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Abstract 
 
When combining spatial data from various sources, it is often important to 
determine similarity or identity of spatial objects. Besides the differences in 
geometry, representations of spatial objects are inevitably more or less 
uncertain. Fuzzy set theory can be used to address both modelling of the 
spatial objects uncertainty and determining the identity, similarity, and 
inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. 
In this paper, we propose to use fuzzy measures to determine the similarity 
or identity of two uncertain spatial object representations in geographic 
information systems. Labelling the spatial objects by the degree of their 
similarity or inclusion measure makes the process of their identification 
more efficient. It reduces the need for a manual control. This leads to 
a more simple process of spatial datasets update from external data 
sources. We use this approach to get an accurate and correct 
representation of historical streams, which is derived from contemporary 
digital elevation model, i.e. we identify the segments that are similar to the 
streams depicted on historical maps. 
 
Keywords: spatial data uncertainty, similarity measure, fuzzy inclusion, 
spatial object matching, identity determination  
 

1. Introduction 
 
The analysis, usage, and integration of spatial data from various data sources in 
geographic information systems (GIS) often require determining whether the spatial 
objects acquired from these sources are identical or at least similar. Spatial objects 
can be represented in different ways depending on the data sources. For instance, it 
is practically impossible that objects like rivers or roads will be represented as spatial 
objects with identical geometry by two independently created maps. Therefore, the 
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determination of identity or similarity of two spatial objects can be problematic and is 
furthermore complicated by the inherent uncertainty of the object representation 
itself. The process of merging information from multiple data sources into one version 
is described by the terms “spatial data matching” (Walter and Fritsch, 1999) or 
“conflation” (Longley et al., 2001); a number of various methods used for the 
conflation of geospatial data is discussed, for example, by Cobb et al. (1998), Samal 
et al. (2004), Seth and Samal (2008), Chen and Knoblock (2008), Koukoletsos et al. 
(2012) or Toomanian et al. (2013). Some of the methods to detect or determine the 
similarity of objects are implemented in commonly used GIS software. Examples of 
such tools are Similarity search to identify which candidate spatial objects are most 
similar to input objects based on attributes, Feature matching to find corresponding 
features from two similar datasets based on the search distance, Spatial adjustment 
rubbersheeting to align one layer with another that is in close proximity. However, 
none of these is suitable for determining the identity or the similarity of uncertain 
representation of linear objects. The question of accuracy and uncertainty in GIS is 
recognised from the early years of GIS and it is still present in current research, e.g. 
(Heuvelink and Brown, 2008), either as an issue of positional accuracy (Goodchild 
and Hunter, 1997), uncertainty in GIS (Zhang and Goodchild, 2002), or fuzzy 
modeling in GIS (Petry et al., 2005). 

Fuzzy set theory, introduced by Zadeh (1965), provides means to represent 
uncertain data and this concept can be extended to spatial data. In this paper, we 
use generalized concepts of fuzzy inclusion, fuzzy similarity, and fuzzy identity of two 
fuzzy sets (Bandemer 2006, Wang 1997, Wygralak 1983, Zadeh 1965). We propose 
a new method to determine the fuzzy similarity and the fuzzy inclusion of two 
uncertain polyline objects. The fuzzy approach used in this paper can improve, for 
instance, hydrological modelling in archaeological analysis or other applications, 
where a comparison of two uncertain polyline objects is necessary. In our case study, 
we use this method to identify matching streams derived from different sources, a 
modern digital terrain model (DTM) and historical maps. The main issue is that both 
stream datasets are uncertain and have a different geometry.  
 
2. Methodology 

 
2.1. Polyline similarity measures in GIS 
 
Measures of similarity are different measures of the distance, the correlation, or the 
association; all of these are based on the proximity of objects or, on the contrary, on 
the distance of two objects, or their attributes. Similarity is usually recorded as 
a value in the intervals [−1, 1] or [0, 1], where 1 indicates the maximum of similarity, 
and -1 (0 respectively) the minimal similarity. 

The similarity of two polyline objects can easily be determined using the distance 
measures (e.g. Euclidean, Manhattan, Minkowski, Mahalanobis), as long as the 
number of vertices on one polyline exactly matches the number of vertices on the 
other one. The polylines that represent, for instance, streams or roads in various data 
sources don’t generally fulfil this condition. Therefore, a different concept for the 
determination of the similarity measure of two polyline objects is necessary. 

