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Radiotherapy of glioblastoma 15 years after 
the landmark Stupp’s trial: more controversies 
than standards?
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Background. The current standard of care of glioblastoma, the most common primary brain tumor in adults, has 
remained unchanged for over a decade. Nevertheless, some improvements in patient outcomes have occurred as 
a consequence of modern surgery, improved radiotherapy and up-to-date management of toxicity. Patients from 
control arms (receiving standard concurrent chemoradiotherapy and adjuvant chemotherapy with temozolomide) 
of recent clinical trials achieve better outcomes compared to the median survival of 14.6 months reported in Stupp’s 
landmark clinical trial in 2005. The approach to radiotherapy that emerged from Stupp´s trial, which continues to be 
a basis for the current standard of care, is no longer applicable and there is a need to develop updated guidelines 
for radiotherapy within the daily clinical practice that address or at least acknowledge existing controversies in the 
planning of radiotherapy. 
The goal of this review is to provoke critical thinking about potentially controversial aspects in the radiotherapy of 
glioblastoma, including among others the issue of target definitions, simultaneously integrated boost technique, and 
hippocampal sparing.
Conclusions. In conjunction with new treatment approaches such as tumor-treating fields (TTF) and immunotherapy, 
the role of adjuvant radiotherapy will be further defined. The personalized approach in daily radiotherapy practice is 
enabled with modern radiotherapy systems.
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Introduction 

Despite many advances in the understanding of 
glioblastoma (GBM) biology in recent decades, 

only a few findings were translated into updates 
in the treatment guidelines for this most aggressive 
and frequent primary brain tumor of adults. These 
updates have notably occurred in the manage-
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ment of elderly patients, where methylation of the 
O6-methylguanine-DNA methyltransferase (MGMT) 
gene promotor indicates higher chemosensitivity 
and higher benefit from administration of alkylat-
ing agents such as temozolomide (TMZ).1-5 Unlike 
for the majority of other cancer types in which 
there have been treatment gains with the advent 
of targeted therapies, there have not been similar 
advances in GBM treatment to date. Owing to rich 
tumor neovascularization, much hope was put es-
pecially into anti-angiogenic therapy6; however, 
negative results have been reported in GBM clini-
cal trials that used bevacizumab to target vascular 
endothelial growth factor.7,8 In contrast with nega-
tive results from recent GBM trials focused on new 
pharmacotherapeutics, co-administration of RT 
with TMZ has nearly tripled the 2-year survival of 
GBM patients in the last decade from a dismal 10% 
with RT alone to 27% with the addition of TMZ 
and quintupled to 47% in patients with MGMT 
promoter methylation9, representing an exciting 
advance after little progress in previous decades.10 
However, standard post-surgery treatment of 
newly diagnosed GBM patients has remained un-
changed since implementation of the recommen-
dations of the EORTC 26981–22981/NCIC CE3 trial 
(Stupp regimen) that finished enrolling patients 
in 2002 and was published in 2005.9,11 In this pro-
tocol, TMZ (75 mg/m2) is administered on days 1 
through 42 with concomitant RT (60 Gy), followed 
by administration of TMZ alone (150 to 200 mg/
m2) on days 1–5 in six consecutive 4-week cycles. 
Co-administration of TMZ improved survival from 
12.1 months (with RT alone) to 14.6 months (with 
the addition of TMZ).11,12 

This educational review considers potentially 
controversial aspects in the RT of GBM assuming 
strict application of the current standard of care 
EORTC 26981–22981/NCIC CE3 protocol for RT 
planning.

