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Introduction – Jenga and its maximum genus

Jenga is a game of physical skill marketed by Hasbro [1] in Europe and Takara
Tomy [3] in Japan. The game starts from building blocks packed in three
columns and 18 levels. Here we quote its rules from Wikipedia [4].

Jenga is played with 54 wooden blocks. Each block is three times
longer than its width. · · · Moving in Jenga consists of taking one
and only one block from any level (except the one below the incom-
plete top level) of the tower, and placing it on the topmost level to
complete it. · · · The game ends when the tower falls, or if any piece
falls from the tower other than the piece being knocked out to move
to the top. The winner is the last person to successfully remove and
place a block.

In this paper, we treat the boundary of the union of blocks in the game as a
surface with a polyhedral structure, which is called a polyhedral closed surface,
and consider its genus. In the initial configuration of the game the genus of the
surface is 0. As the game progresses, the configuration of the surface changes
and its genus may increase. Based on this observation, one may ask the following
question:

By how much does the genus in the game increase?
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50 maximum genus of the jenga like configurations

Namely, when the Jenga game with k levels is started for a given
natural number k > 2, how can the maximum genus of the surface be
described in terms of k? Of course we assume that the players do not make
any mistakes.

We generalize the game and consider the same question for the generalized
game. Let n and k be two natural numbers. We consider a game that starts
from building blocks packed in n columns and k levels. We call the game an
(n, k)-Jenga game or an (n, k)-game for short. Basically, we adopt the rule for
the original game (three columns). The significant point to note in the rules
quoted above is

“except the one below the incomplete top level ”.

We call a configuration of blocks which can appear in the (n, k)-game under
the above rule the Jenga like configuration. In this paper, we determine the
Jenga like configuration in the (n, k)-game that gives the maximum genus and
compute the maximum genus for given n and k.

Main Theorem. (Theorems 3 and 5, Propositions 7 and 8) For given
n and k (> 2) the maximum genus is realized by the (n, k)-configuration and its
genus is given by the formula

g(n, k) =


n(n− 2)(k − 2)

2
(n is even)

n(n− 1)(k − 2)

2
(n is odd).

The definition of the (n, k)-configuration is given in Section 4. For even n
the (n, k)-configuration has k

2 levels. For odd n the number of levels of the
(n, k)-configuration is determined by the quotient of nk divided by n + n−1

2 .
See the definition of the (n, k)-configuration for details. We derive the formula
using the Gauss-Bonnet formula for a polyhedral closed surface or Descartes’
theorem. To show the maximality of g(n, k) among the (n, k)-game, we consider
an algorithm to deform the (n, k)-configuration into the given configuration
without increasing the genus.

Preliminaries

Let X be a polyhedron in R
3. Namely X is a subset in R

3 obtained by
gluing finitely many convex polygons along their vertices or along their edges.
Let F (X), E(X) and V (X) be the sets of all faces, edges and vertices in X,
respectively. In this paper, we use a surface with a polyhedral structure defined
as follows:
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Definition (Polyhedral closed surface). Let Q be a polyhedron in R
3. If Q

satisfies the following two conditions, then Q is called a polyhedral closed surface.

� Each edge of Q is an edge of exactly two faces of Q.

� For each vertex v ∈ V (Q), the link lk(v) of v is connected. Here the link
lk(v) is defined by

lk(v) := {e ∈ E(Q) |e ∈ E(f) for some f ∈ F (Q), v ∈ V (f) and v /∈ V (e)}.

Definition (Angular defects). If Q is a polyhedral closed surface, the genus
of Q is denoted by g(Q). For each vertex v ∈ V (Q), κ(v) denotes the angular
defect of v, that is,

κ(v) := 2π −
∑

f∈F (Q),v∈V (f)

[angle of f at v].

The following is the main tool for us.

Theorem 1 (Gauss-Bonnet formula for closed polyhedral surface, Descartes’
theorem). For a polyhedral closed surface, Q, the following equality holds:∑

v∈V (Q)

κ(v) = 2π(#V (Q)−#E(Q) + #F (Q)) = 4π(1− g(Q)).

See Chapter 1 in [2] for these topics for example.

