
Next Level Odd-One-Out Puzzles

Benjamin Berger
Leibniz Universität Hannover

Abstract

A commonly occurring task in intelligence tests or recreational riddles is to “find
the odd one out”, that is, to determine a unique element of a set of objects that is
somehow special. It is somewhat arbitrary what exactly the relevant feature is that
makes one object different. But once that is settled, the answer becomes obvious.
Not so with a puzzle popularized by Tanya Khovanova to express her dislike for
this type of puzzle. Here, it is a more complicated relation between the objects and
the features that determines the odd object, because there is only one object that
does not have a unique feature expression. This puzzle inspired me to look for even
more complicated relations between objects, features and feature expressions that
appear to be even more symmetric, but actually still single out a “special object”.
This paper provides useful definitions, a theoretical basis, solution algorithms, and
several examples for this kind of puzzle.

Keywords: puzzles, symmetry, combinatorics

1 Introduction

A certain puzzle is somewhat popular on the internet which was devised in its present,
colorful form by Khovanova [3], but is based on an older greyscale version of the same
idea. The task is to identify one of several objects in a picture (essentially reproduced
in Figure 1 on the following page) that is “odd”. Khovanova states that she does not
like these puzzles because of their arbitrariness (a sentiment she shares with Martin
Gardner, in one of whose books [2] she saw the original version, which was designed by
Tom Ransom [1]), so she (re)invented one. She apparently did so to subvert the concept
of odd-one-out puzzles, because the joke is that, while at first glance each of the objects
seems to be special in its own way, there is one (the big red bordered square) which does
not have a feature expression that is unique. It has nothing special; that is what makes
it special. I found this puzzle amusing but too easy and set out to make harder ones,
calling them “ooops” (Odd-one-out puzzles).

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

28 Next Level Odd-One-Out Puzzles

A big blue square with black border
A small red square with black border
A big red square without border
A big red circle with black border
A big red square with black border

Figure 1: The puzzle that inspired this paper

2 Problem Description

A puzzle of the kind described in this paper is presented to the human solver as a
picture showing several objects. Each object has several features, such as shape, overall
size, border style, color, number of holes, to name a few. Each feature has several ex-
pressions. For example, “color” may have the expressions “red”, “green”, or “blue”, and
“border style” may have the expressions “absent”, “solid”, or “dashed”.

The task is to find out the one object that is “unique” or “special”. In interesting
puzzles, this is complicated by the fact that there are either no or several objects that
have a unique expression of some feature, so one has to consider how the objects relate
to each other by having common expressions of some features.

A priori, all objects and all features stand on an equal footing. Also, all expressions of
a feature stand on an equal footing and may not be compared to the expressions of other
features. There is nothing special about color or dashed lines just because they feel more
salient visually, just as there is nothing special about the leftmost object just because
it comes first in most peoples’ reading habits. This can be expressed more rigorously
by stipulating that, whenever the puzzle is changed by exchanging any two features

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 29

(possibly requiring new expressions for one feature to be invented if they had a different
number of expressions), or by permuting the expressions of some feature, the object that
is the solution of the puzzle stays the same, except that of course the feature exchange
or expression permutation has been applied to it. As an example for an exchange of
features, consider the injective mappings

{red 7→ absent, green 7→ solid, blue 7→ dashed}

and

{absent 7→ blue, solid 7→ green, dashed 7→ red}

These can be used to exchange the features “color” and “border style”: for each object,
apply the respective mapping to the expression of the respective feature to obtain the
expression of the other feature on the transformed object. For example, a borderless green
object will become a blue object with solid border. Features that can be exchanged in
a way that leaves all objects as they were before (because their expressions correlate
perfectly) are not to be considered distinct features.

Also, only expressions of the same feature can be compared among each other, and
can only be compared for equality. The justification for a solution is then a statement
that is true about only one object (namely the solution) and that treats all features and
feature expressions on an equal footing and that is built from only equality comparisons
of expressions that belong to the same feature. For example, the justification for why
the red big bordered square is the solution for Figure 1 on the preceding page could be
given as: “It is the only object so that there is no feature that has a unique expression
on that object”. Another justification would be “It is the only object that differs from
each other object in exactly one feature”. However, it is an invalid justification to say
“The blue object is special because color is the most salient feature, and it is the only
one with that color”. Saying this would a priori prefer color, which is not permitted.

The question of what the relevant features and their expressions are is left to the
common sense of the solver, but once this step is accomplished successfully, the process
becomes purely logical. Therefore I will introduce a mathematical encoding for these
concepts in subsection 3.1 on the following page, but may sometimes use the labels “ob-
ject”, “feature” or “feature expression” when talking about the respective mathematical
objects.

2.1 Examples

In this subsection, I will give a few example puzzles. To prevent any ambiguity in
interpreting the puzzles, Table 1 on the next page lists the features and their possible
expressions that were used in all figures except Figure 12. Note that “border width” and
“hole size” are not separate features in this paper, since they correlate perfectly with
overall size.

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

30 Next Level Odd-One-Out Puzzles

Feature Possible expressions Remarks

Size big, small, medium Size affects border width
and hole size

Color red, green, blue, yellow, white

Shape circle, triangle, square, pentagon

Border style/color black, dashed black, absent,
gray, cyan, green

Hole count 0, 1, 2, 3, 4, 5

Hole shape circle, triangle, square, pentagon

Hole filling white, black, red, orange, Never the same as hole
magenta, cyan, dark green border color

Hole border black, dashed black, absent, Same as outer border in
gray, white, dark cyan Figures 2 and 4

Table 1: List of the features and feature expressions used in the figures. Not every figure uses all features. Not
every feature occurring in a figure uses all possible expressions.

Solutions to most of the example ooops on the following pages can be found in section
4 on page 37.

3 Mathematical Formulation

This section is about treating Odd-one-out-puzzles as mathematical objects. The
first part is about encoding the puzzle as a set of features, the features being partitions
of the set of objects. This part requires only elementary näıve set theory. The second
part is more technical and deals with the relationship of the different ways of defining
what “solving” such a puzzle means. You can safely skip it as the only concept from
it mentioned elsewhere in this paper without further explanation is the automorphism
group.

3.1 Encoding as a Set of Partitions

For a given puzzle, let us call the collection of objects Σ, and the collection of
features O. The rule that all objects stand on equal footing means that Σ is a set, i.e.

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 31

Label size color shape border holes
0 small blue square absent 2
1 big blue circle black 1
2 medium red circle black 3
3 small green square dashed black 3
4 small green triangle absent 1

Figure 2: A little harder. The numerical labels are
for establishing correspondence with the textual de-
scription.

