as it could be 
thought from coal thermoelectrical plants in Brazil and 
the cost of energy using solar cells could be as good as 
these thermoelectrical plants. Finally, the potentiality 
of Brazilian territory to implant this technology is pre-
sented, identifying that with the use of 0.2% of the ter-
ritory, the energy demand could be supplied.
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Povzetek
Fotovoltaične tehnologije se iz leta v leto razvijajo 
v različnih državah. Obstajajo nekatere države, kot na 
primer Brazilija, kjer ta vrsta energije igra pomembno 
vlogo. Zaradi tega smo v članku analizirali nekatere po-
membne parametre, ki se nanašajo na različne materi-
al sončnih celic. Ugotovili smo, da bi se v primeru za-
menjave fosilnih goriv s sončnimi celicami izpusti CO2 

lahko zmanjšali v najboljšem primeru za 93.2%. Prav 
tako smo pokazali, da učinkovitost sončnih celic in cena 
z njimi pridobljene energije ne zaostaja za termoelek-
trarnami v Braziliji. Na koncu je predstavljen potencial 
ozemlja Brazilije, kjer bi lahko z uporabo 0.2% ozemlja 
pokrili energetske potrebe.

Ključne besede: sončne celice, emisije CO2, fosilna go-
riva, Brazilija, termoelektrarne
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Introduction

Both economic and population growth have 
an effect on energy demand, having as prin-
cipal consequence an accumulative increase 
in the use of fossil fuels, a way to supply this 
demand, increasing the average greenhouse 
gases concentration, being the CO2 the princi-
pal gas among them [1]; therefore, the biggest 
challenge is to reduce the CO2 emissions to the 
atmosphere by means of using diverse green 
energy sources, such as natural gas, ethanol, 
nuclear, wind and solar energy [2]. In this order 
of ideas, the concern in these alternative ener-
gies has been bigger in conformity of the grow-
ing global warming and air pollution [3].
Some countries have implemented the use of 
renewable energy in order to solve the envi-
ronmental problems, solar photovoltaic sys-
tems being one of them [4] and is also placed 
as one of the most promising energies because 
of its potential to reduce greenhouse gases 
(GHG) emissions [5] and how not considering 
as it, when along its operational time it does not 
emit CO2? [6] [7]. Also, an important parame-
ter has been studied and it is its pricing by Wp 
(Watts Peak), being reported 1.60 US$/Wp in 
2011, 0.34 US$/Wp in 2017 and reduced to 
0.244 US$/Wp in January 2019 [8].
On the other hand, placing the focus on Brazil, 
its grid is composed by 67.9% of hydroelectri-
cal sources; however, the photovoltaic energy 
occupies a low 0.7% [9]. Also even when the 
hydroelectrical source is considered clean, its 
application is restricted due to environmental 
impact, such as flooding in large areas, meth-
ane emissions from anaerobic degradation 
of organic material, dependence on local hy-
drological stability [10]. In addition, because 
of the climate change, more frequent, intense 
and prolonged droughts in Brazil are expected, 
which would affect dramatically the hydroelec-
trical source [11].
Hence, due to all the above mentioned envi-
ronmental impact, this work tries to show 
a review focused on some specific parameters 
such as the GHG emission, energy payback 
time (EPBT), energy return on energy invest-
ed (ERoEI), efficiency, cost and irradiance po-
tentiality and focused on different materials to 
know how green this energy (no matter about 

the solar cell material) can be and how it can 
be applied in Brazil, trying to illustrate how the 
country could be helped, due to its enormous 
capability [12] [13].

Cell Technologies

In brief, solar cells transform the solar power 
to electrical power. This photovoltaic cell is cre-
ated by a semiconductor material which is ex-
posed to the photons emerging from sunlight. 
This semiconductor has an absorption capacity, 
depending on its specific band gap energy that 
will absorb photons with the same energy (the 
band gap energy) and, if the energy is higher, 
these photons will release the surplus ener-
gy in heat form and, in that way, retaining the 
specific band gap energy of the material [14]. 
Having in consideration the different kinds of 
materials, the global share is illustrated in Fig-
ure 1.
Monocrystalline photovoltaic cells are made 
using a single and continuous crystal of sili-
con, having almost no impurities, obtaining a 
blue solid colour [15], sharing around 30% of 

Figure 1: Global market share of photovoltaic cells [14].