Genus and angular defects in the Jenga game

We first describe how to play the (n, k)-game. The game is played with n × k
wooden blocks, where the length of each block is n times its width. The initial
configuration has k-levels and each level has n blocks without gaps. The game
is played by taking one and only one block from any level (except the one below
the incomplete topmost level) of the tower, and placing it on the topmost level.
Using the rules quoted above, with emphasis on “except the one below the
incomplete top level ”, we have the following two fundamental observations.

� The second level from the top always has n blocks.

� The sum of the numbers of blocks on the third level from the top and on
the top level is greater than or equal to n.

These facts are important for the (n, k)-configuration.

In the (n, k)-game, each configuration has a structure of a polyhedral closed
surface, and the genus of the configuration can be defined canonically. For
example, the configuration in Figure 1 in the (5, 5)-game has genus 3.

The genus of a given configuration of the (n, k)-game can be computed by using
Theorem 1. Essentially, following three types of vertices, Type I, Type II and
Type III are needed.
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52 maximum genus of the jenga like configurations

Figure 1: A configuration with genus 3 in the (5, 5)-game.

A Type I vertex is a type of vertex that appears in the initial configuration of
the (3, 4)-game (see Figure 2 (1)).

A Type II vertex is a type of vertex that newly appears when a block is
removed from the second level of the initial configuration of the (3, 4)-game
(see Figure 2 (2)).

A Type III vertex is a type of vertex that newly appears when a block is
removed from the third level of the configuration described in the Type II
vertex (see Figure 2 (3)).

Figure 2: Vertices of Type I, Type II and Type III.

These three types of vertices can be defined in a following rigorous way.

Definition. A Type I vertex is a vertex in a polyhedron in R
3 whose

neighborhood is isometric to a neighborhood of the origin of the region

{(x, y, z) ∈ R3 | x > 0 and y > 0 and z > 0}.
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A Type II vertex is a vertex in a polyhedron in R
3 whose neighborhood is

isometric to a neighborhood of the origin of the region

{(x, y, z) ∈ R3 | [x 6 0 or z 6 0] and y > 0}.

A Type III vertex is a vertex in a polyhedron in R
3 whose neighborhood is

isometric to a neighborhood of the origin of the region

{(x, y, z) ∈ R3 | [x 6 0 and z > 0] or [y > 0 and z 6 0]}.

It can be seen that the Type I vertex, vI , has an angular defect

κ(vI) = 2π − π

2
× 3 =

π

2
. (1)

Similarly, the angular defects of the Type II and Type III vertices, vII and vIII ,
respectively, are given by

κ(vII) = 2π −
(
π +

π

2
× 3
)

= −π
2

(2)

and

κ(vIII) = 2π −
(
π × 2 +

π

2
× 2
)

= −π. (3)

Definition of the (n,k)–configuration

Hereafter, the box description will be used to represent Jenga like configurations,
as illustrated in Figure 3. In this illustration, a gray or black square represents
a block. Specifically, if a given configuration has x levels, then in the box
description, n × x-cells are used, which are gray or black if the corresponding
position contains a block. Note that each alternate levels have their perspective
rotated by 90 degrees.

Figure 3: Box description for a given configuration in the (n, k)-game.
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54 maximum genus of the jenga like configurations

Definition ((n, k)-configuration). Let n be an integer grater than 1 and k an
integer grater than 2. We define (n, k)-configuration as follows.

(1) Suppose that n is an odd integer. Then the (n, k)-configuration for odd
case is the Jenga like configuration defined as follows (See Figure 4 and Figure 5).

� Let x and l be non-negative integers uniquely determined by the conditions

nk = n+
n− 1

2
+
n+ 1

2
(x− 3) + l and 1 6 l 6

n− 1

2
.

� It has x levels.

� The top most level has n−1
2 blocks without gaps.

� The second level from the top has n blocks.

� The bottom most level has l blocks with at least one gap.

� The rest of middle x− 3 levels has n+1
2 blocks with one gap.

(2) Suppose that n is an even integer. Then the (n, k)-configuration for even case
is the Jenga like configuration defined as follows (See Figure 6 and Figure 7).

� It has 2k − 1 levels.

� The top most level has n
2 blocks without gaps.