Current updates in glioblastoma 
treatment

Despite the advance described above, patients in 
ordinary clinical practice (outside of clinical tri-
als) have now been treated with the same general 
protocol for more than 10 years. During that time, 
though, RT itself has experienced rapid evolution 
due to advances in computing technology, better 
access to imaging methods, and more sophisti-
cated RT instrumentation.13 Today, preparation 
and application of RT is much more complicated 
than 10 years ago, but does this complexity bring 

any benefits in regards to overall survival of pa-
tients with GBM? Even though patients receive 
a numerically identical dose of 60 Gy, the dos-
ing technique matters as it affects toxicity. There 
is an obvious difference between conventional 
2-dimensional external beam RT (as whole brain 
irradiation, WBRT) and the 3-dimensional con-
formal RT or other modern methods of photon 
RT (e.g., intensity-modulated arc therapy, IMRT). 
Recently, tumor-treating fields (TTFs) have be-
come recognized as a novel cancer treatment 
modality with antimitotic effects against rapidly 
dividing tumor cells.14 This is caused by alternat-
ing electric fields of low-intensity and intermedi-
ate-frequency through transducer arrays applied 
to the shaved head, which are being increasingly 
thought of as an upcoming new standard of care 
in GBM, already approved by the U.S. Food and 
Drug Administration for both newly diagnosed 
as well as recurrent GBM.15 A randomized clinical 
phase 3 trial EF-14 evaluated the effect of TTF plus 
maintenance TMZ vs. maintenance TMZ alone on 
survival parameters in patients with newly diag-
nosed GMB.16,17 This trial represents the first ma-
jor advance in the treatment of newly diagnosed 
GBM in roughly a decade, with a hazard ratio for 
overall survival of 0.63 being numerically com-
parable with that seen in the Stupp trial in 2005. 
Ultimately, aside from health-care payers´ points 
of view, the willingness of patients to undergo the 
burden of carrying a TTF device non-stop will de-
termine if TTF becomes a new standard of care.18 

Based on the interim analysis, there is no prelimi-
nary evidence that health-related quality of life, 
cognitive, or functional status is adversely affected 
by continuous usage of TTF.19

Notably, patients in control (standard therapy) 
arm of this trial achieved relatively long median 
survival, as well as in another recent trial (ACT 
IV trial), where the role of epidermal growth fac-
tor receptor EGFRvIII targeted vaccine-based im-
munotherapy rindopepimut was investigated.20 
Compared to a median overall survival (OS) of 
14.6 months in the original Stupp trial11, there was 
reported to be significant increase in median OS 
(from diagnosis to death) to 19.8 months in the EF-
14 trial17, and to 20.2 months (median 17.4 months 
from randomization to death + a reported median 
of 2.8 months from diagnosis to randomization) in 
the control arm of the rindopepimut ACT IV trial.20 
Since the underlying treatment (RT to 60 Gy + con-
comitant and maintenance TMZ) is the same, it is 
unclear whether this difference in median OS is 
the evidence of improved treatment outcomes as 
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a consequence of modern surgery, improved RT, 
and up-to-date management of toxicity. Patients 
in both of these studies were randomized after 
the completion of concomitant chemoradiother-
apy. Thus, more favorable patients were selected 
compared to the first landmark Stupp trial. For 
this reason, a selection bias may be responsible 
for the described difference in OS. 82 out of 1019 
(8%) eligible patients for EF-14 trial experienced 
progressive disease after completion of radiother-
apy phase and were excluded.17 Whether 8% pa-
tients with the worst prognosis would have been 
excluded in EORTC 26981–22981/NCIC CE3 trial, 
the median overall survival would be roughly 16.5 
months from randomization (17.7 months from 
diagnosis). So without eventual selection bias, it is 
possible to compare these 17.7 months in the Stupp 
trial to the 19.8 months in EF-14 and 20.2 months 
in rindopepimut trials, all with the same treatment 
RT + TMZ. The difference in more than 2 months is 
clear improvement in outcomes as a consequence 
of modern surgery, RT and toxicity management. 
Or should we utilize approaches in daily RT prac-
tice which were employed in the Stupp trial decade 
ago since this is a “registration” trial for the current 
standard of care?