 
Figure 2: Silicon solar cells [19].
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the market (Figure 1). The manufacturing of 
these cells is more expensive due to process-
ing of high purity crystal and also guaranteeing 
a higher efficiency compared with polycrystal-
line cells [16] [17]. On the other hand, poly-
crystalline photovoltaic cells occupied most of 
the market share (more than 50%) (Figure 2). 
They are produced using several different 
monocrystalline silicon grains which are melt-
ed and consequently solidified slowly by cool-
ing down [18].
Another kind of photovoltaic cells are thin 
films which are known as second generation of 
photovoltaic cells, having a range of thickness 
varying between 10 nm to 10 µm [20]. Also, 
it has been reported that in comparison with 
silicon solar cells (amorphous, polycrystalline 
and monocrystalline), the EPBT and the price 
of thin films have been lower, although the ef-
ficiency is not as high as silicon solar cells [21].

Nevertheless, in attempting to be a better con-
tender in front of silicon photovoltaics, some 
materials have been performed. Copper indi-
um gallium selenide (CIGS) is one of the best 
absorber materials in thin films, because it 
possesses a chalcopyrite crystal structure and 
can modify the band gap energy values chang-
ing indium by gallium and obtaining CuInSe2 
and CuGaSe2 with 1.02 and 1.67 eV [22]. An-
other material is cadmium telluride (CdTe) 
with a band gap energy of 1.5 eV which gives 
it a theoretical efficiency of around 30% (see 
section 4.4) and the most attractive character-
istic of this material is its chemical simplicity 
so that it could be applied to space applications 
[21]. Also, gallium arsenide (GaAs) is used in 
thin films and by the year 2014, this material 
had been shown the best efficiency by a single 
junction (27.6%) [23]. In addition, GaAs uses a 
band gap between 1.43 and 1.7 eV [14].

 
Figure 3: Solar cell technologies classification [26].
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The next generation of solar cells is covered by 
organic solar cells (OSCs) or organic photovol-
taics (OPV). These cells are based on photosyn-
thesis process in order to absorbing light which 
is done by the dye that substitutes the silicon, 
compared with conventional cells; however, 
they have been demonstrated with low effi-
ciency of around 3–5% [24] and they are still 
a promising alternative because of their low 
cost and relative ease of chemical synthesis 
[25]. Even though only some materials have 
been presented, there are a huge variety of so-
lar cells materials. Figure 3 shows the three big-
gest blocks of these materials.

Applied Review Methodology

This methodology is based on a comprehen-
sive method to evaluate and analyse, along the 
whole product lifetime, the environmental per-
formance and energy consumption, covering 
the whole processes [27] having a life cycle as-
sessment as principal analogy. Therefore, it has 
been proposed and standardised by ISO 14040 
and ISO 14044 [28] [29] using some fundamen-
tal stages: first is goal and scope; second is life 
cycle inventory; third impacts assessment and 
fourth is the interpretation of the results [30]. 
Hence, taking the impact into consideration in 
this study, the following points were analysed: 
diverse aspects of GHG emissions, EPBT, ERoEI, 
the efficiency, how suitable it could be with 
respect to the potentiality of the territory and 
how much it could be, in order to demonstrate 
that this alternative can be a substitute of fossil 
fuels, being applied specifically to Brazil.

Results and Discussion

Efficiency

Efficiency of Solar Cells
The first essential point to be evaluated, which 
has been studied along the years, is the efficien-
cy that most of the green parameters depend on 
the efficiency to be better, such as recovering the 
invested energy, trying to get shorter time and 
producing even more energy. Also, low equiv-
alent CO2 emissions are expected by energy 

produced along the lifetime, without affecting 
the efficiency. For this reason, the results from 
39 different materials and studies are gathered 
and represented in Table 1. All these data are 
analysed by means of two graphs, first to com-

Table 1: Efficiency by materials.