� The second top most level has n blocks.

� The rest of 2k − 3 levels has n
2 blocks with at least one gap.

The polyhedral closed surface corresponding to the (n, k)-configuration is
denoted by Q(n, k), and we also call Q(n, k) the (n, k)-configuration.

Figure 4: (n, k)-configuration for odd n.
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Figure 5: (5, 3)-configuration.

Figure 6: (n, k)-configuration for even n.

Figure 7: (6, 3)-configuration.

Remark. In the (n, k)-configuration for odd case we impose the following
condition for the configuration of the blocks in the bottom most level to count
the vet rices of Type I, II and III in Proposition 2.
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1. If l = 1, then we put the block at the middle box, the n+1
2 -th box from left

(and right) in the box description.

2. If l = 2, then we put two blocks at the box described in (1) and the right
most box.

3. If l > 3, then we put blocks at the blocks described in (2) and the boxes
from left with one gap.

Remark. The (n, k)-configuration is in fact a Jenga like configuration. Namely
when one starts the (n, k)-game one can reach to the (n, k)-configuration by
removing the blocks from the bottom most level in order. Moreover the
(n, k)-configuration is physically stable1 under the condition in Remark for the
bottom most level.

Let NI = NI(n, k) be the number of Type I vertices in the (n, k)-configuration.
Analogously, NII and NIII are the numbers of Type II and Type III
vertices, respectively, in the (n, k)-configuration. Let g(n, k) be the genus of the
(n, k)-configuration, Q(n, k). From Theorem 1 and computation of the angular
defects (1), (2) and (3), we have the following:

Lemma 1. The genus g(n, k) of the (n, k)-configuration Q(n, k) is given by

g(n, k) = −NI

8
+
NII

8
+
NIII

4
+ 1.

Remark. In the subsequent sections we compute NI , NII and NIII , however,
in the computation we ignore the vertices of the topmost level because they do
not contribute the genus g(n, k) of Q(n, k).

Computation of the genus – odd case

In this section, we compute NI , NII and NIII and derive the formula for g(n, k)
when n is odd under the condition in the previous remark.

Proposition 2. If n is odd and l > 2, then NI , NII and NIII are given by the
following formulae:

I. NI = 4 + 4l

II. NII = 4(x− 3)(n− 1) + 4(l − 1)

III. NIII = (x− 4)(n− 1)2 + 2(l − 1)(n− 1)

Proof. We count the vertices of Type I, II and III on each floor, where for each
non-negative integer i, the ith floor is the intersection of the ith level and the
(i + 1)th level. For convenience, we call the intersection of the first level and
the ground level the 0th floor.

I. The formula for NI is clear.

1Of course we assume that players are prudence enough and they do not make any mistake.
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II. Let NII,i be the number of Type II vertices on the ith floor. It can be
seen that (as seen in the cutaway of the ith floor in Figure 8)

NII,i =


0 (i = 0, x− 1)

2(n− 1) + 4(l − 1) (i = 1)

2(n− 1) (i = x− 2)

4(n− 1) (2 6 i 6 x− 3),

and hence, we have

NII =
∑
i

NII,i = 4(x− 3)(n− 1) + 4(l − 1).

Figure 8: Configuration of Type II vertices in the ith floor for i = 1, 2, . . . , x−3
(Yellow circle = Type II vertex).

III. Let NIII,i be the number of Type III vertices on the ith floor. It can
be seen that (as seen in the cutaway of the ith floor in Figure 9)

NIII,i =


0 (i = 0, x− 1, x− 2)

2(l − 1)(n− 1) (i = 1)

(n− 1)2 (2 6 i 6 x− 3),

and, hence, we have

NIII =
∑
i

NIII,i = (x− 4)(n− 1)2 + 2(l − 1)(n− 1).

Figure 9: Configuration of Type III vertices in the ith floor for i = 1, 2, . . . , x−3
(Yellow circle = Type III vertex).
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Remark. The formulae in Proposition 2 are not correct for l = 1. We use a
trick for l = 1 to resolve the case l > 2 in the proof of Theorem 3.

Theorem 3. When n is odd, g(n, k) is given by

g(n, k) =
n(n− 1)(k − 2)

2
.