The correct total dose

Despite advances in RT over the last 10 to 15 years, 
certain postulates remain unchanged. One such 
principle is: “the correct dose to the correct place.” 
Dosage for adjuvant RT of GBM has been same 
over the last few decades, and it is not typically 
considered controversial in patients younger than 
60–65 years.21 The effect of high doses in adjuvant 
RT of GBM was shown in 1979 by a retrospective 
analysis performed by the German “Brain Tumor 
Study Group”.23 The best result (median over-
all survival of 42 weeks) was achieved by WBRT 
with 60 Gy compared to 55 (36 weeks) or 50 Gy (28 
weeks)23 and with significant difference between 
those receiving 60 versus 50 Gy. Doses above 60 
Gy did not lead to any benefit regardless of RT 
technique used. With WBRT, increasing to 70 Gy 
was not associated with further survival improve-
ment.24 The later attempts to improve outcomes 
by an increase of RT dose included combination 
of 60 Gy WBRT and increased targeted dosage by 
IMRT25, brachytherapy26, or stereotactic radiosur-
gery (RTOG 9305).27 Increasing focused radiation 
dose by hyperfractionation was tested as well.28 
Doses above 60 Gy have not proven to be beneficial 
even in the TMZ era.29

One might conclude that the question of the cor-
rect total dose in adjuvant RT is a closed chapter 
and further studies in this field are not judged. 
On the other hand, it is possible that the studies 
mentioned above missed application of increased 
RT dose to the most malignant tumor cells (a high-
density portion of tumor). Such areas are generally 
considered to be areas with contrast enhancement 
on CT or MRI. MRI-guided serial biopsy study 
has proven that tumor cells are present inside but 
also outside the area of this enhancement, infiltrat-
ing at least borders of T2 hyperintensity on MRI.30 
Positron emission tomography (PET) has an in-
creasingly important role in the diagnosis, grading, 
response assessment, and/or guidance of surgery 
and RT.31-33 For example, 18F-DOPA (3,4-dihydroxy-
6-[18F] fluoro-1-phenylalanine) is an amino acid 
tracer that identifies areas of high-grade portions 
of disease as proven by histopathology evaluation 
of 18F-DOPA and MRI-guided biopsies with statis-
tically significant difference in tumor-to-normal 
brain uptake ratio between grade II, III and IV glio-
mas.34 Dose escalation to not only areas with post-
contrast MRI enhancement but also to high-risk 
areas identified by PET or diffusion/perfusion MRI 
may improve clinical outcomes of glioma treat-
ment.35 An ongoing phase II clinical trial for high-
grade gliomas is evaluating increases in the dose 
up to 76 Gy with target volume defined by MRI 
and 18F-DOPA PET (NCT01991977). Dose-escalated 
proton beam RT is being evaluated in an ongoing 
prospective trial as well (NCT02179086). Hence, 
even if the current RT dosage is well established at 
60 Gy in common standard of care, the correct dose 
of radiation may become controversial shortly with 
wider availability of advanced MR and PET imag-
ing or proton beam facilities.36,37 Furthermore, as 
we gain additional experience with TTF therapy, 
effects of concurrent administration of TTF and RT 
will be questioned, and dose escalation or de-es-
calation trials may be of substantial interest in the 
field, further clouding the issue of correct RT dose.