The similarity of two polylines with different number of vertices, or with vertices 
that cannot be assigned to each other, can be determined by the Hausdorff distance 
and the Fréchete distance. 
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The Hausdorff distance δH(A, B) between two sets A and B is defined as follows 
(Hausdor, 1914): 
 

( , ) max(sup inf ( , ),sup inf ( , ))H
b B a Aa A b B

A B d a b d a b
  

 ,     (1) 

where sup represents the supremum, inf the infimum, and d is the underlying metric in 
the plane, e.g. the Euclidean distance. The Fréchet distance F between the curves 
P;Q : [0; 1] → Rn is defined as follows (Ewing, 1985): 
 

 , 0,1
( , ) inf max ( ( )) ( ( ))F

t
P Q P t Q t

 
  


  ,      (2) 

where ,: [0,1] → [0,1] range over the class of all continuous and monotone 
increasing functions. 

Alt and Godau (1995) described at p. 76 the Fréchet distance intuitively: ‘Suppose 
a man is walking his dog, he is walking on the curve, the dog on the other. Both are 
allowed to control their speed but are not allowed to go backwards. Then the Fréchet 
distance of the curves is the minimal length of a leash that is necessary.’ 

However, neither of these methods considers the uncertainty of both polylines and 
they are both relatively computationally intensive. The uncertainty of objects can be 
expressed using fuzzy sets A  and B  (Fig. 1). To consider the uncertainty and 
similarity of arbitrary polyline objects a and b simultaneously, we employ the fuzzy set 
theory and compute the similarity of two fuzzy sets. 
 
 

 
Fig. 1. The polyline objects with their areas of uncertainty (left), modelling of areas 

of uncertainty by fuzzy sets (right) 
 
 
2.2. Uncertainty modelling with fuzzy sets 

 
The concept of a fuzzy set was introduced by Zadeh (1965), p. 339: ‘Let X be 
a space of points (objects), with a generic element of X denoted by x. Thus, X = x. 
A fuzzy set A in X is characterized by a membership (characteristic) function A(x) 
which associates with each point in X a real number in the interval [0,1], with the 
value of A(x) at x representing the ‘grade of membership’ of x in A.’ 

The shape and the parameters of the membership functions can be, in general, 
determined empirically or based on known properties of the analysed phenomenon. 
The special cases of piecewise linear membership functions, which could be used to 
represent the uncertainty of linear spatial objects, are shown in Figure 2. 
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Fig. 2. Linear membership functions of fuzzy sets: L-function (left), triangular function (right) 

The L-membership function (Fig. 2 left) is defined by: 

1 if ,

( ) if ,

0 if

A

x c

d x
x c x d

d c
x d




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


      (3) 

and the triangular membership function (Fig. 2 right), for c = 0, by: 

1 if 0,

( )  if 0

0 if

A

x

d x
x x d

d
x d




   




      

      

       

.      (4) 

The triangular or the L-membership function can also be seen as a simple 
approximation of the Gaussian membership function (Fig. 3), which is a more reliable 
description of the uncertainty of a spatial object: 

2

2

( )

2( ) 
 


x c

A x e ,      (5) 

where  2 is the variance and c the expected value. 
 

 
Fig. 3. 3D representation of the graph of the Gaussian membership function (left) and 

the uncertainty of a line represented by the Gaussian function (right) 
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2.3. Identity and similarity of two fuzzy sets 
 

Fuzzy sets are considered to be a generalization of the classical set theory. In 
a similar way as we can generalize the characteristic function  : 0,1 A X  to the 

membership function  : 0,1A X  , it is possible to generalize the identity, similarity, 

and inclusion of two sets to fuzzy identity, fuzzy similarity, and fuzzy inclusion of two 
fuzzy sets. 