Figure 3: Still too easy. You don’t even need to
use different line colors for different features, but
I did it anyway to make clear how the lines arise.
Black lines stand for same shape, red is for color,
green is for border style, blue is for hole count, and
magenta is for size.

an unordered collection which contains each element at most once. We may denote its
elements by consecutive natural numbers 0, 1, . . . , n−1. Note that integers are used here
merely as convenient labels. It is invalid1 to compare them to integers obtained in any
way other than extracting them from Σ and O as set elements2 by universal or existential
quantification, and they may only be compared among each other for equality3. This is
important because if we never break this symmetry, we can be sure that the algorithms
and invariants developed later indeed depend on the abstract structure of the puzzle
only and not on the concrete choice of integer labels.

The rules that all feature expressions stand on an equal footing and that only ex-
pressions of the same feature can be compared (and only for equality) means that it is
natural to model a feature f as an equivalence relation 'f on Σ, or equivalently as a
partition of Σ. A partition of a set Σ is simply a set of subsets (called blocks) of Σ that

1Or, to use the term introduced later, “not well-defined”
2Or, transitively, as elements of elements, elements of elements of elements, ...
3In set theoretic terms, they are urelements and there is no axiom of choice. In programming language

terms, you can think of them as objects of an opaque datatype with a non-public constructor that are
comparable for equality only, with no other functions provided and no choice operator on sets.

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

32 Next Level Odd-One-Out Puzzles

color shape border holes
yellow circle black 2
blue triangle grey 3
green pentagon absent 2
yellow square grey 4
red triangle absent 1

Figure 4: One of the easiest I have found. It has
only 4 features, and one of the features represents
a partition of 5 different from the other features.
There is only one object that has a unique expres-
sion of this feature, so that object is the solution.

Figure 5: The graphical solution approach. This
time, it was necessary to color the lines connecting
equal feature expressions according to the respec-
tive feature to see a difference: Red is for color,
green is for shape, blue is for hole count and black
is for border.

are disjoint and together contain all elements of Σ. Thus, we will model a feature to be
a partition f whose blocks are the sets of objects that have the same expression of the
feature modeled by f . When talking about a feature expression in isolation, it can then
be modeled as a dependent pair (f ∈ O, b ∈ f).

The rules that all features stand on an equal footing and that perfectly correlated
features are actually just one and the same feature imply that O is a set.

Thus, the essence of an Odd-one-out puzzle with n objects that each have m features
can be specified by O alone, where O is a set of m partitions of an n-element set Σ. For
example, the puzzle from Figure 1 on page 28 could be written as

{
{0, 1, 3, 4} , {2}

}︸ ︷︷ ︸
size

,
{
{0, 1, 2, 4} , {3}

}︸ ︷︷ ︸
color

,
{
{0, 1, 2, 3} , {4}

}︸ ︷︷ ︸
shape

,
{
{0, 2, 3, 4} , {1}

}︸ ︷︷ ︸
border

or shorter: (0123|4)(0124|3)(0134|2)(0234|1), with the solution evidently being 0 as it is
the only object that does not occur alone in a block. We will use the shorter presentation

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 33

size color shape border holes hole
border

0 small blue circle black 2 absent
1 big blue triangle absent 1 black
2 small green circle black 1 dashed
3 big blue square black 2 black
4 big red circle absent 1 dashed

Figure 6: Note that one object has the same
style on its outer border and its hole borders. This
doesn’t make it special, because feature expressions
may only be compared to expressions of the same
feature.

color shape border holes hole hole
color shape

blue pentagon cyan 5 black circle
red circle grey 4 cyan pentagon
white circle black 5 orange square
green triangle grey 2 black triangle
blue square green 3 red pentagon
yellow triangle green 1 magenta square

Figure 7: An ooop with 6 objects and 6 features.

in the following, and the solution will not always be 0, in order to not spoil the riddle.

I define an ooop4 O over Σ to be a set of partitions of Σ that is uniquely solvable.
O being uniquely solvable means that there must be a uniquely special object e ∈ Σ
that is the solution. “Uniquely special” means that for each predicate P on Σ that is
well-defined in terms of O (definable purely in terms of Σ, O, and the equality and set
membership predicate, as well as the usual logical operators and quantifiers), it must
hold that if P is true on exactly one object o, then o = e, and furthermore, the predicate
1{e} that is true on e only must be well-defined.

Note that the name ooop is reserved for sets of partitions that are uniquely solvable.
Other sets of partitions of Σ may be called “pre-ooops”.

3.2 Ooop Solutions and Automorphisms

Feel free to skip this part, as it is quite technical and at the same time not totally
rigorous.

4Odd-one-out puzzle

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

34 Next Level Odd-One-Out Puzzles

size color shape border holes hole hole hole
color shape border

big red pentagon black 1 cyan pentagon dark
cyan

small blue pentagon gray 2 dark triangle white
green

medium green circle black 4 orange circle white
big yellow triangle absent 2 orange square black
medium blue square absent 3 magenta pentagon absent

Figure 8: Here, the automorphism group is D4, the symmetry
group of a square. It is a bit hard to see, but the interior of the
triangles within the blue pentagon is dark green.

size color shape border holes hole
shape

big red triangle grey 1 square
medium blue pentagon grey 3 circle
small red square black 3 triangle
big green square absent 2 pentagon
medium yellow circle absent 4 triangle

Figure 9: Here, the automorphism group is the
symmetric group S4 of all permutations of the
non-special objects.

For O to be an Ooop, there must be exactly one predicate on Σ that is well defined
in terms of O and true on exactly one object e. This is certainly the case if e exists
as the unique common fixed point of all automorphisms of the puzzle, in a sense that
will be explained now. What are the automorphisms? The only arbitrary choice in our
presentation of the ooop as the set O was the assignment of the n integer labels to the
objects. So each automorphism5 of O is given by a permutation π : Σ → Σ. Such a
permutation π is an automorphism of O iff π(O) = O. Here I am using the convention
that a function f : A→ B is also a function of type 2A → 2B, that is, between the power
sets of A and B6, via ∀ S ⊆ A : f(S) =

{
f(x)

∣∣ x ∈ S}. One easily checks that these
permutations indeed form a group.

5This definition of automorphism applies not only to ooops, but also to other sets of partitions of Σ.
6Apply this convention thrice to see how to apply a permutation of Σ to a set of partitions of Σ (which

is an element of 222Σ

).

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 35

color shape border holes hole hole
color shape

green pentagon black 2 orange circle
blue circle black 1 dark pentagon

green
red pentagon grey 3 dark square

green
green square grey 1 white triangle
red triangle cyan 2 white pentagon

Figure 10: Here, the automorphism group is C4,
the cyclic group of order 4.

color shape border
0 green pentagon absent
1 blue circle black
2 red square absent
3 green triangle black
4 blue square dashed

Figure 11: The algorithm from subsection 5.4 on
page 40 takes multiple steps on this one.

Figure 12: The hardest (yet). Cannot be solved by the incomplete algorithm (without using the characteristic
polynomial as an invariant). By being a bit creative, I could manually find the hidden asymmetry without resorting
to the automorphism group or the costly characteristic polynomial. It turns out that three of the features are
special in the way they relate to other features. The ooop is also presented here with letter/typographic emphasis
features for clearer representation.

