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ABSTRACT

Dinevich L., Leshem Y. 2007. Algorithmic system for identifying bird radio-echo and plotting

radar ornithological charts. Ring 29, 1-2: 3-40.

The territory of Israel is a route for major bird migration from Europe and certain areas in

Asia and Africa and back. During the period of intensive migration, the average density of

birds may reach over 500 birds per a square kilometre of the air. These figures, alongside

with the fact the air over the country is saturated with aircraft, makes it an urgent task to find

solutions for prevention of disasters caused by aircraft-bird collisions.

In the present paper, a new algorithm is proposed aimed at identifying bird radar echoes

against the background of other reflectors. The implementation of the algorithm has made it

possible to improve the computerised radar system for bird monitoring developed earlier in

Israel on the basis of MRL-5 meteorological radar station. The time needed for echo selec-

tion has been significantly reduced, while the trustworthiness of the ornithological data pro-

vided by the algorithm has increased. The new algorithm utilizes several echo properties that

have been added to the algorithm previously developed by the authors, the most important of

them being the pattern of echo movement. These properties in combination with a set of

techniques used for their identification enabled to isolate the echo from moving birds against

the background of other objects (ground clutter, clouds, atmospheric inhomogeneities, air-

craft, etc.) at the accuracy level sufficient for operational purposes. The information on echo

movement was used for plotting flight vectors (velocity and direction) of individual birds and

bird groups. On the basis of movement pattern, four types of movement were distinguished:

straightforward at non-uniform velocity; straightforward at uniform velocity; significant de-

viation from a straight line, non-uniform velocity and chaotic undirected shifts. The system

enables on-line plotting of operational ornithological charts every 15-30 min, including charts

that combine meteorological and bird monitoring data, to be provided to air traffic control

services. This makes the proposed radar ornithological system an efficient means of main-

taining air traffic safety in complicated meteorological and ornithological conditions.
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INTRODUCTION

Major routes of bird migration from Europe and, in part, from Asia and Africa

and back lie over the territory of Israel (Leshem and Yom-Tov 1998). According to

studies, during migration period here the average number of birds per square kilo-

meter of air can exceed 500 (Bruderer 1992). Alongside with the fact that the air-

space is crowded with various aircraft, massive intercontinental bird migration in

spring and autumn causes aviation accidents (Bahat and Ovadia 2005). Accidents

caused by aircraft collisions with birds are a known phenomenon in other world

regions (Thorpe 2005, Richardson and West 2005).

These facts have motivated researchers to look for ways of increasing air traffic

safety during mass bird migration. Eastwood (1967) noted in his review the poten-

tial of various pulse devices as means for bird detection. Numerous studies (Atlas

1964, Houghton 1964, Ganja et al. 1991, Bruderer and Liechti 1995, Bruderer 1997,

Gauthreaux et al. 1998, Zrnic and Ryzhkov 1998, Buurma 1999, Gauthreaux and

Belser 2003 and other) describe specific echo properties that enable to identify

echo from birds against the background of other reflecting objects, as well as assess

the efficiency of using different wave lengths and radar types for ornithological pur-

poses.

On the basis of these studies, the authors of the present paper developed a radar

ornithological station aimed at supplying air traffic control with complete data on bird

movement. The most important elements of the task were providing the data in real-

time mode, covering large areas of air flights and providing data on main flight charac-

teristics, such as height, velocity, direction and density, regardless the time of the day

and weather conditions. Providing these data to air traffic control, especially in case of

jet flights, may help reduce the number of aircraft-bird collisions. To solve this task,

a research was needed in order to find new characteristics of bird echo. In Israel, the

data, as in the previous study, was obtained by means of MRL-5 radar.

MRL-5, which is a high-grade meteorological radar designed mainly for cloud

monitoring, has a capability of full azimuth scanning (0-360°), the elevation range

of -2° to +90° in the upper hemisphere and a symmetric narrow beam operating si-

multaneously at two wave lengths (3 cm and 10 cm).

The main parameters of MRL-5 station are presented in Table 1.

Simultaneous operating of the two wave lengths provides the equality of radar

scopes and potentials of both transceivers. Thus, one can consider the ratio of radar

echo on the two wave lengths to be a function of the target properties entirely.

A detailed description of the station can be found in Abshayev et al. (1980).

The research previously conducted with the help of MRL-5 enabled the authors

to develop a method and an algorithm for selecting bird echoes (Dinevich et al. 2000,

Dinevich et al. 2004). Implementation of the algorithm revealed a number of draw-

backs, which alongside with the newly found properties made it possible to develop
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a new algorithm for bird echo detection. The advantages of the new algorithm are

higher reliability and computation rate.

Table 1

Principal performance characteristics of the MRL-5 Radar

Parameter Symbol
Measurement Channels

Unit 1 2

Wave length

Peak pulse

Pulse length

Repetition frequency

Diameter of antenna paraboloid

Beam width

l

Pt

t

F

cm

kW

ms

Hz

m

deg

3.14

250

1; 2

500; 250

1.4*; 4.5**

0.5; 1.5

10.15

800

1; 2

500; 250

4.5

1.5

Azimuth angle rate

Elevation angle rate

n1

n2

rotations/min

scans/min

0...6

0...6

0...6

0...6

Receiver sensitivity PO dB/W 130 140

* beamwidth of 0.5° is formed on the first channel while using antenna of 1.4 m in diameter

** beamwidth of 1.5° is formed on the first channel while using antenna of 4.5 m in diameter

The new algorithm and technique developed for its implementation in real-time

mode has been used for two years by Israeli air control services in order to provide

aviation safety in periods of spring and autumn bird migration.

FORMULATION OF THE TASK

The new algorithm is based on the previously developed radar system (Dinevich

et al. 2004), which makes it necessary to describe only the major features of the task.

1. Collecting data on all the radar echo within the upper hemisphere, within the

radius of 60 km (the centre being the radar location). Data collection was per-

formed in two automatic antenna modes:

a) Mode for collection and selection of echo for the purposes of bird detection.

Circular antenna scans are performed, with tilt angle ranging between 0° to n°,

where n can vary depending on the actual bird flight height. Usually, n is

6-12°. Antenna elevation is performed automatically at a preset interval,

which is usually equal to the double value of antenna beam. At every preset

tilt angle, several scans are run (normally 7-10 scans). Antenna rotation rate

is one revolution per 10 s.

b) Mode for collection and selection of echo for cloud and precipitation moni-

toring. Circular antenna scans are performed, with tilt angle ranging between

0° and 85°. Antenna elevation is performed automatically at a preset inter-

val. At each tilt angle, antenna runs only one scan. Antenna rotation rate is

one revolution per 10 s.

2. Digitally-processed signals are entered into computer and undergo filtration.

In order to amplify the �signal/noise� dependence, signals are summed up over
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several monitoring pulses (usually 16 pulses). Signal calibration is performed

systematically, using the calculated values of the radar constant and measure-

ments of the receiver noise. On the basis of the calibration curve obtained for

both receivers, useful signals undergo digital transformation and are sent for

further processing in case their power does not exceed the noise level by more

than 4-5 dB (i.e. remains within the range suitable for identifying useful signals).

Bird echo power (Z) is measured in dB or dBZ in relation to the noise level (the

station sensitivity). The power of echo from clouds and ground clutter is meas-

ured in lgZ.

3. In order to increase the efficiency of the station, data collection was performed

more frequently that it is actually needed for the given level of radar resolution.

Distance quantization (60 km) is 1024, azimuth quantization is 2048. The resolu-

tion parameters of the radar and the registration system are presented in Table 2.

In the coordinates of �distance-angle�, each bird is presented not as a dot but as

a �spot�.

Table 2

Resolutions parameters of the radar and the registration system

Radar Registration

Azimuth resolution

Distance resolution

0.5°; 1.5°

150 m

0.176°

60 m

4. Selection and analysis of echo from clouds and precipitation are performed on

the basis of the algorithm developed in Abshayev et al. (1984).