According to Bandemer (2006), two classical (crisp) sets A and B are identical if 
A A B B     or, in equivalent form, if A B B A   . The idea of similarity can then 
be based on the conception of two sets being similar if they are approximately equal. 
The indefinite term approximately equal is based on the conception that a set of 
objects outside their intersection A B  is small when compared to their union A B . 
To define the term small set, we need to define an appropriate measure for the size 
of the set. If the set is finite, the size of the set is the number of elements, while an 
integral of the set is used for infinite sets. In the case of an unknown character of the 
set, the appropriate measure is a generalization of the number of the elements for 
infinite sets called cardinality (card). The similarity ( , )sim A B  of two sets A and B (also 
known as the Jaccard similarity coefficient (Jaccard, 1901)) can then be defined by 
(Bandemer, 2006): 
 

( )
( , )

( )

card A B
sim A B

card A B





.      (6) 

 

Let A   and B  be fuzzy sets in X . Then 
 

( )
( , )

( )

card A B
sim A B

card A B





.      (7) 

 

For a finite fuzzy set A , the cardinality ( )card A  is defined as the sum of the 
membership degrees of a fuzzy set (Dhar, 2013): 
 

( ) ( )A
x X

card A A x


   .         (8)

  
Using Zadeh’s definitions of fuzzy intersection and union (Zadeh, 1965): 

 
min( ( ), ( ))A BA B x x             (9)

  
max( ( ), ( ))A BA B x x             (10) 

 
we define the similarity measure of two fuzzy sets as: 
 
 

min( ( ), ( ))

( , )
max( ( ), ( ))

BA
x X

BA
x X

x x

sim A B
x x

 
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


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This concept corresponds to the Jaccard similarity coefficient, but it can be applied 
to other similarity coefficients, e.g., Sørensen index (Sørensen, 1948), or Dice’s 
coefficient (Dice, 1945) in a similar way. 
 
2.4. Fuzzy subsethood and inclusion measure 
 
Subsethood, as described by Young (1996), is an important concept in the area of 
fuzzy sets. Fuzzy subsethood allows one fuzzy set to contain other one to some 
degree between 0 and 1; it is a fuzzification of Zadeh’s fuzzy set containment which 
is a crisp characteristic. If A and B are sets and every element of A is also an element 
of B, then A is a subset of (or is included in) B, which is denoted as A B . An 
inclusion measure for the crisp sets is defined as: 

( , ) 1

( ) ( , ) 0

A B I A B

A B I A B

  
   

      (12) 

with 

A B A B A    .      (13) 

In fuzzy set theory, inclusion measure indicates the degree to which a given fuzzy 
set A  is contained in another fuzzy set B . For fuzzy sets A  and B  we consider: 

A B A B A    .      (14) 

Then, the degree of inclusion (the inclusion measure) for fuzzy sets A  and B  can 
be defined by: 

, 0
( , )

1, 0

A B
A

AI A B

A

 
 




.      (15) 

Using Zadeh’s definition of fuzzy intersection (8) and fuzzy union (9), an inclusion 
(or subsethood) measure is given by (Zeng and Li, 2006): 

min( ( ), ( ))

,
( , ) ( )

1,

BA
x X

A
x X

x x

A
I A B x

A

 







   

 



 .     (16) 

Fuzzy inclusion can also be defined as a type of topological spatial relationship of 
two fuzzy spatial objects (Schneider, 2008; Tang et al., 2006). 
 
2.5. New approach to the identification of uncertain spatial objects in GIS 
 
Based on the above findings, we propose a new method for the spatial identification 
of objects from two datasets. This method takes into account the uncertainty of input 
data and also simplifies the conventional approach. 

The area of uncertainty of vector data is modelled using raster data. Therefore, the 
raster of uncertainty is a finite fuzzy set. The proposed algorithm for computing the 
similarity and the inclusion measure of polyline objects is described by Activity 
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Diagram in Unified Modeling Language (UML) (Fig. 4). The advantage is that it can 
be used to compute similarity and inclusion measures using standard tools 
implemented in the GIS environment, such as Buffer, Intersection, Union, and so on. 