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

36 Next Level Odd-One-Out Puzzles

Automorphisms have the property that they preserve well-defined predicates, or ex-
pressed differently, the notion of well-definedness in terms of O is invariant under auto-
morphisms (because O is invariant). But what does a general permutation of Σ do to
a well-defined predicate and to the notion of well-definedness? Let PO be a predicate
that is well-defined in terms of an ooop O, and let Pπ(O) be the predicate that is de-
fined in the same way, but using π(O) instead of O, for some permutation π : Σ → Σ.
If O 6= π(O), then it is possible that ∃ i : PO(i) 6= Pπ(O)(i). It is however always the
case that ∀ i : PO(i) = Pπ(O)(π(i)) for all permutations π; this is because the notion of
well-definedness is parameterized by the ooop and has no other way to treat two objects
differently than by exploiting their structural role in the ooop, so if the object labels
change by the same permutation in the presentation of the ooop as they do in the argu-
ment of the predicate, a well-defined predicate parameterized by the ooop must yield the
same result. Hence, we can say that general permutations do not leave all well-defined
predicates unchanged; well-defined predicates should be called covariant under permu-
tations, but are in general not invariant. But if π is an automorphism of O, we have
O = π(O) and the two predicates are obviously the same: ∀ i : PO(i) = Pπ(O)(i), and
so the notion of well-definedness, being parameterized by O, does not change under the
automorphism and the predicate is preserved.

At the same time, the predicate is also covariant, and this leads to the following
argument that a special object must be a common fixed point of all automorphisms: if
there is an automorphism h of O that maps an object i to a different object j, none of
the two objects can possibly be the special object e because h(O) = O, but h(i) = j, so
i would fulfill the same predicates on Σ that are well-defined in terms of O as j does,
because any Predicate PO, well-defined in terms of O, is both covariant and invariant
under automorphisms: PO(i) = Ph(O)(h(i)) = PO(j). Hence there can be no well-defined
predicate that has different truth values on i and j. But that would be required of the
predicate 1{i} that must be well-defined according to the definition of an ooop if i was the
solution. The assumption that j is the solution leads to the same kind of contradiction.
Hence, an object that is the solution of the ooop must necessarily be a fixed point of
every automorphism. The predicate “Is a common fixed point of all automorphisms” is
well-defined, and if it is true for exactly one object e, it is the required predicate 1{e}
and e is the solution.

Note that the preceding did neither claim nor prove that there cannot be ooops with
multiple common fixed points of all automorphisms. I argue that this is the case: being
a common fixed point of all automorphisms means being structurally different7 from all
other objects. Whenever there are two objects that are not structurally different, there
is an automorphism that maps one to the other, and vice versa. For structurally different
objects, however, it should always be possible to construct a well-defined predicate that
tells them apart, because they play a different role in the structure of the set of partitions

7In the sense of playing a different role in the structure of the set of partitions

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 37

and the difference of their roles can be specified in a well-defined way by using that
structure. So especially for the set of fixed points, there are then well-defined predicates
that can tell each one apart from the rest.

For example, the pre-ooop (0|12|34)(1|0234) has only one nontrivial automorphism,
namely the transposition of 3 and 4. The three fixed points i = 0, 1, 2 are each charac-
terized by a different predicate 1{i} that is true exclusively on i:

� 1{0}(j) can be expressed as “j is fixed by all automorphisms and does not occur in
a block of size 2”.

� 1{1}(j) can be expressed as “j is fixed by all automorphisms and does not occur in
a block of size 4”.

� 1{2}(j) can be expressed as “j is fixed by all automorphisms and does not occur in
a block of size 1”.

But according to the definition of an ooop, there can be only one such predicate, so that
pre-ooop is not an ooop.

I omit a more rigorous proof that for each common fixed point i of all automorphisms,
the predicate 1{i} is well-defined.

4 About the Ooops in this Paper

Figure 2 on page 31 shows the only puzzle I have constructed by hand. The solution
is given by the blue square, and one possible justification for this is “It is the only object
so that for each other object, they agree on the expression of exactly one feature.” Figure
3 on page 31 shows a graphical way to arrive at this statement.

Figure 4 on page 32 shows an ooop found by a computer search. The solution is
given by the yellow circle, and one possible justification for this is “It is the only object
that has a unique expression of the only feature (namely, “border style”) that has three
different expressions (instead of four).” Figure 5 on page 32 shows a graphical way to
arrive at this solution.

Figures 6 and 7 on page 33 show two more puzzles. Solutions are intentionally not
given.

For three of the following four ooops, I give only a text form of the justification of the
solution. It should be easy to use the given justification to identify the special object. It
should also be easy to ignore the texts in case you want to solve the riddles yourself.

A simple justification for the solution of Figure 8 on page 34 is: “There are two
features that have only three expressions. The special object is the only one that has a
unique expression of these two features.”

A simple justification for the solution of Figure 9 on page 34 is: “There are three
features that have only three expressions. The special object is the only one that has a
unique expression of these three features.”

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

38 Next Level Odd-One-Out Puzzles

The special object in Figure 10 on page 35 is the green square with grey border and
one white triangular hole. What is the justification for this?

A simple justification for the solution of Figure 11 on page 35 is: “There is one feature
that has four expressions. The special object is the only one that has nothing in common
with any object that does not have a unique expression of this feature”. The words
“nothing in common” of course just apply to proper features; for example, all objects
have their size and hole count in common, but these are not considered features here
because they are the same for all objects in this ooop.

Finally, Figure 12 on page 35 shows the hardest ooop could find, with nine features.
Note that due to the high number of features, I used two different sets of features
and feature expressions. In the case of the Letter/Typographic emphasis features, each
feature is assigned a letter and the four expressions of each feature are represented by
four different ways of writing that letter. The graphical solution technique of drawing
colored lines was in itself not sufficient to see which object is special.

5 Useful Definitions for Solving Ooops

For solving ooops, it is helpful to define some properties of objects or features that
are invariant under automorphisms8. That is, if there is an automorphism that maps i
to j, then i and j have the same value of the invariant property. This is also interesting
for generating challenging ooops, because the easy solutions that could be solved using
these invariants can quickly be weeded out or not even be considered in the first place.

5.1 Invariant: Class Histogram

The ooop depicted in Figure 1 on page 28 could be solved by counting how many
feature expressions are unique to a given object i, and noting that this number is different
for one object. This idea readily generalizes to a histogram of the sizes of the equivalence
classes that i is a part of. This invariant I call the class histogram. To be precise, the class
histogram for object i of an ooop O with n objects is a finite list of integers C(O, i) ∈ Nn
with

C(O, i)k =
∣∣∣{f ∣∣ i ∈ x ∈ f ∈ O, |x| = k

}∣∣∣, 1 6 k 6 n

As an example, the class histogram for the solution of 1 on page 28 is (0, 0, 0, 4, 0),
while the class histograms for the other four objects are all (1, 0, 0, 3, 0).