Material Efficiency 
(%) Reference Year

GaAs 23.5 [31] 2011
CZTS 7.3 [32] 2012

Poly-Si 20.3 [33] 2012
CZTS 8.9 [34] 2012
CIGS 15.5 [35] 2012
DSC 11.4 [36] 2012
OPV 8.4 [37] 2012

InGa/GaAs 26.6 [38] 2013
CZTS 12.6 [39] 2013
DSC 9.4 [40] 2013
CdTe 12.3 [41] 2013
CIGS 20.4 [42] 2013
CIGS 15.2 [43] 2013
CZTS 8.4 [44] 2013

OPV-triple 
junction 11.55 [45] 2014

CZTS 11.6 [46] 2014
Perovskite 11.13 [47] 2014

Poly-Si 18.45 [48] 2014
Mono-Si 25.6 [49] 2014

Perovskite 16.6 [50] 2014
Perovskite 15.07 [51] 2014

OPV 10.31 [52] 2014
Perovskite 17.6 [53] 2015

Mono-Si 20.6 [54] 2015
Mono-Si 22.5 [55] 2015

Perovskite 17.7 [56] 2015
Perovskite 18.3 [57] 2015

CIGS 21.7 [58] 2015
OPV 9.94 [59] 2015
GaAs 28 [60] 2015
CdTe 21 [60] 2015
OPV 11.25 [61] 2016
GaAs 15.3 [62] 2016

Poly-Si 21.25 [63] 2016
Mono-Si 19.42 [64] 2016
Poly-Si 16.7 [64] 2016
CdTe 17 [65] 2016

Poly-Si 18.62 [66] 2017
OPV 13.1 [67] 2017

Perovskite-
silicon 26.4 [68] 2017
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Figure 4: Efficiency divided by materials.

Figure 5: Efficiency along the time.
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pare the efficiencies by materials (Figure 4), 
and the other, along the last years, to average 
the different studies (Figure 5).
When the materials are seen, it is possible no-
ticing a top around 26% of efficiency; also, 
the first three materials correspond to newer 
technologies like tandem (InGa/GaAs and per-
ovskite/silicon) and thin films (GaAs). Howev-
er, monocrystalline and polycrystalline silicons 
(which are the most commonly used) are ubi-
cated later with the efficiencies of approximate-
ly 19% and 18%. On the other hand, in recent 
years, the average efficiency of solar cells has 
been increasing.

Efficiency of solar cells in front of thermoelectrical 
plants
If the efficiency was compared with the ther-
moelectrical power plants, there would be still 
a gap between them, with a global average effi-
ciency around 35% [69] [70], which represents 
almost the double if compared with silicon so-
lar cells (1.85 times). Also, if it is considered on 
account of the Brazilian case, there are some 
carbon power plants which have a varied ef-
ficiency, being 20.5% in Charqueadas power 
plant, 25%, 29,4%, 36.1% and 35.8% corre-
sponding to Jorge Lacerda A1, A2, B and C, the 
most 36.5% belonging to Candiota III [71], but 
this corresponds only to 1.88% of the total pro-
duced energy in Brazil and 8.51% of thermo-
electrical plants [72]. Besides, the biggest part 
is taken by thermoelectrical gas plant (7.75% 

of total grid and 35.07% of thermoelectrical en-
ergy) which was reported a 42% of efficiency 
[71], obtaining a 5.14% of total energy grid by 
oil (23.25% of thermoelectrical energy) with 
34% of efficiency [73]. The rest is correspond-
ed to biomass (8.58% of total energy grid and 
38.84% of thermoelectrical plants) having an 
efficiency around 23.05% in Brazil [72].
It could resemble that there is nothing to do 
against the efficiency of thermoelectrical power 
plants; however, observing the efficiency along 
the years, there has been a constant increase 
in efficiency which could then help developing 
better solar cells. Also, even when the carbon 
thermoelectrical efficiency is bigger than sil-
icon solar cells, the CO2 emission is 20 times 
higher and when it is used as natural gas, the 
emissions are 10 times higher and 16 times 
higher for oil thermoelectrical plants [74] (this 
point will be analysed later). Hence, it is possi-
ble asking, is it fear, right or correct using ther-
moelectrical plants just because of increasing 
efficiency? It does not look like.

Greenhouse Gases Emissions  
(Equivalent CO2 Emissions)

CO2 emissions by energy produced in solar cells
When evaluating the GHG emissions, the princi-
pal gas on which this parameter is based is CO2, 
assessing it along the whole life of the studied 
material and expressing its value in CO2 g/kWh. 
For that reason, in this section a total of 24 ref-

Table 2: CO2 emissions.