The correct RT target definition

Determination of the ideal target volume for RT 
represents a trade-off between minimizing treat-
ment-related toxicity and achieving tumor control. 
With standard structural MRI, there are several 
comparable methods of contouring clinical target 
volume (CTV: location of expected or suspected 
malignant cells). Two basic approaches in target 
definition are “the American approach” by the 
Radiation Therapy Oncology Group (RTOG con-
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touring approach) that defines two CTVs accommo-
dating hyperintensity at T2/FLAIR MRI (FLAIR – 
Fluid-attenuated Inversion Recovery) in addition 
to T1 contrast-enhanced MRI38 and “the European 
approach” by the European Organization for 
Research and Treatment of Cancer (EORTC single 
phase contouring approach) that defines one CTV uti-
lizing mainly T1 post-contrast MRI. The ESTRO-
ACROP (European Society for Radiotherapy & 
Oncology - Advisory Committee on Radiation 
Oncology Practice) approach resembles EORTC 
practice, although CTV is defined in certain in-
stances also by T2/FLAIR MRI, especially in the 
case of secondary, isocitrate dehydrogenase (IDH)-
mutated GBM39 (Table 1). There has been no ran-
domized comparison of these different consensus 
practices. Nevertheless, the single phase approach 
is generally associated with reduced irradiated 
volume without a significant increase in marginal 
or distant recurrences.40 Reducing target volumes 
leads to lower irradiation of radiographically nor-
mal brain and, thus, possibly to less toxicity, al-
though this remains to be validated prospectively. 

In daily clinical practice, the chosen method for 
contouring depends in part on the planned radia-
tion technique (3-dimensional conformal therapy 
vs. inverse planning of IMRT with steeper dose 
gradients and higher demand on precision) or on 
the extent of edema, respective of the tumor itself. 
Molecular characteristics of gliomas, currently 
established in the integral diagnosis within the 
new WHO classification update from 2016, may 
also influence target definition in the personal-
ized contouring of target volumes.41 Mutation of 
the IDH gene, the early stable driving mutation in 
diffuse glioma, is associated with WHO grade II/

III gliomas and a better prognosis, while GBMs are 
typically IDH wild-type. Nonetheless, about 10% 
of GBMs, formerly named secondary GBMs, are 
IDH-mutated, which probably indicates their dedi-
fferentiation from low-grade gliomas. Because this 
dedifferentiation may occur anywhere within ini-
tial low-grade glioma, a single phase approach with 
high dose irradiation covering all T2/FLAIR hyper-
intensity may be deemed suitable. Nevertheless, it 
is too soon to speak about a predictive marker for 
RT because no clinical trial or RT planning study so 
far addressed this issue. 

If a two-phase RTOG strategy is applied for a 
particular patient, the dose for “the larger volume” 
and the dose for “the smaller volume – the high-
risk region” must be determined. This cone-down 
strategy, also called sequential boost, combines 
most often 46 + 14 Gy, or possibly 50 + 10 Gy, de-
pending on target volume size. IMRT allows prep-
aration of irradiation for two target volumes si-
multaneously. This technique, called simultaneous 
integrated boost (SIB), is sometimes used in clinical 
practice. However, its usage may be controversial. 
A common prescription is 30 x 1.7 Gy (51 Gy) for 
planning target volume #1 and 30 x 2.0 Gy (60 Gy) 
for planning target volume #2. This is not truly an 
SIB, because the dose in high-risk subvolume does 
not exceed standard daily 2.0 Gy; instead, the dose 
in low-risk subvolume is decreased to daily 1.7 Gy. 
The advantage is in dose control within individual 
subvolumes. In the case of the standard sequential 
46 + 14 Gy regimen, the low-risk subvolume re-
ceives more than the prescribed 46 Gy (Figure 1) 
because irradiation during the second phase passes 
through the low-risk subvolume (resulting in a non-
homogeneous dose of about 50–57 Gy, of which 

TABLE 1. Recommendations for target definition according to EORTC, RTOG and ESTRO-ACROP

Contouring 
approach Dose prescription GTV CTV

EORTC
single phase

30 x 2.0 Gy Resection cavity
+ residual T1 enhancement

GTV + 2 cm

RTOG 
two phases

23 x 2.0 Gy GTV1:
Resection cavity
+ residual T1 enhancement
+ FLAIR abnormality (oedema)

CTV1 = GTV1 + 2 cm (the margin is 
2.5 cm in cases where no oedema 
is presented)

+ 7 x 2.0 Gy GTV2:
Resection cavity
+ residual T1 enhancement

GTV2 + 2 cm

ESTRO-ACROP 30 x 2.0 Gy Resection cavity
+ residual T1 enhancement
+ FLAIR abnormality (oedema) 
 for secondary glioblasomas