5. The algorithm for bird echo selection comprises three main stages:

a) Analysis of signals� power and their selection by the power level. On the

lower level, there are signals with the weakest power (in relation to the noise

level) that the computer was able to pick up. On the upper level, there are

signals whose power exceeds the values that can be reflected by bird echoes

(usually Z > 30 dBZ).

b) Contouring the area occupied by a signal from a flying bird (group of birds),

and isolation of each bird (group of birds) from other reflecting objects.

The idea underlying this stage is the following. A signal reflected from a fly-

ing bird changes its location on successive scans because the bird is moving.

Upon summation of the scans, coordinates of the signal centres form an al-

most straight line. The technique of contouring the summated echo, pro-

vided the echo is uninterrupted, enables to obtain an area elongated in the

direction of the movement. The area, formed as the result of accumulating

data from scan to scan, can be represented as an ellipse. The larger axis

of the ellipse can be approximated by a vector whose length characterizes the

velocity, while its orientation towards the cardinals characterizes the direc-

tion of a bird�s flight. Signals from static objects or those chaotically oriented

towards the direction of movement are unable to form the said ellipse and,

therefore, cannot be bird echoes.
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c) Calculating the velocity vector for each bird (bird group) and selecting by the

criterion of correlation coefficient.

6. The program ensures that, out of 7-9 echoes available, not fewer than 5 succes-

sive echoes are situated within an area approximating to a straight line.

Assessment of the data obtained by the described algorithm for bird echo selec-

tion revealed a problem that significantly affects the outcome of the procedure. Es-

sentially, the problem is as follows. Powers of radar echoes from smaller birds or

birds flying far from the radar drop beneath the noise level due to their fluctuation

in time over a series of scans (Houghton 1964, Eastwood 1967, Bruderer and Joss

1969).

This can be accounted for by several reasons, among them alterations in the

power of bird echo due to a change in the position of its wings. For instance, the

echo obtained within the first scan may be reflected from a bird with its wings

spread. The echo was above the noise level and registered in the echo field of the

given scan. During the second scan (10 s later), the echo was reflected from the

same bird while its wings were folded. The power of this echo may be beneath the

noise level and will not fall within the echo field of the second scan. The frequency

of such fluctuations may reach 2-50 Hz (Chernikov 1979).

Similar effects can occur when the position of a bird changes in relation to its

orientation towards the radar. It can be clearly seen in Table 3 presenting the mea-

sured values of the effective scattering area (ESA � s) in m2
for some bird species

with their wings folded (Edwards and Houghton 1959). In the study that measured s

of birds at various angles in relation to the pulse beam in an anechoic chamber

(Zavirucha et al. 1977), the echo maximum was found to be within the range of 65°

to 115° in relation to the beam direction, which corresponds to bird�s lateral sur-

face. Due to these reasons, the value may either increase by ten-fold of the mean

value or drop almost to zero.

Table 3

ESA (s) values for various bird species with wings folded, their bodies set

at different angles in relation to the radar

Bird species
Dimensions of bird s (m

2
) obtained at exposure at various angles

Side Head Tail

Rook 2.5 ´ 10
� 2 � �

Pigeon 1.0 ´ 10
� 2

1.1 ´ 10
�

�

1.0 ´ 10
� 4

Starling 2.5 ´ 10
� 3

1.8 ´ 10
� 4

1.3 ´ 10
� 4

House Sparrow 7.0 ´ 10
� 4

2.5 ´ 10
	 5

1.8 ´ 10

 5

These factors prevent the algorithm from meeting the basic requirement of ob-

taining not fewer that 5 echo points arranges in succession, out of the series of 7-9

scans. Due to the above mentioned reasons, the expected echo movement track is

interrupted and cannot be detected by the contouring technique stipulated for the
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method. Instead of an elongated ellipse, the summated echo forms several spots

that have complex shapes and are separated from one another. The procedure ex-

cludes such signals from the analysis.

The interruption of the expected lines occurs also in case when:

a) the velocity of a bird flight exceeds the velocity that enables echo �spots� to form

an uninterrupted sequence. At such velocities, the echo spots are distant from

one another, do not form a continuous area and thus cannot be contoured.

b) the radar observes birds that repeatedly alter the vertical profile of flight. For in-

stance, certain smaller birds make pauses between wing flappings. During

the pause, they fold their wings completely, retaining the high speed but losing

the height. With the next wing flapping, they gain the height back, etc. In case of

such flight pattern, the bird echo may periodically appear in successive scans on

the level of the radar beam width, or go beyond it.

All this means that the contouring technique, implemented in the above-

described algorithm for identifying bird echo, in some cases is not reliable enough

and has to be replaced by another procedure.

THE MAIN IDEA UNDERLYING THE NEW ALGORITHM

Table 4 shows characteristics typical of echo from migrating birds, accumulated

throughout long-term observations. In course of the present study, additional echo

characteristics have been found.

Figure 1 (A, B) shows bird echo fields obtained by way of photographing the

radar screen during horizontal scanning at a constant vertical angle, using the fol-

lowing two modes:

a) the camera shuttle was kept open during a single scan, duration � 10 s, vertical

angle � 3°

b) the camera shuttle was kept open during 18 scans, duration � 3 min, tilt angle � 3°.

Figure 2 shows the same echo field after the digital data processing and data

summation over 18 scans.

Comparative analysis of the three pictures shows that the main common charac-

teristic of bird echo is its specific movement, resulting in transformation of dotty

radio-echo (Fig. 1A) into streaks (Fig. 1B). The streaks are relatively straightfor-

ward (Fig. 1B, Fig. 2). The increments in the length of the streaks take place as

the result of the echoes� forward movement from scan to scan. At the same time,

the number of echo dots forming most streaks is smaller than the number of scans,

hence the straightforwardness of streaks is disrupted by  a change of direction.

To sum up, bird echoes do move, and this movement has several pronounced distin-

guishing characteristics.
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Table 4

Typical characteristics of echo from migrating birds

Typical characteristics of radar echo Studies*

� Relatively low power. Reflectance coefficient � Z < 30 dBZ.

� Forward and relatively linear movement.

� Maximum amplitude fluctuations within the low frequency range

(below 10 dB in 2-50 Hz frequency range).

� MRL-measured s
� �

are greater on the 10 cm wave length than

those on the 3 cm wave length.

� Polarization characteristics of the signal are typical of horizontally-

-oriented targets. Differential reflectance as the ratio of horizon-

tally-oriented signal (with pulse horizontally polarized) to vertical-

ly-oriented signal (with pulse vertically polarized) exceeds the unity

significantly (dP = P
 / P � >> 1). For small droplets within clouds

and precipitation this value is close to unity.

� In the wave length range of l from 3 cm to 100 cm, s of birds and

insects decrease noticeably as the radar wave length increases.

At the same time, there is a distinct maximum of the s (l) frequ-

ency dependency that occurs at l =10 cm wave length.

� High dispersion of experimental data at l = const. (from few tens

of cm
2

at λ = 3 cm to s = 10
�1

cm
2

at l = 100 cm).

� The mean s-values of different bird spiecis at the value of radar

wave length less than 10 cm from 15 cm
2

(Sparrow) up to 400 cm
2

(Albatross).

� s-values of birds are approximately by order of 2-3 greater than

s-values of insects.

Houghton 1964,

Chernikov and Shupjatsky 1967,

Eastwood 1967,

Hardy and Katz 1969,

Bruderer and Joss 1969,

Kropfli 1970,

Skolnik 1970,

Zavirucha et al. 1977,

Chernikov 1979,

Ganja et al. 1991,

Bruderer 1992,

Gauthreaux et al. 1998,

Miller et al. 1998,

Russell and Gauthreaux 1998,

Buurma 1999,

Venema and Russchenberg 2000,

Gudmundsson et al. 2002,

Komenda-Zehnder et al. 2002,

Larkin et al. 2002,

Gauthreaux and Belser 2003.