Material CO2 emission (g/KWh) Reference Year Average CO2 emission (g/kWh)
Mono-Si 131 [75] 2009 131.00

CdTe 17 [76] 2010

36.00CIGS 33 [76] 2010
CIGS 44 [77] 2010
CdTe 50 [77] 2010
OPV 37.77 [78] 2011 47.21
OPV 56.65 [78] 2011

Poly-Si 88.74 [79] 2012

63.01
DSSC 22.29 [80] 2012
CdTe 48 [80] 2012
CIGS 95 [80] 2012

Mono-Si 61 [81] 2012
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Table 2: CO2 emissions (continue).

Material CO2 emission (g/KWh) Reference Year Average CO2 emission (g/kWh)
CdTe 15.83 [82] 2013

35.61

CdTe 20.11 [82] 2013
CIGS 21.44 [82] 2013

Poly-Si 27.2 [82] 2013
CIGS 27.64 [82] 2013

Mono-Si 38.06 [82] 2013
Poly-Si 49.7 [82] 2013

Mono-Si 81.2 [82] 2013
Mono-Si 47.9 [83] 2013
GaInP/

GaInAs/Ge 27 [84] 2013

CdTe 20 [85] 2014

36.73

CIGS 22 [85] 2014
OPV-Multi J. 48.18 [86] 2014

CdTe 15.1 [87] 2014
Poly-Si 31.5 [87] 2014

Mono-Si 41.8 [87] 2014
DSSC 28.1 [88] 2014
CdTe 68 [88] 2014
CIGS 70 [88] 2014

Poly-Si 12.28 [89] 2014
Poly-Si 13.04 [89] 2014
Poly-Si 18.11 [89] 2014
Poly-Si 19.49 [89] 2014
Poly-Si 51.68 [89] 2014
Poly-Si 54.82 [89] 2014
Poly-Si 55.89 [89] 2014
Poly-Si 58.81 [89] 2014
Poly-Si 31.8 [90] 2014

Mono-Si 37.3 [90] 2014
Poly-Si 50.9 [91] 2015

64.50Perovskite 60.1 [92] 2015
Perovskite 82.5 [92] 2015

Mono-Si 5.6 [93] 2016

46.50

Mono-Si 12.07 [93] 2016
OPV 14.7 [94] 2016

Poly-Si 60.1 [95] 2016
Mono-Si 65.2 [95] 2016
Poly-Si 80.5 [95] 2016

Mono-Si 87.3 [95] 2016
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erences, from 2009 to 2019 (Table 2), was gath-
ered, obtaining a graph (Figure 6) where the 
highest value is 131 CO2 g/kWh, and the values 
correspond to the oldest data (2009). How-
ever, the average values by materials vary in a 
range of ~20 to ~70 g/kWh which shows an 
improved, although, relatively low value when 

compared with fossil fuel emissions. This will 
be discussed in the next subsection.

CO2 emission compared with fossil fuels
If all the data are averaged from Figure 6, it 
will be 42.15 CO2 g/kWh. Also, using the data 
from International Energy Agency that pub-

Figure 6: CO2 emission by different materials.

Table 2: CO2 emissions (continue).

Material CO2 emission (g/KWh) Reference Year Average CO2 emission (g/kWh)

CdTe 35 [14] 2017
40.50

CIGS 46 [14] 2017

AZTS/Si 19.8 [96] 2018

24.72

CZTS/Si 20.4 [96] 2018

CIGS/Si 27.8 [96] 2018

Poly-Si 20.9 [97] 2018

Poly-Si 29.2 [97] 2018

Poly-Si 30.2 [97] 2018
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lished its report about CO2 emissions from fuel 
combustion [74], a graph (Figure 7) is drawn 
to represent the big difference between them 
and a solar cell system; for this reason, the en-
ergy emitted by coal (average), natural gas and 

fuel oil contains approximately 22.37, 9.49 and 
16.01 times more CO2 than an average photo-
voltaic panel. This leads to analyse the case of 
Brazil, which is shown in Figure 8, with a focus 
on the year 2017 (the last obtained data), and 

Figure 7: CO2 emission by energies.

Figure 8: CO2 emitted by Brazil in 2017 [98].
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the data is divided by the emission by the fossil 
fuels the emissions of CO2 is calculated if they 
are substituted by solar panels (Figure 9), re-
ducing from 437 to 29.7 Mt, being only 6.8% of 
the CO2 emitted nowadays.