 
Fig. 4. Activity Diagram of Fuzzy Inclusion and Fuzzy Similarity computation 

1.1 Import modelled streams
(M)

1.2 Import historical streams
(H)

3.1 Add attribute
FuzzySimilarity F_Sim to M

with default value 0

3.2 Add attribute
FuzzyInclusion F_Incl to M

with default value 0

2. Transform H to
coordinate system of M

4. Create individual buffer
around each feature from M

(B_MI)

5.1 Create individual buffer
around each feature from H

(B_HI)

5.2.1 Create buffer
around all features from H

(B_HA)

5.2.3 Compute uncertianty raster of H
(UR_HA)

6. Create intersection of B_MI and B_HA
(I_MH)

7. Select from M all features that intersect I_MH
(S_MA)

8. Select next one feature from M
(S_MO)

5.2.2 Compute raster of
Euclidean distance from H

(ED_HA)

[for each feature from M]

9. Create raster of Euclidean distance from S_MO
(ED_MO)

10. Compute uncertianty raster of selected feature
(UR_MO)

[else]

11.1 Create intersection of B_MI and B_HA
(I_BB)

11.2 Select feature from H with maximum area of I_BB
(S_HM)

12.1 Compute fuzzy intersection
    of UR_MO and UR_SH      

(FI_MS)

11.3 Compute uncertainty raster of S_HM
(UR_SH)

13.1 Compute fuzzy union
of UR_MO and UR_SH

(FU_MS)

12.2 Count values of FI_MS
(C_FIMS)

13.2 Count values of FU_MS
(C_FUMS)

15.1 Compute fuzzy intersection   
  of UR_MO and UR_HA     

(FI_MH)

14. Compute FuzzySimilarity
(F_Sim = C_FIMS / C_FUMS)

15.2 Count values of FI_MH
(C_FIMH)

16. Count values of UR_MO
(C_URMO)

17. Compute FuzzyInclusion
(F_Incl = C_FIMH / C_URMO)

[fuzzy similarity computation] [fuzzy inclusion computation]

[no more feature]

[next feature]

[else]
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In general, the proposed approach can be used not only to identify uncertain 
polylines but also points and polygons. The similarity measure is appropriate for 
points, simple polygons and two polyline objects with matching segments (the same 
number of vertices is not necessary). The inclusion measure should be used if it is 
not possible to determine the matching segments in the polyline datasets. This can 
be applied to smooth line objects such as roads or streams, which is the most 
complicated situation for this task. That is why we are dealing with it in the case 
study. 
 
3. Case study 

 
The accessibility to the water sources, especially to the surface streams, is one of the 
most important factors in prediction of ancient settlements locations (Bátora and 
Tóth, 2014; Ford et al., 2009; Van Leusen et al., 2005; Lieskovský, 2011); the 
location of the streams themselves is important for archaeohydrological modelling of 
floods (Arnaud-Fassetta et al., 2010; Gillings, 1995), irrigation (Harrower, 2009; 
Harrower, 2010), or land-use potential (Bolten et al., 2006). Since current maps and 
datasets represent water sources in their present form (the vast majority of the 
streams in Europe were regulated and modified in 20th century), their usage in 
spatial analysis in archaeology is limited. Archaeological predictive modelling often 
requires information about the location of the streams and the water sources in the 
past. In some cases, historical maps can be used, but they are often not detailed 
enough and the hand-drawn vectorization combined with complicated georeferencing 
leads to limited precision. The positions of the streams could also be derived from the 
landscape morphology using a digital terrain model (DTM) and applying M8, MD, or 
MD8 algorithm, see e.g. (Wilson et al., 2008), which are commonly implemented in 
GIS software packages. Although the (natural) stream network can be derived from 
contemporary DTM, these results may not represent the streams in the original 
position in the past due to the landscape changes. Another approach to streams 
modelling based on the DTM is described e.g. in (Pilesjö and Hasan, 2014). These 
methods create possible streams; to obtain the real streams, the result needs to be 
compared to a map, an ortophoto, or other dataset. In our case study, we compare 
the modelled streams with the historical maps from the Second Military Survey of the 
Habsburg Empire. Therefore, using the approach described in previous chapter, we 
attempt to preserve the precision of the streams derived from the DTM with the 
correctness provided by historical maps. We use the inclusion measure to determine 
the segments of modelled streams that: i) can be considered as correct when 
compared to the historical maps, and ii) should be excluded from the subsequent 
analysis. 

Our study area is located in the southern part of the central Slovakia (Fig. 5). The 
historical stream dataset was created by vectorization of the maps from the Second 
Military Survey of Habsburg Empire, which were georeferenced using identical 
points. This survey was performed in the 19th century (1806 - 1869), and it is the 
best available information about the streams before the regulation and modification of 
streams started in the 20th century. The First Military Survey maps (1764 - 1783) are 
only suitable for the verification of the stream presence and its topological 
characteristics, but cannot be used—considering the accuracy of the methods of 
creation—as a source of information about geometry, or the localization of streams 
(Fig. 6). 
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Fig. 5. The study area. 