* table presents only a small part of the numerous studies of bird echo characteristics

** ESA (s) � scattering cross-section

We photographed the radar screen, the primary task being to find a simple way

of selecting signals from birds on the photos. For this purpose, the camera shuttle

was kept open during 1.5 min for each picture, with the help of a special valve and

a timer. During this time interval, the radar beam, at the antenna scan rate of 6

revolutions per minute, performed 9 revolutions. The dotted signals from birds

were converted into lines, forming a certain pattern of tracks, the length of such

tracks corresponding to birds� flight velocities. The direction of bird flights was eas-

ily determined by the shift of dotted echo on the screen. Aiming the radar beam

strictly to the north or to the south and registering the radio-echo shifts within

a preset time interval (1.5 min), we obtained both the velocity and the direction of

bird flights.

It was found that flight directions have a predominantly southern component in

autumn and a northern component in spring. In rare cases, usually in those of non-

migratory flights, these tracks have chaotic spatial orientation. Dotted echoes

or area echoes that do not change their spatial position with time are not related

to birds. Reflections from aircraft, due to their high velocities, are converted into

dotted lines on the photos and could be easily identified. Figures 1 (A, B) and 2

shows dotted echo from birds, as well as tracks of both distinctly directed and cha-

otic movements of birds� echoes.
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Fig. 1. Photos of circular scan screen. Echoes are received within the range of the radar sensitivity.

A. Single scan performed at night-time. Exposure duration � 10 s. Tilt angle � 3°. Dot echoes are

reflected from birds.

B. The same as in A, but over 18 scans together. Exposure duration � 3 min. Tilt angle � 3°. Dot

echo seen in A have been transformed into tracks (bird flight trajectories). Lines formed by dotted

echo represent bird flight tracks, other lines are echoes from hills.

A

B



The following data were obtained as a result of 200 experimental observations

over bird echo movements both on the radar screen and the oscillograph (made

both in the daytime and at night). In a series of 8 scans (80 s) at a fixed tilt angle

THE RING 29, 1-2 (2007) 11

Fig. 2. The echo field is identical to that in Fig. 1B, presenting the data after digital processing prior to

bird echo selection. Lines formed by successive dotted echo are bird flight trajectories. Areal

shapeless echo are reflections from hills. In the fragments isolated one can clearly see how bird

flight trajectories are formed by dotted echo, such as: A � a single bird or bird group; B � two birds

or two bird groups; C � several birds or bird groups; D � many birds or bird groups in zones of high

bird density.

A B C D



within a 60 km radius, the radar registered moving bird echoes at a preset coordi-

nate (a spot within the scan area with coordinates X, Y, Z and dimensions deter-

mined by the radar resolution parameters). In 68% of cases, moving echoes were

registered once, in 27% of cases twice, and in 5% of cases three times.

A specially designed program enabled to analyse the structure of over 150 ran-

domly selected echo streaks. All the streaks were obtained as a result of summing-

up data over 8 scans. The angle was chosen with the goal of excluding as much

ground clutter echo as possible. The program enables to trace the formation

of echo streaks from scan to scan. The results obtained show that in about 90%

of cases, the echoes occurred twice at the same point during the 80 s long series

of eight scans. This result can be accounted for by both the character of birds�

movements and the technical parameters of the radar system, with its short im-

pulses and the narrow symmetric beam (Table 2). In contrast, the echoes from

ground clutter, clouds and some atmospheric heterogeneities were usually regis-

tered as recurring.

The only exception is weak signals with pronounced fluctuation reflected from

porous clouds and precipitation. In case such �blinking� signals are relatively dense

within a limited area (of about 2-10 km
2

in square and up to 2 km in height), they

create an illusion of spatial movement. In some cases, such signals were registered

as recurring at the same point twice during the eight scans, which is similar to the

recurrence of bird echoes. However, subsequent echoes of these targets are not lo-

cated along a direct line, but are rather scatted chaotically, thus forming chaotically

directed vectors as opposed to those formed by echoes of migrating birds.

This characteristic is the basis for detecting the areas of these problematic echoes

and is hereafter referred to as the state-of-chaos coefficient.

To sum up, when we exclude all the echo that recur more than twice at the same

point from the overall 8-scan data, we will exclude ground clutter echo and �lose�

echo of not more than 5-10% of birds. The remaining echoes are to be analysed

against a set of properties described above, first and foremost by the pattern

of movement.

The principle underlying the system remains unchanged (Dinevich et al. 2004),

while selection of bird echo is performed on the basis of the abovementioned prop-

erties and considerations.

THE SCHEME OF THE ALGORITHM

Figure 3 shows the flowchart of the new algorithm developed in the present

study for identifying birds and estimating their flight velocities. To sum up, the main

stages of the algorithmic processing of radio-echo fields, described in detail in the

preceding sections of the paper, are as follows:

1. Summating the totality of radio-echo (those above the noise level) over a pre-

scribed number of scans.
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2. Isolating each bird (bird group) echo against echoes from other reflectors on the

basis of echo movement and specific parameters of this movement.

3. Excluding false vectors by implementing a special analysis of vector fields on the

basis of additional parameters.

Having completed the identification procedure, the algorithm plots ornithologi-

cal and meteorological charts of various types.
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Data input.

Translation of power according to:
1) the calibration curve,

2) distances.

Creating of the file
containing the summation

of mobile and static
radio echoes.

Separating mobile signals

from static signals.

Isolation of mobile signals.

Selecting bird signals using the criteria of linearity, forwardness,
uniformity and the speed of radio echo movement.

Output 2

Calculating and plotting movement vectors.
Creating the vector fields files.

The threshold for the linearity
and forwardness criteria is raised.

An additional criterion for the chaotic
character of direction is introduced.

echo “spots” by false vectors

Accumulation

of data over all scans.

Isolation of bird signals
by the fluctuation

parameter.

Output 3

Making decision on repeated
signal selection in areas
of weak echo and echo
with high fluctuation.

Output 1

Fig. 3. The flowchart of the algorithm for bird identification and estimation of flight velocities



METHOD AND ALGORITHM FOR SELECTING BIRD ECHOES

General considerations

As in the previously developed algorithm, the primary data used for selecting

bird echo are reflectance fields obtained by summation of a preset number of suc-

cessive scans performed at several tilt angles.

Based on the analysis of Table 5, we accepted the typical number of scans at each

tilt angle to be eight. If this number is lower, part of useful information is lost. In-

creasing the number over eight does not yield an essential information gain, while

increasing the computation time significantly.

Table 5

Comparison of computation time and data volume obtained over different number of scans

(on the basis of 10 measurement cycles)

Number of scans The quantity of identified birds (%) Computation time (%)

7 70-90 80-90

8 100 100

9 100 120

10 100 150

These consideration underlie the first stage of selecting bird echoes at each

point of each scan.

Stage 1

For each elevation angle value, radio-echo fields that were obtained over eight

scans were summed up, and two data files were built.

The first data file contains charts plotted on the basis of summation of all the

radio-echoes obtained during all the scans and at all the prescribed elevation angles

(Output 2 in Figure 3). These charts describe the total presence of all the targets un-

der observation, as well as their movements in space. Figure 4 shows a sample of

such a chart registering the situation at 12.56 p.m., 8 October 2002; the radar is lo-

cated in the centre of the chart. The upward direction is oriented northward; the

scan radius is 60 km; the long line in the west marks the sea frontier. Bird echoes

are represented by: (a) the streak of about 100 km long, southward-northward ori-

ented; (b) the short southward oriented streaks in the east sector of the chart and

(c) radio-echoes in the form of separate dots. This conclusion is supported by visual

observations performed by a number of observers, the authors included, as the

birds � Honey Buzzards (Pernis apivorus) � were flying right above the radar. Such

streaks are frequently formed when birds are flying through a cloudless bottom

mesofront layer caused by a breeze (Alpert et al. 2000). Convective flows thus

formed create optimum routes for migrating birds (Leshem and Yom-Tov 1996).
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Similar migration patterns of large flocks of various species, mostly storks, were ob-

served by the authors every autumn and spring. Echoes in the form of areas, as well

as of wide or narrow radial-oriented streaks and, in some cases, in the form of separate

dots, are echoes reflected from ground clutter. These echoes change their configu-

ration depending on refraction conditions. Using such charts for assessment of the

ornithological situation implies a specific knowledge of the terrain, and the possibility

of analysing echo evolution in time that can be done only by an experienced ob-

server.
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Fig. 4. Chart of summated radar echo at the level of the station sensitivity (8 Oct. 2002, 12.56 p.m.).