Energy Payback Time
This parameter refers to the required time that 
the system takes to recover all the used ener-
gy from its cradle to grave [84]; for this reason, 
even when a system has low CO2 emission, it 
needs to recover its used energy as fast as pos-
sible, as a way to be sustainable. In this order 
of ideas, some studies have been gathered to 
analyse how these values have been developed 
(Table 3) by materials (Figure 10) and along 
the years (Figure 11).
Observing the graphs, it is notorious how the 
EPBT is decreasing with the years, varying with 
materials, getting even lower values than the 
average by year, nevertheless, there are no data 
in 2008, 2010 and also in 2009 but there was 
a data with a really high value. On the other 
hand, the evolution of EPBT could be defined 
in a range between 1 and 2.5 years, in average, 

to recover the used energy. However, it is valid 
asking if the obtained EPBT values are framing 
inside the lifetime of solar cells.
To answer the lifetime framework, an analytical 
review based on degradation rates of photovol-
taics made by Jordan and Kurtz [106], the au-
thors concluded that even when the companies 
warranty a lifetime of 25 years, moreover the 
reported report some panels with 40 years of 
duration. Also, they obtained degradation rates 
of 0.8% by year in average; in fact, 78% of their 
study reflected a degradation rate less than 1% 
by year, concluding that a range of 1 to 2.5 years 
to recover the energy is an excellent parameter. 
Additionally, in the Brazilian case, by the year 
of 2011, an EPBT was reported which varied 
between 3.1 and 4.1 years [107] (Figure 12), 
compared with the analysis in this review in 
the same year which was 3.9 years in average. 
Brazil fits good, besides, the tendency was from 
3.9 years in 2011 to 1.26 years in 2018 for 
EPBT; for this reason, an interval could be pro-
posed for Brazil (following the same tendency 
until 2018) from 1.085 to 1.435 years.

Figure 9: Emissions of CO2 if the fossil fuels are substituted by solar energy.
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Table 3: Energy payback time.

Material EPBT (year) Reference Year EPBT average (year)
GaAs 5 [99] 2007

4.60GaInP/GaAs 4.6 [99] 2007
Poly-Si 4.2 [99] 2007

Mono-Si 9.08 [75] 2009 9.08
OPV 2.02 [78] 2011

3.90
OPV 1.35 [78] 2011

Mono-Si 8.04 [100] 2011
Poly-Si 4.18 [100] 2011
Poly-Si 4.17 [79] 2012

2.77
CIGS 2.8 [80] 2012
DSSC 1.58 [80] 2012
CdTe 1.5 [80] 2012

Mono-Si 3.8 [81] 2012
Mono-Si 2.34 [82] 2013

1.68

Mono-Si 1.96 [82] 2013
Poly-Si 1.45 [82] 2013
Poly-Si 1.24 [82] 2013

CIGS 1.02 [82] 2013
CIGS 1.01 [82] 2013
CdTe 0.68 [82] 2013
CdTe 0.68 [82] 2013

Mono-Si 5.5 [83] 2013
GaInP/GaInAs/Ge 0.9 [84] 2013

OPV-Multi J. 0.24 [86] 2014

1.74

Mono-Si 3.11 [87] 2014
Poly-Si 2.97 [87] 2014
CdTe 0.94 [87] 2014
CIGS 1.98 [88] 2014
CdTe 1.95 [88] 2014
DSSC 0.95 [88] 2014

Mono-Si 1.9 [90] 2014
Poly-Si 1.6 [90] 2014

Mono-Si 4.1 [101] 2015

1.85

Poly-Si 3.5 [101] 2015
CIGS 1.7 [101] 2015
CdTe 1 [101] 2015

Poly-Si 2.2 [91] 2015
Perovskite 0.266 [92] 2015
Perovskite 0.193 [92] 2015

Mono-Si 0.91 [93] 2016

1.34

Mono-Si 0.42 [93] 2016
OPV 0.34 [94] 2016

Poly-Si 2.1 [95] 2016
Mono-Si 2.06 [95] 2016
Mono-Si 1.95 [95] 2016
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Table 3: Energy payback time (continue).