 

 
Fig. 6. Streams depicted on two historical maps: First Military Survey of the Habsburg 

Empire (1764 -1783) (left), b) Second Military Survey of the Habsburg Empire (1806 -1869) 
(right). 

 
The historical stream dataset consists of 216 polyline segments with total length of 

273.8 km. The zone of uncertainty for historical streams was set using the Gaussian 
membership function (Equation 5) with the expected value of uncertainty ch = 0 m and 
the standard deviation h = 140 m. These values we estimated from the residuals on 
406 identical points (243 churches, 81 road crossings, 52 bridges, 26 stream 
confluences, 4 corners of buildings) depicted on the historical maps from the Second 
Military Survey of the Habsburg Empire. For identification, the current ZBGIS® 
database (the fundamental spatial database for GIS in Slovakia) we used. 



Reports on Geodesy and Geoinformatics vol. 104/2017; pp. 115-130 DOI: 10.1515/rgg-2017-0020 

 

124 
 
 

We derived the modelled stream network dataset from the digital terrain model 
DMR-3.5 (a national DTM) with 10 m resolution using ArcGIS 10.2 Spatial Analyst’s 
Hydrology toolset. The channel initiation threshold value was set to 2000; this value 
provided appropriate detail of the stream network with respect to the historical 
dataset. For the modelled (potential) streams, we also used the Gaussian 
membership function with the expected value cm = 0 m and the standard deviation 
m = 25 m. We excluded the modelled stream segments located outside the 
uncertainty zone of historical streams ( ( )

h
x  = 0), since their fuzzy inclusion measure 

would be equal to 0 (Equation 16). Then, there were 445 modelled stream segments 
left for the computation, with the total length of 320.9 km. 

The historical and the modelled streams and their areas of uncertainty are shown 
in Figure 7. 
 

 

Fig. 7. Modelled and historical streams with their respective areas of uncertainty 
 
4. Results 

 
The computed inclusion values can help to determine, which of the modelled streams 
match the streams depicted on the historical maps (inclusion measure values close 
to 1), and which of them were probably too small or seasonal to be depicted on the 
maps or maybe not real at all (inclusion measure values close to 0). In Figure 8, we 
show the modelled streams with the values of inclusion measure. 

With the computed inclusion measure, stored as numeric attribute of the modelled 
streams, we can rank the stream segments according to their correctness and set the 
criteria for the decision making process. These criteria may vary with different types 
of the landscapes and analytical purposes. In our case, we decided to consider 
objects with fuzzy inclusion measure higher than 0.8 to be accepted, and those with 
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the value below 0.2 to be rejected; the rest of the objects need to be considered 
individually. In our case, more than a half of the objects can automatically be taken 
as correct (fuzzy inclusion measure larger than 0.80), and 11.5 % can be excluded 
from the dataset (Table 1). 
 

 
Fig. 8. Modelled streams with the value of inclusion measure 

 
Table 1. Statistics of the fuzzy inclusion measure (FI) computed  

for the modelled stream segments 

FI interval 0.00;0,20 0.20;0,40 0.40;0,60 0.60;0,80 0.80;1,00 Sum 
# of feat. 51 46 47 41 260 445

% from total 11.5 % 10.3 % 10.6 % 9.2 % 58.4 % 100 %
 

The implications drawn from the inclusion measure can differ for various 
applications: the goal can be to exclude the incorrect segments or to extract only 
those with a higher degree of inclusion. Depending on the topography, the correct 
modelled stream segments can enter the archaeological analysis directly, or they can 
be used to update the matching segments of the historical streams, leaving parts that 
are not similar unchanged. In Figure 9, we show examples of dealing with the 
undetermined values I  (0.20; 0.80). There are three cases of segments with the 
inclusion value about 0.40, which are completely different. On the right, the segment 
does not correspond to the historical stream. In the middle, the segment looks 
partially correct, so we can preserve its matching part. While these two cases can 
represent smaller or occasional streams (not depicted on the maps), the modelled 
stream on the left is obviously wrong and cannot be used to improve the information 
about historical streams. 
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Fig. 9. Examples of updating possibilities. Three matching segments can be updated, the 
whole segment with I = 0.40 is excluded (right); only a part of the segment with I = 0.45 is 

preserved (middle); the update of is not possible (left) 