Proof. We first prove this for the case l > 2 of the (n, k)-configuration with odd
k. By Lemma 1 and Proposition 2, we have

g(n, k) =
(n2 − 1)(x− 4) + 2l(n− 1)

4
. (4)

By counting the number of blocks, we have

nk =
n− 1

2
+ n+

(x− 3)(n+ 1)

2
+ l =

(n+ 1)x

2
+ l − 2. (5)

By substituting (5) into (4) we have g(n, k) =
n(n− 1)(k − 2)

2
.

Now we consider the case l = 1. In this argument, we deviate from rules of the
game for a while. We deform the configuration by moving a block within the
first level as shown in Figure 10. Note that this operation does not change the

Figure 10: A configuration with l = 1 with x levels and a configuration with
l = n+1

2 + 1 with x− 1 levels.

genera of two configurations in Figure 10. By substituting l → n+ 1

2
+ 1 and

x→ x−1 in Equation (4) the genus of the right configuration can be computed
as

1

4
(n2x− 4n2 − x+ 2n+ 2),

which is equal to Equation (4) with l = 1.

Computation of the genus – even case

In this section, we compute NI , NII and NIII , and derive the formula for
g(n, k) when n is even. The following can be proved in almost same way as
Proposition 2.
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Proposition 4. If n is even, then NI , NII and NIII are given by the following
formulae:

I. NI = 4 + 2n

II. NII = 8(n− 2)(4k − 7)

III. NIII = 2(n− 2)2(k − 2)

Theorem 5. When n is even, g(n, k) is given by

g(n, k) =
n(n− 2)(k − 2)

2
.

Proof. The formula can be obtained by Proposition 1 and Proposition 4.

The maximality of g(n,k)

In this section we show that the genus g(n, k) of the (n, k)-configuration is the
maximum genus among all genera appearing in the (n, k)-game. Specifically,
for the given configuration Q, we show that g(Q) 6 g(n, k). To show it, we
provide an algorithm for deforming the (n, k)-configuration Q(n, k) into Q
without increasing the genus. In each step of the algorithm we deviate from
the rules of the game. Namely we may treat a configuration which is not a
Jenga like configuration and use operations which are forbidden in our rules.

We first define the following three fundamental operations.

(S) Sliding a block within a level (see Figure 11).

(L) Removing a block and loading it onto the topmost level (see Figure 12).

(I) Removing a block and inserting it into any other level (see Figure 13).

Figure 11: The operation (S) performed on the black block.

For the given configuration Q, the number of levels in Q is denoted by s(Q).
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60 maximum genus of the jenga like configurations

Figure 12: The operation (L) performed on the black block.

Figure 13: The operation (I) performed on the black block.

Proof for even n

Let Q′(n, k) be the configuration obtained by removing the upper two levels and
the first level from Q(n, k). Similarly we consider the configuration Q′ removing
from Q. See Figure 14.

Figure 14: Q and Q′.

We first deform the configuration Q′(n, k) into the configuration Q′ by applying
(S), (L) and (I) a finite number of times by the following algorithm.
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(A1) For the sth level of Q′(n, k) with 1 6 s 6 s(Q′), whose number of blocks
is greater than or equal to that of the sth level of Q′, we apply sufficiently
many (L) and (S) so that the resulting configuration of the sth level is the
same as that of Q′. We apply these operations for all conceivable values
of s. Let Q′1(n, k) be the configuration obtained by the above operation
for Q′(n, k).

(A2) We apply the same operations for all conceivable sth level of Q′1(n, k) with
s(Q′(n, k)) + 1 6 s 6 s(Q′). Let Q′2(n, k) be the configuration obtained
by the above operation for Q′1(n, k).

(A3) For the sth level of Q′2(n, k) with 1 6 s 6 s(Q′), whose number of blocks
is less than that of sth level of Q′, we apply finitely many (I) and (S)
operations by using blocks between the (s(Q′) + 1)th level and the
s(Q′2(n, k))th level of Q′2(n, k), so that the resulting configuration of the
sth level is the same as that of Q′. We apply this operation for all
conceivable values of s. If the blocks in Q′2(n, k) become insufficient, then
we may use blocks in Q(n, k)rQ′(n, k). Let Q′3(n, k) be the configuration
obtained by the above operations for Q′2(n, k).