8 PPI were performed at each of the tilts of 0.5°, 2.0°, 3.5°, 5.0°, 6.5°, at the level of the station

sensitivity. The chart presents the sum of all the echoes after digital processing of the data over all

the PPI. The top part � direction towards the north. The firm line in the west is the sea-land bor-

der. The echoes in the form of �spots� of complicated shapes, as well as radial-orientated lines are

reflections from ground clutter and objects in the sea; echoes in the form of a relatively straight

line oriented from the north towards the south, which is about 100 km long, as well as short lines

of similar direction and numerous dotted echoes represent birds.



The second file contains data related to echo movements. Echoes registered at

the same coordinate position more times than it is prescribed by a selected number

(usually twice) are excluded from the further analysis. This procedure enables to

exclude echoes from most of the ground clutter and of dense clouds.

The primary digital processing resulted in representing echoes in the form of

�spots� formed by a number of signals (points), each point having its coordinates

and power value (Dinevich et al. 2004). Taking into account the power values of the

signals forming a particular �spot�, the coordinate position of the centre for each

�spot� is determined by the following dependencies:

Xc

p x

p

Yc

p y

p

i
i

n

i

i
i

n

i
i

n

i

i
i

n= =

å

å

å

å

where:

n � the number of signals (dots) forming the spot,

p
i

� the power value of the signals,

i � the number of a dot within the �spot�.

The upper value of i is restricted by the technical capabilities of a particular ra-

dar and the digital processing method, being 27 in our study. The low value of i is

determined by the noise threshold, being i ³ 4 in our study according to the mea-

surements. At values i < 4, the number of echo �spots� multiplies by several factors,

which significantly increases the computation time and eventually leads to a drop-in

of false signals at the end of the filtering procedure. Clearly, this restriction leads to

expulsion of some especially weak, but nevertheless relevant signals from further

analysis. Evaluation of this error is beyond the framework of the present paper.

At Stage 1, as a result of the filtering procedure based on presence/absence of

echo movement, a data file is obtained that contains the coordinates of the centres

of �spots� representing echoes reflected from moving and/or heavily fluctuating ob-

jects. In certain weather conditions, such signals may be produced by echoes with

considerable fluctuation, like those of atomized clouds, precipitation or some

atmospheric heterogeneities, while mostly being echoes of flying birds.

Further filtering aimed at excluding non-bird echoes is based on specific proper-

ties of bird echo movement.

Stage 2

Additional considerations regarding the echoes from flying birds

As was shown above, the scattering cross-section s of the same bird may vary

significantly depending on the position of its wings and its orientation towards the

radar. The calculations can be performed by means of the known equation for radio-

location of solitary target (Atlas 1964, Stepanenko 1973) in the following form:
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where:

P
t

� the pulse radiation power,

G � the antenna gain,

l � the radar wave length,

P
min

� the receiver sensitivity,

s � scattering cross-section

K � the radio-wave attenuation constant along the route of propagation.

Since technical parameters of MRL-5 and the conditions of wave propagation

are known, this dependency can be solved for s in case R
max

value is known.

If we substitute P
min

value for P
0

= P
min

× 10
0.1n

, where n is the value of signal

attenuation in dB and P
0

is the power of a target echo, we can calculate P
0
by mea-

suring the actual values of R and n, assuming K = 1 and setting values for s.

As can be seen from the equation, varying s will lead to the corresponding varia-

tion, from scan to scan, of the power of P
0
echo or of the radar reflectance coeffi-

cient Z. At small values of s, the echo power may be below the signal-detection

threshold, i.e. be present in some of the scans while absent in other ones (see Fig.

1B, Fig. 2). Over subsequent scans, bird echo line can be both direct and broken

(Ganja et al. 1991, Bruderer 1992).

In view of these considerations, the algorithm of additional bird echo selection

based on specific movement properties implies performing the following three

operations for each value of the tilt angle.

Operation #1: plotting straightforward echo movement segments by a prescribed number

of points located within consecutive scans

The coordinate of the centre of each echo �spot� obtained in the first scan is as-

sumed to be the point of origin for a coordinate system. Out of this central point,

a bundle of n straight lines can be plotted. The end of each line should not be located

beyond the distance that can be theoretically covered by a bird during the given time

of observation (80 s, 8 scans in our case) in the range of minimum velocity V
min

and

maximum velocity V
max

. The program enables to vary these parameters in the opera-

tional mode taking into account the actual velocities and wind directions.

Then:

Lmin = Vmin × t Lmax = Vmax × t

where:

L � the minimum/maximum distance that can be covered by a bird during the time

between the first and the eight scan.

Any �spot� obtained in the scans that lies within this distance range is assumed

to be the end of a straight line originating from each of the �spots� in the first scan.

It is important to take into account that the initial echo from a bird may not neces-

sarily appear within the first scan, but within any subsequent scan. In view of this
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consideration, the procedure is repeated on the data obtained in the subsequent

scans, assuming the centres of newly obtained �spots� to be points of origin for bun-

dles of n lines. The procedure is repeated for scans 1-4.

Each of the n straight lines can be described by the dependency:

y = ax + b

where:

a = (y
1

� y
2
) / (x

1
� x

2
),

b = y
2

� ax
1
,

x
1
, x

2
, y

1
, y

2
� the coordinates of echo �spots� in the first and the last scan, respectively.

In this coordinate system, the point of origin represents the location of the radar.

As a result of this procedure, a set of straight-line bundles is obtained, having their

points of origins in the centres of echo �spots� that were registered for the first time.

At the next step, out of each bundle of n lines, the algorithm chooses m lines that

meet certain requirements. Those are the lines on which not less than k signals are sup-

posed to fall during the subsequent scans (k is a prescribed number, k
max

= 8).

Operation #2: the movement uniformity criterion

Having obtained m straight lines plotted from each initially registered echo, we

now select only those lines where the distance between the �spot� centres grows

with each subsequent scan, i.e. l
1
< l

2
< l

3
< l

n
, l

i
being the distance between the

�spot� centres obtained in two subsequent scans.

By the l
1
, l

2
,� l

n
dependencies between subsequent scans, we can evaluate the

uniformity of birds� flight velocities and set up certain values for the velocities that

can serve as specific criteria. To do this, the system calculates the average bird

velocity over the entire observation period and uses it as a benchmark to compare

velocities within certain flight legs. In our study, the 20% value was chosen on

the basis of multiple measurements. In case the deviation of flight velocity from

the benchmark value is below 20% over at least one flight leg, the flight movement

was considered to be a uniform one. In contrast, when the said deviation exceeded

20%, the movement was regarded as a non-uniformed one.

Operation #3: the movement linearity criterion

Among the set of lines that have remained within the analysis after Operation #2

filtering, we now select the unique line where the diametral deviations of echo

�spot� centres in consecutive scans are within a certain range of values prescribed

by the linearity criterion. This value for a particular echo is assumed to be a certain

prescribed length fraction of the direct line that connects the echo from the first

scan to its �counterpart� in the last scan. The linearity criterion is fulfilled when the

position of echo centres within the intermediate scans does not exceed this pre-

scribed value. In our study, we set a 10% deviation to be the benchmark for the

movement linearity criterion, namely, a deviation up to 10% of the line length

means the movement is straightforward, while values from 10% to 40% characterize

a non-straightforward movement. The problem is solved by selecting the maximum
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proximity between a line and a set of echo centres obtained over a scan cycle.