GTV + 2 cm

Abbreviations: EORTC = European Organisation for Research and Treatment of Cancer; ESTRO-ACROP = European Society for Radiotherapy & Oncology 
- Advisory Committee on Radiation Oncology Practice; CTV = clinical target volume; FLAIR = Fluid-attenuated Inversion Recovery. GTV = gross tumor 
volume; RTOG = Radiation Therapy Oncology Group 
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first 46 Gy is delivered in 2.0 Gy daily fractions). As 
long as all dose-volume constraints are met, such 
an RT plan can be clinically applied. SIB seems to 
be more beneficial for cases with a large volume 
of hyperintensity on T2/FLAIR-weighted MRI, be-
cause the total dose for low-risk subvolume exactly 
matches the prescribed dose. Assuming relative ra-
dioresistance of glioma cells, the disadvantage is in 
the low daily dose of 1.7 Gy. There are no clinical 
studies that prove or disprove superiority of this 
type of SIB, and therefore its use remains contro-
versial. However, there are also no robust clinical 
studies demonstrating benefits of IMRT in gener-
al.42 Some reports exist in the evaluation of classi-
cal SIB, where the RT schedule is hypofractionated. 
For example, Paner-Raymond reported no survival 
improvement or patterns of failure change in their 
retrospective analysis of patients treated in 20 frac-
tion of 2.0 Gy delivered to the larger volume while 
simultaneously boosting gross tumor volume by 
3.0 Gy.43 The same RT protocol was used in recent-
ly published phase II clinical trial evaluating the 
role of neoadjuvant TMZ.44 Hypofracionated (60 
Gy in 20 daily fractions) RT was administrated con-
currently with TMZ after 2 weeks of prior neoadju-
vant TMZ (75 mg/m2 per day) and was followed by 
adjuvant TMZ.44 Encouraging median overall sur-
vival of 22.3 months warrants further testing of this 
approach in phase III design. Until then, hypofrac-
tionated SIB cannot be considered a standard for 
daily clinical practice. Generally, there is potential 
for a planning study and then even maybe a trial 
(comparison of RTOG vs. EORTC contouring ap-
proaches, normofractionated or hypofractionated 
SIB techniques vs. cone-down strategy, etc), how-
ever only one topic at the time must be addressed.

IMRT is commonly used due to its apparent do-
simetric advantages, mainly for tumors localized 
close to critical organs. The question often asked 
about expensive particle therapy is also pertinent 
for IMRT: What evidence do we need for the es-
tablishment of a new standard of care in RT tech-
niques? Dosimetric advantages have the potential 
to translate into the better neurocognitive function 
as is currently evaluated in the NCT01854554 clini-
cal trial, where IMRT is compared with intensity-
modulated proton RT for newly diagnosed GBM.

Lessons from the past: RT approach 
from Stupp´s protocol

The RT planning steps in the original Stupp´s 
protocol were substantially less complicated than 
those used nowadays. Gross tumor volume (GTV) 

representing tumor mass, was defined as the 
area within the primary tumor as measured by 
post-contrast enhancement on either CT or MRI. 
In general terms, planning target volume (PTV: 
margin needed to compensate for inaccuracies) 
is the GTV enlarged by approximately 2–3 cm.11 
Determination of a safety margin for PTV is com-
plicated in daily clinical practice with a slight dif-
ference in each patient as several variables must 
be taken into consideration. The most important 
are planned technique (classical conformal RT vs. 
IMRT; coplanar vs. non-coplanar), quality of im-
mobilization, availability of on-board imaging sys-
tem, inaccuracy in images registration, compliance, 
and overall patient’s state. 