Example 6. Here we demonstrate the algorithm by using an example.
Consider the (6, 5)-game. Let Q be a configuration appearing in the game
with the associated configuration Q′, as shown in Figure 15.

Figure 15: Q, Q′ and Q′(6, 5).

We apply step (A1) of the algorithm to the first, third, fourth, fifth and sixth
levels in Q′(6, 5) to obtain Q′1(6, 5) (see Figure 16).
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62 maximum genus of the jenga like configurations

Figure 16: Q′(6, 5) and Q′1(6, 5).

Next, we apply step (A2) to the seventh level in Q′1(6, 5) to obtain Q′2(6, 5), as
shown in Figure 17.

Figure 17: Q′1(6, 5) and Q′2(6, 5).

Finally, we apply step (A3) of the algorithm to the second level in Q2(6, 5) to
obtain Q′3(6, 5) (see Figure 18).

Figure 18: Q′2(6, 5) and Q′3(6, 5).
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Let Q̂(n, k) be the configuration obtained by returning the upper two levels and
first level of Q(n, k) to Q′3(n, k). Note that Q̂(n, k) is in the same configuration
as Q up to the first and topmost levels.

Proposition 7. For even n and any Q we have g(Q) 6 g(n, k).

Proof. Because the number of blocks in each level of Q′(n, k) is n
2 and each

piece is arranged with a 1-by-1 gap, the genus does not increase with the
operations (A1), (A2), and (A3) of the algorithm for Q′(n, k). Moreover, the
increasing genus from Q′3(n, k) to Q̂(n, k) is not greater than the decreasing
genus from Q(n, k) to Q′(n, k), which implies that g(Q̂(n, k)) 6 g(Q(n, k)).
Note that Q̂(n, k) and Q are in the same configuration up to the first and
(s(Q̂(n, k))−1)th levels. Because the number of blocks in the first level is n

2 and

that in the (s(Q̂(n, k))− 1)th level is n, we have g(Q) 6 g(Q̂(n, k)) and, hence,
g(Q) 6 g(Q(n, k)) = g(n, k).

Proof for odd n

Now we assume that n is odd. We will use same notations as in Subsection 7.1.
Although we can apply the algorithm for odd n, the last argument in the proof
of Proposition 7 is not true in general. In fact, if l (the number of blocks in the
first level of Q̂(n, k)) is less than n+1

2 , then we have to estimate the genera of

Q̂(n, k) and Q more carefully. To do so, we introduce the following operations
for Q(n, k) (recall that we set x = s(Q(n, k)) for odd n):

1. Apply the operation (I) n−1
2 times to the (x−2)th level of Q(n, k) by using

all the blocks in the xth level. The resulting configuration is
denoted by Q(2)(n, k). Note that s(Q(2)(n, k)) = s(Q(n, k))−1, Q(2)(n, k)
has n blocks in the s(Q(2)(n, k)) and (s(Q(2)(n, k)) − 1)th level, and
g(Q(2)(n, k)) < g(n, k).

2. If the number of blocks in the first level of Q is greater than the number
of blocks in the first level of Q(2)(n, k) then, apply (I) to the first level
of Q(2)(n, k) by using the blocks in the top level so that the resulting
configuration Q(3)(n, k) has the same number of blocks as Q in the first
level.

Proposition 8. For odd n and any Q we have g(Q) 6 g(n, k).

Proof. If l is greater than or equal to the number of blocks in the first level
of Q, then we can apply the same argument in the proof of Proposition 7.
Otherwise, if l is less than the number of blocks in the first level of Q, then
we consider the configuration Q(3)(n, k) in the above operation. Note that
because the decreasing genus in the first step [Q(n, k) → Q(2)(n, k)] is greater
than its increasing genus in the second step [Q(2)(n, k) → Q(3)(n, k)], we have
g(Q(3)(n, k)) < g(Q(n, k)). By applying the algorithm, we can deform Q(3)(n, k)
to Q and show that g(Q) 6 g(Q(3)(n, k)). So, g(Q) < g(Q(n, k)) = g(n, k).
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