The required line is described by the dependency y = ax + b, where the coordinates

of two points are known (x
1
, y

1
; x

2
, y

2
), hence a = (y

1
� y

2
) / (x

1
� x

2
); b = y

2
� ax

1
, thus

the problem is reduced to finding the minimum distance between the required

�spots� (whose coordinates are known) and the preset line. To find those points, we

drop a perpendicular from the point with coordinates (X
n
, Y

n
) on the said line; the

coordinates of the base of this perpendicular being:

X
X aY ab

ai

n n
=

+ -

+

( )

1 2

Yi = aXi + b

where:

X
i
, Y

i
� the coordinates of the point of intersection of the said line

and the perpendicular dropped on it from the point X
n
, Y

n
.

Hence:

di X x Y yn i n i= - + -( ) ( )2 2

where:

di � the distance between a point and the related line.

This distance should not exceed the value prescribed by the linearity criterion, thus:

di = (10 ÷ 40%) × L

where:

L � the distance between the echo centres in the first and the last scans.

There might be several perpendiculars meeting this requirement, out of which

we choose the one which is the shortest for a given scan.

Therefore, only one line meeting the above-formulated requirements is chosen

among all the lines originating from each initial echo �spot�.

Stage 3 (isolating and excluding false lines)

The calculation of the state-of-chaos coefficient and making the correlated deci-

sions is performed on the basis of the following procedures.

1. A control area is formed in form of a circle of a prescribed radius. The radius is

set to be 600 m (the value determined experimentally).

2. The circle is subdivided into 8 sectors, which are numbered 1-8; number 1 is

given to the sector with 0° direction that expands clockwise, number 2 is given to

the adjacent sector clockwise, and so forth. Only dot-like echoes that serve as

origins of direct lines are to be analysed.

The system automatically checks the orientation of line segments located within

the control circle. It should be noted that the very technique of plotting the line seg-

ments indicates the direction of signals that form the said lines.

The decision-making algorithm obeys the following scheme:

1. The system determines the number of segments which, on the basis of their di-

rection, were found within sectors 1-4. The total number of segments found in

these sectors is calculated according to formula:
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where:

i � the number of a sector,

b
i

� the number of such segments.

2. The number b
j
of segments found in sectors 5-8 is calculated � B

2
= bj

j

4
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3. The correlation coefficient is calculated as:
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At the next step, assuming the same echo being the centre of the control circle,

the circle is turned clockwise, sector 1 now becoming sector 2 and so forth, thus

shifting the 4-sector arrangement by one sector:

k
n n n n

n n n n2

2 3 4 5

6 7 8 1

=
+ + +

+ + +

( )

( )

In a similar way, k
3

and k
4

are calculated. Using the values k
1
, k

2
, k

3
, k

4
, the state-

of-chaos coefficient is determined for K direction:

K
k k k k

=
+ + +( )1 2 3 4

4

If K is equal to 1, it indicates that the vectors throughout the control circle are

oriented toward all the directions with equal probability, which is defined as a �state

of chaos� incompatible with bird migratory flight pattern. The value of K in case of

bird migration is to differ from unit as much as possible.

Hence, the system identifies vectors with K = 1 as false bird echo, but does not

exclude them from the vector filed before the analysis of all the echo spots is com-

pleted. Only after calculating K values for all the vectors, the system establishes the

areas of chaotic movement and excludes all the line segments plotted within these

areas from the final data file. The n echo �spots� remaining after this operation are

sent for a repeated procedure that calculates K value over n + 1 �spots�. This calcu-

lation is performed on the basis of more complicated criteria. For example, if within

the first cycle the lines were plotted for n �spots�, within the second cycle this calcu-

lation is performed over n + 1 �spots� in the same area. The criteria for movement

linearity and uniformity undergo similar complication.

20 THE RING 29, 1-2 (2007)



DETERMINATION OF BIRD FLIGHT VELOCITIES

AND PLOTTING FLIGHT VECTORS

As a result of Stage 2 and Stage 3 of filtering, straight-line segments are obtained,

which are plotted over a prescribed number of echo �spot� centres that are moving

within a given period of time. The technique used to plot this lines suggests that:

a) in case movement of an echo is represented by segments of lines meeting the

above-described requirements, this echo belongs to a bird (bird group),

b) positions of echo centres in proximity to the general line which they form are

determined by the flight pattern of a particular bird (bird group),

c) the orientation of lines relative to the coordinate system whose point of origin

is the radar itself is considered to be the bird flight direction.

Having the coordinates of each vector and the time measurements correspond-

ing to both its origin and terminus, we can calculate the average velocity of a bird

(bird group) over the observation time. Having the coordinates of each echo centre

and the exact time when the echo was first registered on the radar screen, we can

establish the direction and the velocity of flight and determine whether the direc-

tion is or is not straightforward.

Using the values of X
i
, Y

i
, t

i
, the root-mean-square linear regression dependen-

cies X(t), Y(t) are built in the centres of the two echoes. The first echo centre is re-

lated to time t
1
, the second point is related to time t

2
, t

2
> t

1
.

The slope ratios of the obtained dependencies X(t), Y(t) provide evaluations of

the bird�s velocity components V
x

and V
y
. The actual bird (bird group) velocity is

V v vxy x y

�
= +( )2 2

The averaged velocity of all the birds within the scanned area is assumed to be

the mean velocity of bird migration flow V sum

�
and is calculated as

V
v

n
sum

n

xy
� �

=
S

It is important to note that thus calculated radar-related bird flight velocity is, in

fact, the sum of two components: a) the velocity of a bird�s flight powered by its

wing labour and b) the velocity and direction of the wind flow relative to the direc-

tion of the bird�s flight.

The mean direction of bird migration flow is defined as the geometrical mean of

all the flight vectors and is calculated by composition of vectors.
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GRAPHIC REPRESENTATION OF BIRD FLIGHT DATA AGAINST

THE BACKGROUND OF GROUND CLUTTER

AND ATMOSPHERIC INHOMOGENEITIES

Upon completing all the stages of echo filtering, a file containing only bird-

related data is obtained. After summation of the totality of the data over all the

scan angles, we obtain a sum horizontal plane projection of all the vectors that
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Fig. 5. Chart of summated radar echo (Fig. 4) after selection of bird signals and plotting their movements

in the vector form (Ornithological chart).

Section A � an enlarged fragment of the vector field. Symbols put at the origin of a vector designa-

te: � � movement with frequently changing direction; � � straightforward and even movement;

× � straightforward, but uneven movement; u � movement with considerable deviations from

straight line and uneven in its speed.

On the right below: two distributions containing: 1) the speed spectrum and 2) the direction spectrum.

On the left below: the general quantity of birds, including those with directional movement, and

data reflecting the maximum and the minimum speed values.



represent flights of all the birds within the scanned area. If we then chart scale cur-

sors, residence sites, roads, the coastline and other terrain elements on the said pro-

jection, we obtain a chart that can be called a radar ornithological chart (by analogy

with a weather chart).

A sample of such a chart is presented in Figure 5 (data obtained at 12.56 p.m.,

8 October 2002). The chart presents the same ornithological situation as that in

Figure 4 after the algorithm has performed the filtering procedure.

As can be seen, the volume of information in Figure 5 is significantly larger than

that in Figure 4. Bird echoes are presented in a vector form. The scan radius is

60 km. The length of the band representing migrating birds is about 100 km and

consists of segments differing in vector density. The total quantity of birds (bird

groups) is 1711, among them 982 are flying with steady direction, as is demon-

strated by the corresponding vectors.

The flight velocity spectra show that the maximum bird velocity (taking into ac-

count the wind velocity) is about 70 km/h, while the minimum velocity is just over

10 km/h. As can be seen from the direction rose, the sum vector is oriented pro-

nouncedly toward the south (182°). The four above-mentioned patterns of echo

movement are actually plotted in different colours, but in the monochromatic im-

age in Figure 5 the colours are substituted for designating symbols shown in the

framed scaled-up A section.

The same sum database is used for plotting the graph of birds� distribution over

height within a prescribed scanned area. A sample of such a chart is shown in

Figure 6, where the X-axis indicates the quantity of birds (bird groups) and the

Y-axis indicates the height.