In our example, the total number of segments of the modelled streams was about 
two times larger than the number of segments of the historical streams, with the total 
length of the modelled stream segments being about 1.2 larger. This is due to the 
fact that we usually depict smooth rivers and streams on maps, but the result of 
hydrological modelling usually contains also small segments of inflowing streams. 
These parts were not depicted on maps not because they were not present, but 
probably because of the cartographic generalization. From an archaeological point of 
view, it should be noted that the historical streams depicted on the Second Military 
survey maps represent the Middle ages and later time periods at the best. For more 
ancient time periods, the data related to the historical landscape morphology are 
unavailable; the difference between historical and modern morphology can be 
significant and in most cases it is not possible to use a modern DTM without 
considering the changes of the terrain. For this purpose, it is possible to use 
geomorphological, stratigraphic, geoarchaeological, and geobotanical data, which 
provide us with information about the changes in the landscape during long time 
periods (Arnaud-Fassetta et al., 2010; Lieskovský, 2011; Periman, 2005). 

 
5. Conclusions and discussion 

 
For a human, it is easy to determine the similarity of two objects. But, when working 
with large datasets, e.g. comparing data from different time periods or updating an 
existing dataset, it might be very time consuming to look at each object and to decide 
whether it is similar or not. For a computer, this task is more complicated and 
requires a mathematical definition, but once the algorithm is defined, it can be 
performed automatically with reduced need for manual control. In this paper, we have 
proposed an approach that uses the fuzzy inclusion or fuzzy similarity measure of 
two sets, use of which depends on whether we are comparing points, polylines, or 
polygons. This process considers the uncertainty of the geometric representation of 
spatial objects, which is their inherent property. 
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The advantage of the proposed algorithm is the possibility to effectively identify 
objects. We can select the objects that are similar or identical and use them in the 
analysis for updating, or select the dissimilar objects and exclude them from the 
dataset. This algorithm considers both the similarity of the shape and the similarity of 
the location of spatial objects. Moreover, the whole process of the determination of 
similarity or inclusion measure is enriched by modelling spatial objects’ uncertainty 
using fuzzy sets. If needed, it is also possible to consider both the geometric 
representation and the values of chosen attributes of objects at the same time in the 
process. In this case, it is important to choose the appropriate measure of similarity, 
or aggregation of multiple similarity measures, whose determination depends on 
particular application. 

Our algorithm consists of steps that can be performed using standard tools in GIS 
environment. We have applied this approach to compare two stream datasets: 
streams vectorised from the historical maps and streams derived from a modern 
digital terrain model. This task is useful, but is not limited to, for hydrological and 
predictive modelling in archaeology. We have computed the inclusion measure and 
used it to select the segments that i) can be considered as correct automatically (I > 
0.80, 58.4 % of segments), ii) require individual decision (0.20 < I ≤ 0.80, 30.1 %) 
and iii) are automatically rejected (I ≤ 0.20, 11.5 %). 

An open question is the setting of similarity or inclusion values’ thresholds to 
determine particular segments or objects that should be (automatically) considered 
as similar or dissimilar. Strict thresholds lead to more reliable results, but greater 
need for manual processing (visual control and manual editing of some segments), 
which can be time consuming for large datasets. To make this process more 
effective, other means of automatic control can be employed depending on the 
purpose of the analysis, e.g. topological rules valid for stream datasets. Also, the 
parameters used to model uncertainty (i.e. the parameters of Gauss membership 
function) can be an issue. If the quality or source of input datasets is unknown, it 
might be difficult to estimate them correctly. Overall, the approach proposed in this 
paper enables to consider the uncertainty of both input datasets. Therefore, the 
output from this method, which then enters the decision-making process, is enriched 
by additional information on the quality of the data set. This is the main benefit of this 
method when compared to using only Euclidean distance or visual determination of 
the similarity of two uncertain spatial objects. This leads to a more reliable procedure 
that can be, at least to some extent, automatized. 
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