Material EPBT (year) Reference Year EPBT average (year)
Poly-Si 1.6 [95] 2016 1.34

Perovskite-Si 1.1 [102] 2017

0.92

Perovskite-CIGS 0.625 [102] 2017
Perovskite-CZTS 0.21 [102] 2017

Perovskite-perovskite 0.11 [102] 2017
GaAs 1.67 [14] 2017
CIGS 1 [14] 2017
CdTe 0.75 [14] 2017

Perovskite 0.5 [14] 2017
Poly-Si 2.3 [103] 2017

Perovskite-Si 0.88 [104] 2018

1.26

Perovskite-CIGS 0.5 [104] 2018
Perovskite-CZTS 0.45 [104] 2018

CIGS/Si 1.4 [96] 2018
CZTS/Si 1.3 [96] 2018
AZTS/Si 1.3 [96] 2018
Poly-Si 1.11 [97] 2018
Poly-Si 1.08 [97] 2018
Poly-Si 1.01 [97] 2018
CdTe 3.6 [105] 2018

Figure 10: EPBT corresponding to each material.
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Figure 11: EPBT along the years with its corresponding average values and tendency.

 

Figure 12: EPBT in Brazil using a low-cost solar system [107].
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Energy Return on Energy Invested

ERoEI in solar cells
Another important parameter to be assessed 
is the ERoEI, which refers to the ratio between 
the energy generated and given to commercial 
usage and the input system energy along its 
lifetime, since cradle to its final dead use which 
can be recycled [108]. Having this data into 
consideration, the results from 19 different 
materials from 2012 to 2018 are considered 
(Table 4) and this parameter is graphed with 
respect to different materials (Figure 13), ob-
taining that the ERoEI varies from 5.2 to 16.9; 
however, as it is known that silicon panels are 
the most common, it can be taken in a range 
between 8.5 and 10.4 which are the average 
values for monocrystalline and polycrystalline 
silicon panels.

ERoEI of solar cells in front of Brazilian grid
The range of solar cells obtained earlier has to 
be compared with those values corresponding 
to other energies, especially non-renewable en-
ergies, and some studies are shown in Table 5 
and graphed (Figure 14) together with solar 
cells data, which were divided into two, only 
silicon solar cells (Solar-Si) and the average be-
tween solar cell materials (Solar-System).
If the Brazilian energy grid was analysed, it 
could be possible to notice that only 22.10% of 
the total energy is produced by thermoelectri-
cal source, which is the most common pollut-
ant (Figure 15). Also, as shown in Figure 14, 
the ERoEI could be reduced from a range be-
tween 18.3 and 13.1 (thermoelectrical plants 
from fossil fuels) to 9.45, which has to be re-

Table 4: ERoEI studies.

Material ERoEI Reference Year

Poly-Si 4.83 [79] 2012

CdTe 13.33 [80] 2012

CIGS 7.14 [80] 2012

DSSC 12.67 [80] 2012

Mono-Si 6 [109] 2012

Poly-Si 6 [109] 2013

CdTe 12 [109] 2014

Mono-Si 16.1 [90] 2014

Poly-Si 19.1 [90] 2014

CdTe 34.2 [101] 2015

CIGS 19.9 [101] 2015

Mono-Si 8.7 [101] 2015

Poly-Si 11.6 [101] 2015

CdTe 8 [110] 2016

Mono-Si 3.3 [110] 2017

Mono-Si 8.45 [111] 2017

Perovskite-
CIGS 9.2 [104] 2018

Perovskite-
CZTS 8.1 [104] 2018

Perovskite-Si 5.2 [104] 2018

Table 5: Different energies and their ERoEI.

Energy ERoEI Reference Year
Oil and gas 5.02 [113] 2007
Oil and gas 10.65 [113] 2007
Oil and gas 16 [114] 2008
Oil and gas 13 [114] 2008
Oil and gas 20 [114] 2009

Gas 20 [114] 2009
Coal 12 [108] 2010
Coal 16 [108] 2010
Oil 5.9 [108] 2010
Oil 5 [108] 2010
Gas 4.8 [108] 2010
Gas 8.2 [108] 2010

Oil and gas 10 [115] 2010
Coal 27 [115] 2010
Coal 28 [116] 2012

Oil and gas 17 [116] 2012
Hydroelectric 84 [116] 2012

Coal 30 [117] 2013
Gas 28 [117] 2013

Hydroelectric 35 [117] 2013
Coal 12 [108] 2015
Gas 11 [110] 2016
Coal 3 [110] 2016
Oil 1.7 [110] 2016

Hydroelectric 58 [110] 2016
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duced further. However, analysing the total en-
ergy capacity in Brazil which is 156.4 GW [9], 
getting its maximum peak in the same month 
(70.66 GW) [112] and having thermoelectri-

cal potential energy as 34.56 GW, then without 
this energy, the total capacity in Brazil would 
be 121.84 GW. Therefore, even when the ERoEI 
of solar cells is lower than the thermoelectrical 

Figure 13: ERoEI corresponding to different materials and their average.