An ooop where all objects have the same class histogram is called class constant. To
solve these, we consider other invariants.

8In case you did not read the previous subsection: an ooop-automorphism is essentially a relabeling of
the objects (here: numbers) occurring in the set of partitions that leaves the representation of the riddle
as a set of partitions unchanged.

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 39

5.2 Invariant: Link Histogram

The ooop depicted in Figure 2 on page 31 is class constant. It has presentation

(02|34|1)︸ ︷︷ ︸
size

(01|34|2)︸ ︷︷ ︸
color

(03|12|4)︸ ︷︷ ︸
shape

(04|12|3)︸ ︷︷ ︸
border

(0|14|23)︸ ︷︷ ︸
holes

where the numbers are counting counterclockwise from the blue square. The class his-
togram for all objects is (1, 4, 0, 0, 0).

To identify the special object, we need another invariant. If we draw a line between
two objects for each feature for which the objects have the same expression, we arrive
at Figure 3 on page 31, where the solution is obvious: most objects have two single lines
and one double line attached to them, but one has four single lines. This motivates what
I call the link histogram: it is a histogram that tells for each relevant number m how
many partners an object has with which it agrees on m features.

The precise definition of the link histogram is that the link histogram of an object i
of an ooop O is a finite list of integers L(O, i) ∈ N1+|O| with

L(O, i)k =

∣∣∣∣∣∣
{
j

∣∣∣∣∣ j ∈ Σ \ {i} ,
∣∣∣∣{f ∣∣∣ f ∈ O, i 'f j}∣∣∣∣ = k

}∣∣∣∣∣∣, 0 6 k 6 |O|

The link histograms for Figures 2 and 3 are: (0, 4, 0, 0, 0, 0) for object 0 and (1, 2, 1, 0, 0, 0)
for all the rest. Thus we see object 0 can be singled out using the link histogram, and
therefore is the solution. The natural language justification for the solution can be ex-
tracted from the link histogram: by observing that the only nonzero entry in the link
histogram of the special object is at position 1, which means that it has 1 feature ex-
pression in common with each other object, we arrive at the description of the solution
as “the only object so that for each other object, they agree on the expression of exactly
one feature.” (See section 4 on page 37)

An ooop where all objects have the same link histogram is called link constant.

5.3 Invariant: Integer Partitions

The ooop depicted in Figure 6 on page 33 is class constant and link constant. It has
presentation9

(02|134)︸ ︷︷ ︸
size

(013|2|4)︸ ︷︷ ︸
color

(024|1|3)︸ ︷︷ ︸
shape

(023|14)︸ ︷︷ ︸
outer border

(03|124)︸ ︷︷ ︸
holes

(0|13|24)︸ ︷︷ ︸
hole border

9Note that there are different ways to label the objects with numbers that result in the same presen-
tation, but then the partitions of Σ would denote different features than they do now. This is an effect
of the existence of automorphisms. For the most part, I avoid making such arbitrary choices because I
want to encourage thinking about the objects as what they are in relation to each other and not as some
kind of label that introduces a spurious distinctness.

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

40 Next Level Odd-One-Out Puzzles

The class histogram for all objects is (1, 2, 3, 0, 0) and the link histogram is (0, 2, 0, 2, 0, 0, 0).
Therefore, it cannot be solved simply by using these invariants.

However, the features, viewed as partitions, do not represent the same integer parti-
tions: The first two correspond to the integer partition 1+1+3, the next three correspond
to the integer partition 2 + 3, and the last one corresponds to 1 + 2 + 2. This census
of integer partitions is obviously invariant under ooop-automorphisms (indeed, under
arbitrary permutations of Σ). Retaining one of the three kinds of feature and discarding
the rest does not break any symmetries that were not already broken and thus yields
another ooop with the same solution, which may then be solvable recursively with this
or another technique.

In the case of the ooop from Figure 6 on page 33, we can for example consider only
the feature “hole border” (14|0|23), as it is the only one corresponding to the integer
partition 1 + 2 + 2. In the resulting ooop O′ =

{
{0} , {1, 3} , {2, 4}

}
, only one object e

has C(O′, e)1 = 1, thus it is the solution. Of course this could be said more plainly by
stating that the feature “hole border” is special because it is the only one that has a
unique expression on exactly one object, thus that object, 0, must be the solution. My
reason for first giving the more long-winded statement about using the integer partition
invariant to justify ignoring some features, and then using the class histogram on the
rest to single out an object, is that it generalizes more systematically to the algorithm
explained in the next subsection.

An ooop where all features represent the same integer partition is called partition
constant. Examples of partition constant ooops are shown in Figure 2 on page 31 (not
listed in Table 2 on page 49, as it is not link constant) and Figure 12 on page 35 (presented
in the last row of Table 2).

5.4 An Incomplete Solution Algorithm

A solution can always be found as the fixed point of the automorphism group’s
action on Σ, which can be found by checking all n! permutations of Σ. But often a more
direct way is available that does not suffer that much from the effects of combinatorial
explosion, running in polynomial time if it terminates at all.

The idea here is to compute a sequence Fk of partitions of O and a sequence Bk
of partitions of Σ. These partitions tell us what we already know about some features
and objects being structurally different from others after iteration k of the algorithm.
Initially, the partitions B0 and F0 contain only one block, because a priori all objects
and also all features stand on an equal footing. Then, asymmetries are discovered using
invariants and in turn induce discovery of other asymmetries until an asymmetry is found
that singles out one object.

If you are not interested in the technical details of the algorithm and an example how
it runs, you can skip the rest of the subsection.

We will need an operation ~∩ that, given a set M (such as an ooop or feature) and

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 41

a subset b of Σ, returns a version of M where only objects in b have been retained at
whatever depth they occurred, and empty sets are removed. That is,

M ~∩ b = (M ∩ b) ∪
{
S ~∩ b

∣∣∣ S ∈M,S /∈ Σ
}
\
{
∅
}

At iteration k ∈ N+ of the algorithm, we do the following:

� Refine the partition of O: Fk is computed from Fk−1 and Bk−1 as the coarsest
common refinement of

– Fk−1

– For each b ∈ Bk−1, the partition induced by the equivalence relation ∼b on O
defined as follows: f ∼b g iff the two partitions f ~∩ b resp. g ~∩ b of b represent
the same partition of the integer |b|.

� Refine the partition of Σ: Bk is computed from Fk and Bk−1 as the coarsest common
refinement of

– Bk−1

– For each (b, c) ∈ Bk−1 × Fk, the union of Σ \ b and the partition induced by
the equivalence relation ≈b,c on b defined by

i ≈b,c j ⇐⇒ C(c′, i) = C(c′, j) ∧ L(c′, i) = L(c′, j)

where c′ = c ~∩ b.10 Here, the definition of link histograms and class histograms
has been extended to be applicable to sets of partitions of Σ that are not
necessarily ooops.

� Test if Bk contains a block b of size 1. If so, output the element of b as the solution
and terminate. Else, continue with iteration k + 1.