There are several paired bars in the graph. The length of each bar is proportion-

ate to the number of birds within the corresponding 500 m high layer. The bottom

bar in a pair is the number of birds that fly with frequently changing directions, i.e.

non-migrating birds; the upper bar in a pair is the number of birds whose flight vec-

tors have been plotted by the algorithm, i.e. migrating birds.

THE RING 29, 1-2 (2007) 23

0 20 40 60 80 100 120 140

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fig. 6. Distribution of migrating and non-migrating birds at different heights (data from Figure 5)



Figure 7 shows a sample of volume visualisation of bird distribution over certain

terrain areas. The arrow taken out of the drawing indicates the northward orienta-

tion; the large dot indicates the position of the radar. In the west, the terrain

changes into the coastline, in the east there are hills. The horizontal planes are posi-

tioned at different heights.

The proposed algorithm provides on-line determination of the exact coordinate

position of each bird echo. The databases constituting the two abovementioned files

(see Stage 1) make it possible to superpose ornithological and meteorological data

and to obtain combined charts that provide the bird monitoring data (in a vector

form) simultaneously with the data on ground clutter and atmospheric inhomoge-

neities.

Figure 8 shows a sample of a combined chart obtained at 8.20 a.m., 21 October

2002 and Figure 9 � relevant heights distribution (analogous to Figure 6). For the

sake of comparison, Figure 10 shows the corresponding chart showing radio-echoes

after Stage 1 of the filtering procedure, i.e. echoes selected by the movement charac-

teristic alone, without the subsequent filtering accurately identifying bird echoes.

Figure 8 presents a finalised chart based on the data obtained throughout all the

stages of the above described filtering procedure. It contains a vast corpus of vari-

ous data demonstrating the advantages of the proposed algorithm, as can be seen

below:
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Fig. 7. A sample of volume visualisation of the birds distribution.

The radar is located at the intersection x = 0, y = 0. The horizontal planes are drawn at the heights

of 1, 2, 3 and 4 km. The arrow is northward oriented. The sea is in the west, in the east there are

hills. The dotted echoes represent birds. The program allows to view this picture at various angles

and at various scales, to determine the coordinates of each radar echo.



a) Total quantity of bird echo within 30 km radius from the radar is 2770 (charts

can be plotted up to 60 km radius).

b) Number of vectors (i.e. birds flying in distinct direction) is 1670.

c) Maximum radar-related echo movement velocity is approximately 68 km/h;

minimum radar-related echo movement velocity is approximately 13 km/h.
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Fig. 8. Ornithological chart against the background of ground clutter and atmospheric formations

(21 Oct. 2002, 8.20 a.m.). Echoes in vector form � migrating birds; echoes in tick form � local

birds; echoes in form of shapeless vague areals � ground clutter; echoes in form of shaded doma-

ins � clouds and precipitation. Fragment A with enlarged vectors is isolated and presented in the

top left corner for the sake of illustration. In the southern sector of the chart, one can see a bird

flow between two cloud cells. Other explanations as in Fig. 5.

On the coloured charts, different types of radar echo, as well as vectors characterizing different

patterns of movement, are marked with various colours: (echoes from ground clutter are marked

with green, echoes from clouds and precipitation with blue, and the three types of vectors are

marked with red, dark blue and brown).



d) The majority of birds fly at 45-50 km/h velocity.

e) Average flight velocity is 44 km/h.

Most of the birds fly at varying velocity, deviating from a straight line; however,

there is a significant number of echo that deviate from a straight line but move at

uniform velocity.

Within the scanned area, one can distinguish bird groups differing in concentration.

Birds tend to by-pass clouds, flying around the perimeter or �diving� into gaps

between separate cloud cells (as can be seen in the area occupied by two cloud cells

in the southern part of the chart).

Within 180-270° sector (Fig. 9), the maximum bird echo concentration is ob-

served in the 0-500 m high layer (209 bird groups); a significant number of echo

from birds flying within the 500-1000 m layer (150 bird groups); a small number of

bird groups were observed within 1000-3000 m height, only 13 bird groups were reg-

istered at heights of 2000-3000 m.

Preferred flight direction is 177°, while there are a small number of echo from

birds flying in the reverse direction. The latter phenomenon has been observed in

a number of studies (Komenda-Zehnder et al. 2002).

All the data can be obtained from the scanning of the whole horizon (360°) every

10-15 minutes and delivered to users on-line. It is noteworthy that the described

charts provide only the general information on atmospheric inhomogeneities,

namely, their location and shift dynamics. More complete data on clouds, precipita-

tion etc. is provided by radar meteorological charts of a different type. The pro-

posed algorithm plots these charts in parallel with the ornithological charts, while

radar data for the former charts are collected by means of a specifically designed

software. Within this task, one of the conditions for data collection is antenna eleva-

tion up to 85°.
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Fig. 9. Distribution of migrating and non-migrating birds at different heights (data from Figure 8)



PROBABILITIES OF DETECTING BIRDS WITHIN DIFFERENT

RANGES FROM THE RADAR

The probabilities of detecting birds within different ranges from the radar can

be established by analysing the data presented in Tables 6a and 6b. In the numera-

tors, there are mean values for the amount of bird echo per unit of area (n
cp
), that

were photo-registered on the screen of circular scan indicator. These data were ob-

tained within different ranges from the radar. In the denominators, there are values

of probability (P) at which birds can be detected within those ranges. P = 100% is
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Fig. 10. Chart of summed radar echo. Comparison of Figure 8 and 10 enables to classify the echo on the

chart by types of reflecting objects. Arrows indicate the zones of radio echo from clouds; radio

echo in the form of spots, radial-orientated lines presents local objects; dotted lines present

southward orientation, firm lines in the near-by zone indicate bird movement. In the southern

sector one can see dotted bird echoes located between two cloud cells.



the amount of bird echo observed at the distance from the radar (DR) from 5 to 10

km. Values of P for other distances were calculated in relation to DR. In each DR
i

area, the number n
i
of bird echo was recalculated per unit of area. It enables to ob-

tain n
i
for each selected distance ranges within the radius of 60 km from the radar.

To assess the probability of bird detecting with the help of MRL-5 radar, we ana-

lysed observation data collected during intensive bird migration in November 2000

(night-time from 10.00 p.m. to 1.00 a.m., see Table 6a; daytime from 12.00 to 1.00 p.m.,

see Table 6b). Sample of migration charts are given in Figure 5 and 8. The intensity

of migration was determined by radar data and observations made by the ornitholo-

gists.

Table 6a

Dependency of bird echo (ncp) detected at different distances at night, at l = 10 cm

Distance to the radar (km)

5-10 10-20 20-30 30-40 40-50 50-60

ncp / P (%)

28.5 / 100 27.0 / 95 25.4 / 89 14.7 / 52 10.9 / 38 6.0 / 21

29.2 / 100 25.8 / 88 24.2 / 83 12.3 / 42 11.5 / 39 5.1 / 17

17.8 / 100 15.9 / 89 13.2 / 74 8.5 / 48 7.3 / 41 4.1 / 23

16.9 / 100 14.5 / 86 12.8 / 76 6.5 / 38 3.2 / 19 -

24.3 / 100 25.5 / 100 20.3 / 84 8.6 / 35 3.3 / 14 -

Birds in %

DP (%)
100 86-100 74-89 35-52 14-41 ~20

Table 6b

Dependency of bird echo (ncp) detected at different distances in the daytime, at l = 10 cm

Distance to the radar (km)

5-10 10-20 20-30 30-40 40-50 50-60

ncp / P (%)

64.9 / 100 65.0 / 100 58.0 / 89 49.0 / 75 510 / 79 46.0 / 71

25.6 / 100 23.7 / 93 19.8 / 77 22.0 / 86 21.0 / 82 17.4 / 68

48.0 / 100 46.5 / 98 37.6 / 78 35.7 / 74 37.3 / 78 38.4 / 80

17.9 / 100 17.2 / 100 148 / 83 12.4 / 69 13.5 / 75 13.0 / 73

83.4 / 100 79.5 / 95 74.2 / 89 56.8 / 68 51.3 / 61 47.0 / 56

17.0 / 100 16.5 / 97 15.2 / 89 13.1 / 77 12.9 / 76 10.2 / 60

Birds in %

DP (%)
100 93-100 77-89 68-86 61-82 56-83

Long-term radar observations suggest that during seasonal migrations flying

bird can spread over large spaces at almost uniform density. At night the density is

uniform over the radar scanning areas, while in the daytime this uniformity is ob-

served along certain azimuth sectors. It may be assumed that bird species and their

sizes are uniform over a large space for each given moment of measurements.