 
Figure 14: Different energies and their ERoEI.
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plants, the country would be stable if thermo-
electrical plants were substituted by solar cells.

The Brazilian Scenario

Potentiality of the territory
The four important parameters to be evaluat-
ed in the performance of a green energy have 
been analysed; however, the economical as-
pect and application potentiality of the region 
have to be investigated. First, the irradiance 
is analysed (Figure 16) where Brazil is com-
pared with Europe, obtaining similar, and even 
better, values, compared with other countries, 
such as Portugal, Spain and Germany, where 
the solar energy has been applied [118]. Also, 

the potential system that could exist in Brazil 
is 5153 Wh/m2 [119], and knowing they are 
of the country (8.52 × 1012 m2) the poten-
tial energy is 43.96 PWh (4.396 × 1016 Wh). 
Compared with the maximum energy demand 
(≈85,000 GW) [120], it is 0.085 PW and 0.193% 
of the potentiality of solar cells energy; there-
fore, this result might be translated as 0.193% 
of the Brazilian territory could supply the ener-
gy demand.

Economic aspect
Another point is the economic aspect. It was 
analysed how could cost the energy by MWh, 
obtaining the levelised cost of energy (LCOE), 
in 2019, with the corresponding value of so-
lar energy 45.7 US$/MWh, compared with 
39.1 US$/MWh in hydroelectrical industry, 
104.3 US$/MWh for thermoelectrical plant us-
ing coal and 46.3 US$/MWh when the thermo-
electrical plant is used for natural gas [121].
On the other hand, in 2015, the cost in Brazil 
for solar energy was studied, getting around 
175 US$/MWh [10], but using the tendency 
from 2015 to 2019 it could be reduced from 
around 0.6 to 0.244 US$/Wp [8], the value be-
ing 40.67% compared with the value 4 years 
ago. Therefore, it could be thought that in Bra-
zil, nowadays, the projected value for solar 

 
Figure 15: Brazilian energy grid (March 2018).

Figure 16: Solar irradiance in Brazil (left) and in Europe (right) [118].
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energy could cost 71.17 US$/MWh which is 
more competitive. Also, another studied value 
for Brazil is the price of carbon thermal plant-
with a value between 70.9 and 100.6 US$/MWh 
[71], being better using the solar energy.

Conclusions

In addition to all those mentioned and ex-
plained earlier, five critical points were anal-
ysed, observing the behaviour of solar cells and 
how they could act in the Brazilian scenario, 
and they are summarised below.
CO2 emissions: In this point, the emission gen-
erated by different solar panels along their life-
time was obtained, from the factory to the grave 
getting values from 19.8 to 71.3 CO2 g/kWh and 
being much lower than the energy from coal 
(943 CO2 g/kWh). For this reason, if Brazil sub-
stitutes its fossil fuels to solar energy, the emis-
sions could be reduced from 437 to 29.7 Mt of 
CO2 by year, which is 6.8% of the actual emis-
sions.
EPBT: Here, the time to recover all the used 
energy by solar panels varies from 0.11 to 
4.6 years and in Brazil the value is around 3 to 
4 years. There are improvements every year, 
having in consequence a reduction of this val-
ue. Also, they are good values that some com-
panies offer a warranty of 25 years.
ERoEI: One of the most remarkable points was 
that photovoltaic panels can be compared with 
fossil fuels, showing better values than oil.
Efficiency: The efficiency has been a point with 
a constant increase every year, reaching 20% of 
efficiency easily, being rival to Brazilian ther-
moelectrical plants.
Cost and irradiance: Analysing the Brazilian 
case directly, the photovoltaic panels are more 
expensive than in Europe; nonetheless, they 
show a cheaper price than energy from coal. 
Also, the irradiance in Brazil is thus big that it 
is needed 0.2% of their territory to supply the 
national energy demand.
Finally, the solar energy presents low CO2 emis-
sions, a fast payback time, good efficiency and 
lower prices every year showing how green it 
could be, and in the Brazilian case it is perfectly 
suitable because of all those points mentioned 

earlier, and the Brazilian territory presents a 
wonderful irradiance potential.
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