One can easily see that the algorithm is correct by observing that everything is
covariant under permutation of the integers in the input ooop because they are only
ever compared for equality. Therefore, if the algorithm can single out an element of Σ,
it must be the solution, which is presumed to be unique. However, the algorithm cannot
solve every ooop. The one shown in Figure 12 on page 35 and presented in the last row
of Table 2 on page 50 is a counterexample because it is class constant, link constant and
partition constant. Hence, the algorithm never refines anything.

10This distinguishes the objects by several class and link histograms that each consider one subset of
features that we could already tell apart from others (but not from each other), and one subset of objects
that we could already tell apart from others (but not from each other).

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

42 Next Level Odd-One-Out Puzzles

As an example run of the algorithm, let us solve the ooop displayed in Figure 11 on
page 35. It has presentation

(2|03|14)︸ ︷︷ ︸
color

(02|13|4)︸ ︷︷ ︸
border

(3|0|1|24)︸ ︷︷ ︸
shape

as seen in row 2 of Table 2 on page 49. The algorithm then runs as follows: (feel free to
skip this unless you want to trace in detail how the algorithm works)

F0 =
{{{
{0, 3} , {2} , {1, 4}

}︸ ︷︷ ︸
fcolor

,
{
{0, 2} , {1, 3} , {4}

}︸ ︷︷ ︸
fborder

,
{
{0} , {1} , {2, 4} , {3}

}︸ ︷︷ ︸
fshape

}}
B0 =

{
{0, 1, 2, 3, 4}

}
b1,1 := {0, 1, 2, 3, 4}

∼b1,1≡
{{{

{0, 3} , {2} , {1, 4}
}
,
{
{0, 2} , {1, 3} , {4}

}}
,
{{
{0} , {1} , {2, 4} , {3}

}}}
=

{
{fcolor, fborder} ,

{
fshape

}}
F1 =

{{{
{0, 3} , {2} , {1, 4}

}
,
{
{0, 2} , {1, 3} , {4}

}}
,
{{
{0} , {1} , {2, 4} , {3}

}}}
=

{
{fcolor, fborder} ,

{
fshape

}}
The feature fshape =

{
{0} , {1} , {2, 4} , {3}

}
has been determined to be structurally

different from the other two.

c1,1 :=
{{
{0, 3} , {2} , {1, 4}

}
,
{
{0, 2} , {1, 3} , {4}

}}
= {fcolor, fborder}

c′1,1 := c1,1 ~∩ b1,1 = c1,1

C(c′1,1, 0) = C(c′1,1, 1) = C(c′1,1, 3) = (0, 2, 0, 0, 0)

C(c′1,1, 2) = C(c′1,1, 4) = (1, 1, 0, 0, 0)

L(c′1,1, 0) = L(c′1,1, 1) = L(c′1,1, 3) = (2, 2, 0)

L(c′1,1, 2) = L(c′1,1, 4) = (3, 1, 0)

≈b1,1,c1,1≡
{
{0, 1, 3} , {2, 4}

}

c1,2 :=
{{
{0} , {1} , {2, 4} , {3}

}}
=
{
fshape

}
c′1,2 := c1,2 ~∩ b1,1 = c1,2

C(c′1,2, 0) = C(c′1,2, 1) = C(c′1,2, 3) = (1, 0, 0, 0, 0)

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 43

C(c′1,2, 2) = C(c′1,2, 4) = (0, 1, 0, 0, 0)

L(c′1,2, 0) = L(c′1,2, 1) = L(c′1,2, 3) = (4, 0, 0, 0, 0)

L(c′1,2, 2) = L(c′1,2, 4) = (3, 1, 0, 0, 0)

≈b1,1,c1,2≡
{
{0, 1, 3} , {2, 4}

}
The objects 0, 1, 3 have been determined to be structurally different from the objects
2, 4.

B1 =
{
{0, 1, 3} , {2, 4}

}
Next iteration.

b2,1 := {0, 1, 3}

Note:
fcolor ~∩ b2,1 =

{
{0, 3} , {2} , {1, 4}

}
~∩ b2,1 =

{
{0, 3} , {1}

}
fborder ~∩ b2,1 =

{
{0, 2} , {1, 3} , {4}

}
~∩ b2,1 =

{
{0} , {1, 3}

}
fshape ~∩ b2,1 =

{
{0} , {1} , {2, 4} , {3}

}
~∩ b2,1 =

{
{0} , {1} , {3}

}
∼b2,1= ∼b1,1
b2,2 := {2, 4}

Note:
fcolor ~∩ b2,2 =

{
{0, 3} , {2} , {1, 4}

}
~∩ b2,2 =

{
{2} , {4}

}
fborder ~∩ b2,2 =

{
{0, 2} , {1, 3} , {4}

}
~∩ b2,2 =

{
{2} , {4}

}
fshape ~∩ b2,2 =

{
{0} , {1} , {2, 4} , {3}

}
~∩ b2,2 =

{
{2, 4}

}
∼b2,1= ∼b1,1
F2 = F1

No new information about the structural differences of features could be derived.

c2,1 := c1,1

c′2,1 := c2,1 ~∩ b2,1 =
{{
{0, 3} , {1}

}
,
{
{0} , {1, 3}

}}
C(c′2,1, 0) = C(c′2,1, 1) = (1, 1, 0)

C(c′2,1, 3) = (0, 2, 0)

L(c′2,1, 0) = L(c′2,1, 1) = (1, 1, 0)

L(c′2,1, 3) = (0, 2, 0)

≈b2,1,c2,1≡
{
{0, 1} , {3} , {2, 4}

}
At this point, an optimized implementation of the algorithm might already notice that
the solution has been found. But let’s continue, for completeness of presentation:

c′2,2 := c2,1 ~∩ b2,2 =
{{
{2} , {4}

}}
Recreational Mathematics Magazine, pp. 27–51

DOI 10.2478/rmm-2020-0003

44 Next Level Odd-One-Out Puzzles

C(c′2,2, 2) = C(c′2,2, 4) = (1, 0)

L(c′2,2, 2) = L(c′2,2, 4) = (1, 0)

≈b2,2,c2,1≡
{
{0, 1, 3} , {2, 4}

}

c2,2 := c1,2

c′2,3 := c2,2 ~∩ b2,1 =
{{
{0} , {1} , {3}

}}
C(c′2,3, 0) = C(c′2,3, 1) = C(c′2,3, 3) = (1, 0, 0)

L(c′2,3, 0) = L(c′2,3, 1) = L(c′2,3, 3) = (1, 0)

≈b2,1,c2,2≡
{
{0, 1, 3} , {2, 4}

}

c′2,4 := c2,2 ~∩ b2,2 =
{{
{2, 4}

}}
C(c′2,4, 2) = C(c′2,4, 4) = (0, 1)

L(c′2,4, 2) = L(c′2,4, 4) = (0, 1)

≈b2,2,c2,2≡
{
{0, 1, 3} , {2, 4}

}
B2 =

{
{0, 1} , {3} , {2, 4}

}
The algorithm terminates and has found the solution 3, because 3 is in a block all for
itself.