Hence, the dependence of the number of bird echo on the distance can be consid-

ered as the function of the radar potential entirely.
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Under these conditions, photos were chosen for data analysis (similar to those in

Fig. 1B) that were made off the radar screen during horizontal scans in the period

of especially intensive bird migration. The scans were performed at tilts not less that

3°, when the number of ground clutter echo and the impact of lateral lobes are sig-

nificantly lower.

As is seen in Table 6: (a) at distances up to 30 km, MRL-5 radar detects birds

with probability of about 80%, (b) at up to 40 km, the probability of detecting birds

is not less that 35-52%, (c) at longer distances, the probability drops significantly.

It should be noted that in some cases larger birds flying at night can be detected

with high probability at distances up to 40 km.

Daytime bird migrants usually fly in streaks oriented along the coastline.

In autumn and spring the flight directions are almost reverse. Daytime migrants

(e.g. storks, pelicans, eagles, buzzards, etc.) are usually of larger size than the night-

time ones. They take advantage of convective atmospheric streams formed by un-

even ground surface, as well as by valley-mountain and breeze factors. Reflectivity

(Z) of daytime migrants is much higher that that of smaller night-time birds.

The streaks often reach 100-120 km in length. The analysis of the daytime observa-

tion data shows that MRL-5 detects not less than 80% of birds at the distances up

to 30 km, which is close to detection level of night-time birds (Table 6b). At dis-

tances up to 60 km, the radar detects not less than 60% birds, which exceeds

the level of night-time detection.

It should be noted that MRL-5 is able to register echo of birds as large as storks

with high trustworthiness at distances up to 90 km. The present paper deals with

a system capable of selecting bird echo and plotting ornithological charts within

distances up to 60 km, mainly due to computation speed limitations, a vast corpus

of complex data and the necessity to update the charts for air traffic control every

10-15 minutes.

TESTING THE METHOD AND ANALYSING THE RESULTS

The first testing technique

In order to test the method for identifying bird echoes suggested in the study,

a comparison analogue was to be implemented that yield data which can be re-

garded as trustworthy. The method for identifying bird echo by means of photo-

graphing the radar screen was chosen as such. A sample of bird echo identification

by means of this method is shown in Figures 1 (A, B) and 2.

Comparing these photos enables to identify bird echo with high accuracy, the er-

ror depending entirely on the quality of photography. Therefore, comparing

the data on the amount of birds obtained by means of photography with those

obtained by computerised echo selection, we can assess the relative error and com-

pare the calculated velocities of birds� movements. To do so, it is enough to ran-

domly select a certain number of tracks and calculate their length. By calculating
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the ratio of a track length to the exposure time, we obtain the mean flight velocity.

However, one cannot expect the data coincide completely, due to a number of rea-

sons. First, there is a time shift of 3-5 min between the two modes of observation.

Second, the calculation of the number of birds on a photo is performed manually

as opposed to the digital analysis. Third, photo representation of the radar screen

depends on the quality of photography.

An example is given below of bird echo identification by means of the proposed

algorithm in comparison with the photo-based method. The data were obtained and

processed by the algorithm at 8.30 a.m. and 9.15 a.m., on 21 October 2002, at two

tilts (1.0° and 3.0°). At the same tilts, with a time interval of 3-5 min, the corre-

sponding echoes were photographed (see results in Table 7). There is a relative

agreement between the data obtained by the two techniques, which suggests that

the proposed algorithm identifies bird echo with high confidence. The total time

required for the algorithm to identify bird echoes according to all the criteria

described above, to calculate flight vectors and to plot different kinds of ornitho-

logical charts does not exceed 15 min. The calculation time can be reduced by using

a higher-speed computer.

Table 7

Comparison of data on the number of birds and their flight velocities obtained

by the computerised signal processing system vs photographic registration

Type of data First test, 8.30 a.m. Second test, 9.15 a.m.

Technique of selection Computerised Photographic Computerised Photographic

Number of birds 1285 1154 194 153

Maximum velocity (km/h) 65.3 59.4 46.4 43.0

Minimum velocity (km/h) 12.2 10.3 11.6 11.2

Mean velocity (km/h) 40.5 38.5 35.3 35.7

The second testing technique

A special analytic software enables to trace the movement of echo �spots� in

time, making it possible to reproduce all the stages of plotting each single vector

and the entire vector field. Below, a sample of such analysis is given.

Figure 11 shows a comprehensive ornithological chart in the form of a vector

field plotted on 29 August 2003, when a large stork flock flew over Israel. The

length of the bird band exceeds 100 km. The small square in the southern sector of

the chart presents a sample framed for more detailed analysis, chosen for the sake

of simplicity as it contains only two vectors. The large framed square in Figure 12

presents those two vectors together with echo �spots� whose centres were used to

plot them. The calculated echo centres are marked with dots. The point at the ori-

gin of each vector coincides with the centre of the initially registered �spot�, i.e.

with the moment the bird was first registered in the given observation series. The
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length of a vector is proportionate to the flight velocity. Squares 1-6 in Figure 12

show the dynamics of these echo movement from scan to scan. The first (northern)

vector was plotted over five echo �spots� that were moving uniformly but not

straightforwardly. It disappeared in the third scan, being apparently below the noise

level. The movement of this bird (bird group) is straightforward but not uniform

velocity-wise. The second (southern) vector is plotted over six echo �spots� moving

uniformly from scan to scan. The movement of this bird (bird group) is uniform but

not straightforward.
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Fig. 11. Analysis of plotting bird flight vectors. Ornithological chart obtained at 12.11 p.m., 29 Aug. 2003.

All the designations are similar to those in the previous figures; scan radius � 50 km. The 100 km

long echo streak in form of vectors oriented from the south to the north, as well as separate short

streaks are echoes of storks. According to visual observations performed by several observers both

in the proximity to the radar and at a distance, the stork were flying at the height of 200-400 m;

duration of the observations � about 3 hours. The square is the target area for the analysis shown

in the next figure. Other explanations as in Figure 5.



Analysis of this kind enables to assess the impact of every parameter included

into the algorithm for bird echo selection at every stage of the procedure and to

search for the optimum values of these parameters.

The third testing technique

Parallel comparative observations over the storks were performed both with the

help of the radar and by visual observers on board a plane. The plane was directed

in on-line mode to the area of birds� migration following the position data provided

by the radar. Direct radio contact was maintained between the observer onboard

and the radar operator. Conducting an experiment of this kind is complicated by

the fact that it is not always possible to overlap in time the target area of the radar

observation and the plane. The main difficulty is caused by the high density of air-

craft in the air and the limitations imposed on the area where a research plane

might fly at variable height profile. Nevertheless, in all the cases when it was possi-

ble to have the plane within the area and at the height of bird echo, according to the

position data of provided by the radar, the onboard observer could see the storks,

keeping the plane route parallel to that of the birds.
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6

Fig. 12. The course of analysis in the enlarged area from Figure 11
*

of succesive scans. The dynamics of

echo �spots� movements in time (from scan to scan) is shown in the from of two vectors plotted by

centres of the echo �spots�. 6 out of 8 scans are presented. Echoes from these groups of birds were

not found within scans 7 and 8.