Based on the evaluation of randomly selected 
individual patients from all participating centers 
in the EORTC 26981–22981/NCIC CE3 trial, 34% of 
centers planned RT based solely on pre-operative 
CT and 62% of centers planned RT on classic 2-di-
mensional simulator measurements.45 Most of the 
centers (94%) delineated PTV alone or with CTV 
or GTV.45 Would that be considered as a lege artis 
or as a controversial, whether we plan RT for our 
patient on 2 dimensional RTG simulator without 
dedicated planning CT (and MRI) scan, since it was 
employed in a registry study of the current stand-
ard of care? 

FIGURE 1. An example of an RT treatment plan (color wash display of isodoses with a 
minimal dose of 57 Gy, that is 95% of the prescribed dose of 60 Gy) in three planes. 
A RT plan for the same patient was prepared using a simultaneous integrated boost 
(left) and sequential boost (right). Target volumes are shown in blue contour (yellow 
labeled arrows). Dose assignment to the “PTV2-boost” target volume is the same 
in boost cases, 30 x 2.0 Gy. With sequential boost, overtreatment (red arrows) is 
observed in the area where a lower dose was prescribed.
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Other controversies in the decision-
making of daily RT practice

A few other controversies associated with RT of 
HGG are mentioned briefly. The issue of reduction 
of CTV around natural barriers to tumor growth is 
not standardized. One of the options is to reduce 
the CTV to as low as zero at the border with fixed 
barriers such as bone or falx and to as low as few 
millimeters around non-rigid barriers such as ven-
tricles or brain stem. Another controversial topic 
is hippocampal sparing with the goal of minimiz-
ing the negative effects of RT on cognitive func-
tions.46,47 RT in 2 Gy fractions to 40% of the bilateral 
hippocampi greater than an equivalent dose of 7.3 
Gy was associated with long-term memory impair-
ment in patients with low-grade or benign brain tu-
mors.47 There is controversy as to whether it might 
or might not be beneficial to spare the ipsilateral 
neural stem cell regions as in the hippocampus, 
owing to accumulating evidence of higher risk of 
tumor recurrence in the proximity to these regions, 
which are thought to provide favorable conditions 
for putative glioma stem cells whose survival is be-
lieved to be responsible for tumor recurrence.48-50 
Indeed, subventricular zones have been proposed 
as new key targets for GBM treatment.51,52 Whether 
to spare the contralateral hippocampus remains 
controversial. Nevertheless, especially when em-
ploying inverse RT planning to allow dose control 
in different parts of the brain, contralateral hip-
pocampal sparing should be at least considered 
in patients with right-sided low-grade glioma to 
spare the dominant left hemisphere which may 
be more related to verbal memory declines after 
RT.53,54 

Conclusion and future perceptivities

To provide state-of-the-art RT for GBM patients in 
daily clinical practice, it is necessary to acknowl-
edge the capabilities and limitations of current RT 
techniques in the light of the potential controver-
sies described in this review. With current techni-
cal and supportive care advances, it is possible to 
prolong further the survival of patients with GBM 
as presented in the control arms of the recent EF-14 
and rindopepimut ACT IV trials. In trials enrolling 
patients who have completed chemoradiotherapy, 
significant differences in completed upfront treat-
ment may affect results; further confounding in-
fluences can be at least partially mitigated if the 
above-mentioned uncertainties and controversies 
in daily RT are used as stratifications factors. For 

example, for the EF-14 trial, trial protocol amend-
ment V2.0 included an update in the dose of RT 
(from 60 Gy to 45-70 Gy) to address common vari-
ations in the standard of care treatment between 
individual patients/centers.16 Although the pro-
portion of patients who received less than 57 Gy 
was balanced between the TTF and control arms, 
one must ask what kind of RT should be used in 
daily clinical practice if the TTF treatment were to 
become the new standard of care. With the current 
standard approach of concomitant and adjuvant 
TMZ, it might not matter which RT procedure is 
chosen. With new treatment approaches such as 
TTF or immunotherapy55-57, the role of adjuvant ra-
diotherapy will be further defined.
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