5.5 Invariant: Characteristic Polynomial

This subsection is again quite technical and requires advanced knowledge of linear
algebra and some graph theory and number theory. It is not relevant to the rest of the
paper and can safely be skipped.

The invariants discussed so far are all based on local properties of an object or
feature: they do not look further than the immediate surroundings in the network of
relationships that these entities have among each other. A global approach should yield
stronger invariants.

Here is one idea to construct such an invariant, applicable to both objects o and
features p: use the characteristic polynomial of a multigraph whose vertices are the
feature expressions (f ∈ O, x ∈ f) and which has an edge between two feature expressions
(f, x) and (g, y) whenever f = g ∧ x 6= y and also for each z ∈ (x ∩ y) whenever f 6= g
(note that the latter is meant to result in |x ∩ y|-fold edges). Additionally, a feature

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 45

expression (f, x) gets a self-loop iff f = p (in case the invariant is computed for a feature
p), or iff o ∈ x (in case the invariant is computed for an object o). Note that treating
an object or feature different from the others (via the self-loops) does not violate the
requirement that symmetry not be broken, provided we do it for all separately in the
same way for all objects or features, and combine the results in a symmetric manner.
These three edge types correspond to three relevant relations that feature expressions can
have: The binary relations “expressions of the same feature” and “expressed on the same
object”, and the unary relation “is an expression of the feature that the characteristic
polynomial is computed for” resp. “is expressed on the object that the characteristic
polynomial is computed for”. To obtain a stronger invariant, the three edge types are
represented by different values in the adjacency matrix of the graph.

The adjacency matrix for a graph that treats one object o differently has rows and
columns indexed by feature expressions (f ∈ O, x ∈ f) and its entries are polynomials
in a, b, c:

M
(o)
(f,x)(g,y) =

a f = g ∧ x = y ∧ o ∈ x
b f = g ∧ x 6= y

|x ∩ y| · c f 6= g

0 otherwise

The adjacency matrix M (p) for a graph that treats one feature p differently, on the
other hand, has entries:

M
(p)
(f,x)(g,y) =

a f = g ∧ x = y ∧ f = p

b f = g ∧ x 6= y

|x ∩ y| · c f 6= g

0 otherwise

Thus, the characteristic polynomial det
(
M (·) − λ · 1

)
of an object or feature is a

polynomial over the integers in the four variables a, b, c and λ. It may be used in an
attempt to tell the objects apart directly or in the context of the algorithm from the
previous section as an additional invariant to tell apart objects (along with or instead
of the invariants C and L) or features (along with or instead of the represented integer
partition).

The full characteristic polynomial is costly to compute and usually not necessary to
find out special objects or features. The following simplifications can be made to get an
invariant that is still useful:

� Substitute constants for a, b, c to get an univariate polynomial.

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

46 Next Level Odd-One-Out Puzzles

� Compute in a finite field Fq for some prime q.

� Compute only the residue of the polynomials modulo some irreducible polynomial.

In the following example, the first two simplifications have been applied, with

a = 11, b = 13, c = 17, and q = 231 − 1

to compute the characteristic polynomials for the ooop shown in Figure 12 on page 35
and presented in the last row of Table 2 on page 50. This ooop is the only known ooop11

that is class constant, link constant and partition constant, and therefore could not be
solved by the incomplete algorithm from the previous subsection.

For one object, the characteristic polynomial obtained this way is

1000686794+778979638λ+1208471834λ2+214842245λ3+407159371λ4+2061933376λ5+

+220672646λ6 + 1901760362λ7 + 2080891101λ8 + 1546271272λ9 + 1253466070λ10+

+1331302039λ11 + 1189184501λ12 + 391674026λ13 + 1229795532λ14 + 176746726λ15+

+811071339λ16 + 1665817037λ17 + 412811464λ18 + 1403554725λ19 + 978000731λ20+

+1184024975λ21 + 1238899225λ22 + 1699918815λ23 + 1895673066λ24 + 772980284λ25+

+188615753λ26 + 784633410λ27 + 1856783405λ28 + 1954202388λ29 + 1052075028λ30+

+2002069589λ31+1892952859λ32+580162601λ33+1902443869λ34+2147483548λ35+1λ36

For two of the objects, the characteristic polynomial is

199804076+946132397λ+2019487070λ2 +1155996283λ3 +117794738λ4 +693807738λ5+

+1885542751λ6 + 756373839λ7 + 1701861809λ8 + 795190249λ9 + 154076335λ10+

+1498806526λ11 + 1565519423λ12 + 1327407924λ13 + 343566432λ14 + 1889794430λ15+

+617814599λ16 + 1797185656λ17 + 833959024λ18 + 658492377λ19 + 1856809957λ20+

+639642216λ21 + 133381603λ22 + 1564465521λ23 + 587228759λ24 + 1731230403λ25+

+2126664317λ26 + 1183731482λ27 + 1691807419λ28 + 984612598λ29 + 642095191λ30+

+2002069589λ31+1892952859λ32+580162601λ33+1902443869λ34+2147483548λ35+1λ36

For the remaining three objects, the characteristic polynomial is

1781456468+1259785295λ+971138483λ2+1183570439λ3+920726353λ4+2141349017λ5+

11Apart from the trivial
{{

{0}
}}
Recreational Mathematics Magazine, pp. 27–51

DOI 10.2478/rmm-2020-0003

Benjamin Berger 47

+229538027λ6 + 1501555664λ7 + 1765004535λ8 + 394725299λ9 + 1200544688λ10+

+1557373746λ11 + 2076428178λ12 + 681627508λ13 + 1535636483λ14 + 1508409635λ15+

+869115566λ16 + 1357296231λ17 + 771828013λ18 + 894415995λ19 + 1049757853λ20+

+888659133λ21 + 562287643λ22 + 448010323λ23 + 829518313λ24 + 128655495λ25+

+460784954λ26 + 590599328λ27 + 2001018801λ28 + 15022808λ29 + 232115354λ30+

+2002069589λ31+1892952859λ32+580162601λ33+1902443869λ34+2147483548λ35+1λ36

So we see that in this case, using the simplified characteristic polynomial directly
as an invariant for objects was sufficient for finding the odd one out. Actually, the
constant terms of the polynomials would already have been enough, and these are just
the determinants of the matrices, so in this case there was not even a need to handle
any polynomials. This demonstrates that the determinants of the adjacency matrices are
already on their own useful invariants that detect differences not detected by the class
and link histograms.