* Numbers 1-6 represent



SOME PROSPECTS FOR FURTHER DEVELOPMENT
AND INCREASING THE RELIABILITY OF THE SYSTEM

Weak echoes with pronounced fluctuation, such as echoes from atomized clouds

and precipitation, as well as from insects and atmospheric inhomogeneities, pose a

major problem for the algorithm. In order to achieve more reliable identification of

such echoes, the system based on MRL-5 will be able in future to use several addi-

tional properties, among them:

a) The ratio of echo power on the two wave lengths. The ratio of echo power on

the two wave lengths depends entirely on the properties of the target (Abshayev et

al. 1980). It has been shown in several studies (Glover and Hardy 1966, Hajovsky et

al. 1966, Chernikov 1979) that power of echo reflected from insects on 3 cm wave is

higher that that on 10 cm wave. In case of bird echo, this ratio is inverse. The same

ratio characterizes echoes from atomized clouds and precipitation (Atlas 1964,

Stepanenko 1973). Therefore, the ratio of reflection coefficients on the two wave

lengths (Z
dBZ3cm

/ Z
dBZ10cm

> 1 � not birds) may serve as an additional characteristic for

identifying bird echoes and eliminating false vectors.

b) Polarization characteristics of echo. A polarization devise specially developed

for MRL-5 enables to vary radiation polarization per pulse on 3 cm wave length

and hence to receive a signal of polarization identical to this of the pulse; in addi-

tion, it enables to obtain their depolarization components (Dinevich et al. 1994). On

the basis of the depolarization components, it is possible to calculate the value of

depolarization DP and the value of differential polarization dP, which are functions

of nonsphericity and orientation of nonspherical targets in space (Chernikov and

Schupjatsky 1967, Lofgren and Battan 1969, Zrnic and Ryzhkov 1998). The measure-

ments we have performed in Israel show that the degree of depolarization of bird

echoes is about DP = -7 ÷ -10 dB, while the value of differential polarization is dP >> 1.

These data are in good agreement with those obtained elsewhere (Chernikov and

Schupjatsky 1967). Taking into account that small drops in clouds and precipitation

are spherical in shape, their dP value is close to unity (Schupjatsky 1959). These cri-

teria can become an important parameter for increasing the reliability of identifying

birds against the background of highly fluctuating echo reflected from atomized

clouds and precipitation.

c) Fluctuation characteristics of echoes from different targets. On the basis of

our analysis of fluctuation characteristics of echoes from different targets (Dinevich

et al. 2004), a special device was designed. It enables to isolate the signal of maximum

amplitude within each reflected monitoring pulse, within a preset 200 m long strobe

and the antenna being on halt. Isolated signals are stored and accumulated, to be

used by a special software for plotting amplitude and frequency spectra over 10-15 s

samples. Taking into account the recurrence of monitoring pulses in MRL-5 (500

pulses per second), for each sample a power variance spectrum is formed for 5000

and 10 000 signals. These data is used to calculate frequency spectra typical of dif-
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ferent targets. A specially designed low-frequency filter made it possible to classify

the spectra of peak fluctuation into two categories (�bird�/�non bird�) at the accu-

racy of at least 80% (Fig. 13). In case when the signal is reflected from a single bird,

the accuracy of target identification is over 95%. Figure 14 shows a sample of re-

sults obtained by means of the filter for typical echo spectra.
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Fig. 13. Typical frequency spectra of signals from birds and non-birds. X-axis � signal frequency (in relative

units); Y-axis � the frequency of recurrence of normalized maximums of signal amplitudes

(in relative units).



d) Using the algorithm in Doppler radars. In case radar echo mobility is deter-

mined by measuring its Doppler frequency shift (Doviak and Zrnic 1984), the first

procedure can be excluded from the proposed algorithm. Using the rest of the pro-

cedures and properties for plotting vectors, one can obtain ornithological charts
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Fig. 14. Characteristic oscillographs of echoes reflected from birds, clouds and ground clutter. The X-axis

shows time of signal accumulation, the Y-axis shows the signal amplitude in relative units.



described above. The network for ornithological radar monitoring (Leshem and

Gauthreaux 1996) may then include most of European radar stations (see Table 8).

As can be seen, over 70% of meteorological radars in Europe use the 5.3 cm band

and are able to measure the Doppler component of echo frequency. Countries host-

ing such stations participate in OPERA project aimed at exchange of radar data.

Table 8

Countries participating in the OPERA (Operational Program of the Exchange

of Weather Radar Information) program at exchanging radar information

Country VMO Code
Number of opera-

tional MRL

Number of MRL

in project

Bandwidth

of MRL

1 Austria OS 4 0 CD

2 Belgium BX 1 1 CD

3 Bulgaria BU 3 0 CD + 2X/S

4 Great Britain UK 13 0 2CD + 11C

5 Hungary HU 3 0 CD +2X/S

6 Germany DL 15 1 CD

7 Greece GR 4 0 ?

8 Denmark DN 3 0 CD

9 Ireland IE 2 0 CD

10 Island IL 1 0 C

11 Spain SR 13 2 14CD +1SD

12 Italy IY 10 6 13CD+1SD+2C

13 Latvia LV 1 0 X/S

14 The Netherlands NL 2 0 CD

15 Norway NO 2 1 CD

16 Poland PL 3 4 2 CD +X/S

17 Portugal PO 2 1 CD

18 Romania RO 1 0 ?

19 Slovakia SQ 2 0 CD +X/S

20 Slovenia IJ 1 1 CD

21 Finland FI 7 0 CD

22 France FR 15 5 12C + 8S

23 Croatia RH 3 0 S

24 Czechia CZ 2 1 CD

25 Switzerland SW 3 0 CD

26 Sweden SN 12 0 CD

27 Estonia EO 1 1 CD

Total 128 24

Explanations of symbols: D � Doppler; NMRL � incoherent meteorological radar station; DMRL � Dop-

pler meteorological radar station

Bandwidth Wave length (cm) Type of MRL

C 5.3 NMRL

CD 5.3 DMRL

S 10 NMRL

SD 10 DMRL

X/S 3/10 NMRL

36 THE RING 29, 1-2 (2007)



CONCLUSIONS

1. The study enabled to establish a set of radar characteristics and on this basis to

develop an algorithm that enables to distinguish bird echo and perform on-line

plotting of vector fields that represent birds� movement, including the height pa-

rameters.

2. The technique of vector field plotting enables to classify birds, on the basis of

their movement patterns, into four categories, among them birds flying with fre-

quent shifts in flight direction (local birds), birds flying straightforwardly at

steady velocity or at varying velocity, and those flying with repeating deviation

from a straight line and at variable velocity.

3. Comprehensive charts plotted on the basis of the algorithm data enable to ob-

tain diverse and relevant information on the ornithological situation within the

area of 60 km radius from the radar position, including:

� the total current quantity of birds in the air, specifically migrating birds,

� maximum and minimum flight velocity values,

� distribution of birds� mass throughout the height,

� the spectra of flight directions and velocities, including the sum direction vec-

tor,

� vector fields of bird movement juxtaposed with current meteorological status

and local terrain,

� bird distribution by the flight pattern (the degree of straightforwardness and

velocity steadiness),

� data on clouds, precipitation and visually unobservable atmospheric inhomo-

geneities, including their evolution with time.

4. Weak echoes with pronounced fluctuation, such as echoes from atomized clouds

and precipitation, as well as from insects and atmospheric inhomogeneities,

pose a major problem for the algorithm. However, in future the system will en-

able to apply additional properties, which will increase the identification reli-

ability of echo of this type. Among the properties mentioned, there is the ratio

of reflection coefficients on the two wave lengths, as well as polarization and

fluctuation parameters of echoes obtained from various targets.

5. The radar ornithological system described in the paper enables to perform real-

time monitoring of global intercontinental migrations of large bird flocks by

means of the network of radars, among them MRL-5, located in different coun-

tries and covering vast territories.

6. The method of bird identification proposed in the study can be implemented in

other types of high-grade potential coherent and incoherent radars whose an-

tennas produce narrow-directivity beams.
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