For completeness, here are the characteristic polynomials for the features:
Three features have characteristic polynomial

1103825254+271709124λ+940632656λ2 +1321200813λ3 +275847580λ4 +639479212λ5+

+2006258607λ6 + 435937673λ7 + 250669347λ8 + 609865962λ9 + 463063716λ10+

+1149682437λ11 + 1546682903λ12 + 98121445λ13 + 78408214λ14 + 1361178359λ15+

+376397978λ16 + 1000588474λ17 + 1845784957λ18 + 1112872939λ19 + 1267952900λ20+

+1078281656λ21 + 1313932574λ22 + 970420845λ23 + 605822464λ24 + 182143317λ25+

+683412853λ26 + 1840622570λ27 + 658162437λ28 + 138670906λ29 + 373019954λ30+

+1899964665λ31+1605503986λ32+873211990λ33+1902440239λ34+2147483603λ35+1λ36

The remaining six have characteristic polynomial

1470001302+89131162λ+839884428λ2+1349959666λ3+2064892978λ4+1025553272λ5+

+48155734λ6 + 1118871747λ7 + 105292165λ8 + 657832426λ9 + 548252311λ10+

+1172672363λ11 + 911929140λ12 + 1336291527λ13 + 1281178238λ14 + 1711599975λ15+

+1148307748λ16 + 985000829λ17 + 942289526λ18 + 95601140λ19 + 1668443904λ20+

+464649528λ21 + 1939404040λ22 + 1421992093λ23 + 1584353662λ24 + 588942694λ25+

+1088038517λ26 + 1034399759λ27 + 1350393884λ28 + 1667618633λ29 + 373019954λ30+

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

48 Next Level Odd-One-Out Puzzles

+1899964665λ31+1605503986λ32+873211990λ33+1902440239λ34+2147483603λ35+1λ36

Here, too, the constant terms are already sufficient to note a difference. This suggests
a different way to use the characteristic polynomial: instead of actually computing the
symbolic expression for the polynomial, which is quite a hassle as it involves the deter-
minant of a polynomial-valued matrix, we simply evaluate the polynomial at different
values of λ, one after the other. This requires just an ordinary determinant computation
with simple values for each evaluation. If we are lucky, the first evaluation already gives
us the solution or at least new information. Else, we evaluate at a different value of λ, for

up to m :=
∑
f∈O
|f | different values of λ. Because m is the degree of the polynomial (which

is monic), this gives us all the information and discriminative power of the polynomial,
but incrementally. After that, more evaluations do not give us new information, as the
polynomial can already be reconstructed via interpolation from the first m evaluations.

I suspect that the graph contains some redundancy12 and the degree of the character-
istic polynomial may be made lower without losing discriminative power. For example,
by omitting from the graph the nodes for feature expressions that occur on only one
object, i.e. nodes (f, x) with |x| = 1, no information might be lost. It might be possi-
ble to infer their existence and the edges in which they participate from the remaining
nodes and their relations to each other, because for each feature f , being a partition of n

elements, it must hold that
∑
x∈f
|x| = n, and if we know that any missing nodes stand for

unique feature expressions, we can maybe reconstruct the graph with these nodes from
the one without them.

6 A Table of Ooops

Table 2 on the next page lists all class constant13, link constant14 ooops with n objects
with at most n + 3 features for n 6 5, found with brute force search by a computer. It
turns out that there are none with n < 5. Features that have exactly 1 or n equivalence
classes of expressions have been excluded from consideration, as they do not contain any
information that could help with solving the puzzle. You can of course still use them in
a graphical version of the puzzle to sow confusion.

Because the the ooops in the table are class constant and link constant, the class
histograms15 and link histograms16 for all objects in a table row are the same. The
two histograms are given in a separate column each. Since all numbers occurring in the

12Compare the higher order terms of the polynomials and observe that there is not much variation to
see what raised my suspicions.

13See subsection 5.1 on page 38
14See subsection 5.2 on page 39
15See subsection 5.1 on page 38
16See subsection 5.2 on page 39

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 49

histograms have only one digit, the histograms (columns L and C) are simply given as
a string of digits with trailing zeros removed to save space.

Of course, only one of each isomorphism class of ooops is listed. Two ooops O and
O′ over Σ are isomorphic iff there is a permutation π : Σ→ Σ with π(O) = O′.

Some of the table rows have an associated graphical depiction in this paper. A cor-
respondence of the numbers and partitions in the table to the objects and features in
the images is usually not given as it would not be unique anyway due to the existence
of nontrivial automorphisms.

Most of the automorphism groups are isomorphic to C2, except for one occurrence of
D4 (depicted in Figure 8 on page 34), one occurrence of C4 (Figure 10 on page 35) and one
occurrence of S4 (Figure 9 on page 34), which is the maximum possible automorphism
group for an ooop with 5 objects, as there are no further ways to permute the 4 non-
special elements while leaving the special element fixed.

Additionally, two ooops with n = 6 are listed. Both of them have automorphism
group C2 × S3. In one of them, all features correspond to the same integer partition
1 + 1 + 2 + 2. This makes it partition constant17 in addition to being class constant and
link constant. Therefore, the solution techniques presented in section 5 on page 38 are
insufficient to solve it, except for the characteristic polynomial. It is depicted in Figure
12 on page 35.

Table 2: List of all known class-constant and link-constant ooops

Presentation (object labels chosen randomly) Symmetry C L Figure
(4|02|13)(1|4|2|03)(1|0|24|3)(14|0|2|3) C2 22 22 4

(2|03|14)(02|13|4)(3|0|1|24) C2 12 22 11

(1|24|03)(0|24|13)(14|02|3)(1|4|2|03)(1|4|02|3)(4|0|2|13)(14|0|2|3) C2 24 202

(01|2|34)(01|24|3)(0|12|34)(1|24|03)(1|4|2|03)(4|0|12|3) C2 24 202

(1|02|34)(1|24|03)(14|0|2|3)(01|4|2|3)(1|04|2|3)(4|0|2|13)(4|0|12|3)(1|4|0|23) D4 44 04 8

(14|0|23)(01|24|3)(1|04|2|3)(1|0|2|34)(1|4|2|03)(4|0|2|13)(1|4|02|3)(4|0|12|3) C2 44 04

(14|0|23)(0|12|34)(0|24|13)(01|4|2|3)(1|04|2|3)(1|4|02|3)(1|4|2|03) S4 34 04 9

(14|2|03)(0|12|34)(01|24|3)(1|4|02|3)(1|4|0|23)(4|0|2|13)(1|04|2|3) C2 34 04

(14|02|3)(1|04|23)(4|12|03)(01|24|3)(4|0|2|13)(1|0|2|34) C2 24 04

(0|24|13)(14|02|3)(1|04|23)(4|12|03)(1|0|2|34)(01|4|2|3) C4 24 04 10

(1|24|03)(4|02|13)(0|24|13)(01|2|34)(01|4|23)(04|12|3)(14|0|23)(1|04|2|3) C2 26 022

(1|24|03)(14|0|23)(14|2|03)(04|12|3)(0|12|34)(1|04|23)(4|02|13)(01|4|2|3) C2 26 022

(04|12|3)(01|2|34)(1|02|34)(1|24|03)(14|02|3)(14|0|23)(01|4|23)(4|0|2|13) C2 26 022

(14|0|23)(4|12|03)(1|24|03)(1|02|34)(14|02|3)(0|24|13)(04|2|13)(01|4|2|3) C2 26 022

(4|012|3)(0|2|134)(1|2|034)(1|024|3)(4|0|123)(4|02|13)(0|12|34)(1|04|2|3) C2 323 0202

(1|4|023)(0|2|134)(1|2|034)(4|0|12|3)(14|0|2|3)(1|4|02|3)(012|34)(124|03) C2 323 0202

(0|2|134)(4|012|3)(014|2|3)(1|02|34)(1|4|0|23)(01|234)(14|023) C2 223 0202

(4|012|3)(1|0|234)(1|2|034)(014|2|3)(01|2|34)(1|4|0|23)(4|0|12|3)(04|123) C2 323 0202

(4|2|013)(1|0|234)(0|124|3)(4|012|3)(01|2|34)(1|24|03)(12|034) C2 223 0202

(0|124|3)(1|2|034)(1|4|2|03)(4|0|12|3)(014|23)(04|123)(14|023) C2 223 0202

17See subsection 5.3 on page 40

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

50 Next Level Odd-One-Out Puzzles

Presentation Symmetry C L Figure

(02|134)(013|2|4)(024|1|3)(023|14)(03|124)(0|13|24) C2 123 0202 6

(1|024|3)(1|02|34)(4|2|013)(014|2|3)(4|12|03)(4|0|123)(1|0|234)(14|0|2|3) C2 323 004

(1|2|034)(1|4|023)(0|124|3)(1|4|2|03)(14|0|2|3)(4|0|12|3)(04|123)(014|23) C2 323 0202

(4|0|123)(1|04|2|3)(124|03)(24|013)(024|13)(12|034) C2 123 0202

(4|12|03)(1|24|03)(0|124|3)(01|2|34)(01|234)(012|34)(12|034)(24|013) C2 143 02002

(4|2|013)(0|2|134)(1|4|02|3)(1|0|24|3)(124|03)(14|023)(024|13) C2 233 0202

(1|24|03)(04|2|13)(4|0|12|3)(024|13)(24|013)(12|034)(124|03)(04|123) C2 143 02002

(14|0|23)(4|012|3)(1|24|03)(01|2|34)(04|123)(024|13)(02|134)(12|034) C2 143 0022

(01|2|34)(0|24|13)(1|4|02|3)(12|034)(04|123)(14|023)(014|23)(124|03) C2 143 0022

(04|12|3)(01|4|23)(1|0|2|34)(0|1234)(2|0134)(4|0123)(0124|3)(1|0234) C2 2204 00022

(01|5|4|23)(4|05|2|13)(1|4|02|35)(14|5|0|2|3)(1|45|0|2|3)(1|5|0|24|3) C2 × S3 33 23 7

(1|4|05|23)(4|05|12|3)(4|0|12|35)
(14|5|02|3)(15|04|2|3)(14|5|0|23)

(1|5|02|34)(15|0|2|34)(1|04|2|35)

 C2 × S3 36 203 12

7 Philosophical Remarks

The main argument used in this paper is what could be called siso: symmetry in,
symmetry out. This principle appears to be universal in mathematics: whenever that
which enters a formal process (a proof, an algorithm, whatever) obeys a certain symme-
try, what comes out obeys at least the same symmetry. For example, because i2 = −1,
but also (−i)2 = −1, there is an automorphism of the complex plane called complex
conjugation and all statements that do not include functions or constants that explic-
itly break this symmetry (such as the function that extracts the imaginary part, or the
function that determines the argument of a complex number, or a non-real constant) are
preserved if all occurrences of i are exchanged for (−i).

As an application of the “siso principle” in this situation, consider the following
way to prove that ii must be a real number18 without actually computing it: assume
ii = a+ bi, with a, b ∈ R. Then (−i)−i = a− bi because according to the siso principle,
we may replace all i with −i. Using that −i = i−1, we find that ii and (−i)−i are equal:
(−i)−i = (i−1)−i = i−(−i) = ii, and hence a+ bi = a− bi, thus b = 0 and ii = a ∈ R.

Although this principle is a powerful tool of mathematical reasoning, I also view it
as one of the fundamental limitations of the ability of mathematics to model reality.
Failure to consider that reality is not necessarily bound by the same restrictions as its
mathematical models has led to such bizarre ideas as Buridan’s ass or the many-worlds
interpretation of quantum mechanics19.

18Let’s put aside the issue of complex exponentiation being multi-branched. Or let’s view this as a way
to show that all the branches yield real-valued answers.

19Although the latter is apparently also based on a failure to understand the implications of the

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

Benjamin Berger 51

8 Open Questions

Solving ooops seems conceptually related to strategies for cheating at multiple-choice
questions that rely on the habit of test designers to provide possible responses that are
wrong but similar to the correct response. The exact relationship between these two
kinds of problem solving are beyond the scope of this paper, but it might be interesting
to think deeper about this.

There ought to be a better algorithm for generating ooops than brute force checking
the many subsets of the set of pre-ooops over Σ. For example, given a link constant20

ooop O, for all m the graph that has an edge between each two objects of O that agree
on m features is regular, and the edge sets of these graphs are pairwise disjoint, which
restricts the possibilities.

The category theoretical properties of ooops may be worth studying. A function
m : Σ→ Σ′ is a morphism from an ooop O over Σ to an ooop O′ over Σ′ iff m(O) = O′.
This naturally generalizes the notions of automorphisms and isomorphisms of ooops
defined earlier. It would be interesting to see if the category of ooops has products,
coproducts, or other limits which may be used to construct complex ooops from simpler
ones. It is perhaps also helpful to not only consider ooops, but all pre-ooops, and then
find out what characterizes the subcategory of ooops.

References

[1] Martin Gardner and Tom Ransom. “Mathematical Games”. In: Scientific
American (1975).

[2] Martin Gardner and Dana Richards. The colossal book of short puzzles and
problems. Norton, 2006.

[3] Tanya Khovanova. “Odd One Out”. In: arXiv preprint arXiv:1005.2700 (2010).

superposition principle for linear equations, namely that the multiverse would then be equivalent to a
collection of non-interacting systems (the eigenmodes of the Hamiltonian), in each of which nothing ever
happens.

20See subsection 5.2 on page 39

Recreational Mathematics Magazine, pp. 27–51
DOI 10.2478/rmm-2020-0003

	Introduction
	Problem Description
	Examples

	Mathematical Formulation
	Encoding as a Set of Partitions
	Ooop Solutions and Automorphisms

	About the Ooops in this Paper
	Useful Definitions for Solving Ooops
	Invariant: Class Histogram
	Invariant: Link Histogram
	Invariant: Integer Partitions
	An Incomplete Solution Algorithm
	Invariant: Characteristic Polynomial

	A Table of Ooops
	Philosophical Remarks
	Open Questions

