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Background. Non-coding RNAs (ncRNAs) are key regulatory molecules in cellular processes, and are potential 
biomarkers in many diseases. Currently, microRNAs and long non-coding RNAs are being pursued as diagnostic and 
prognostic biomarkers, and as therapeutic tools in cancer, since their expression profiling is able to distinguish different 
cancer types and classify their sub-types. 
Conclusions. There are numerous studies confirming involvement of ncRNAs in cancer initiation, development and 
progression, but have only been recently identified as new diagnostic and prognostic tools. This can be beneficial 
in future medical cancer treatment options, since ncRNAs are natural antisense interactors included in regulation 
of many genes connected to survival and proliferation. Research is directed in development of useful markers for 
diagnosis and prognosis in cancer and in developing new RNA-based cancer therapies, of which some are already 
in clinical trials.
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Introduction

Cancer is one of the leading causes of death in the 
world, following deaths by cardiovascular and 
infectious disease. Although cancer is widely re-
searched there is still lack of early detection tech-
niques. For detecting early stage tumors and their 
precise characterization before and after treatment, 
biomarkers could be used, which consequently 
could lower the mortality rate.1 Research for suit-
able biomarkers for diagnosis and prognosis is 
wide-spread, and lately directed into detection in 
body fluids. For this purpose extensive research 
in the field of non-coding RNAs (ncRNAs) is con-
ducted.

RNA used to be considered the messenger be-
tween the gene and the protein encoded by this 
gene.2,3 The minority of the transcripts are protein 
coding (1.5%), and the rest used to be referred as 
“dark matter”, now known to be the ncRNA tran-

scripts. Recent transcriptional analyses of genome 
estimate that ncRNA sequences are the most tran-
scribed ones.4,5 The group of ncRNAs is quite di-
verse and complex. It is divided into ribosomal 
RNAs (rRNAs), transfer RNAs (tRNAs), micro-
RNAs (miRNAs), long non-coding RNAs (lncR-
NAs), small nucleolar RNAs (snoRNAs), small 
interfering RNAs (siRNAs), small nuclear RNAs 
(snRNAs), and piwi-interacting RNAs (piRNAs) 
(Figure 1).6

MicroRNAs (miRNAs) are ~22 nt long RNA 
molecules and are involved in post-transcriptional 
regulation. MiRNAs regulate over 30% of messen-
ger RNAs (mRNAs), mainly through the negative 
regulation of gene expression, where miRNA bind 
to regions of mRNA, blocking the translation or 
completely degrading mRNAs.7 It is established 
that miRNA are included in cellular differentiation, 
development, proliferation and apoptosis, where 
they play an important role. In cancer these pro-
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cesses are deregulated, meaning that miRNA are 
involved in carcinogenesis, and could contribute 
to the initiation and progression of cancer.8 Tumor 
specific miRNA have a potential of becoming can-
cer biomarkers, since their expression profile can 
be more specific for determining the classification, 
diagnosis, and progression in cancer.9 

LncRNA are classified as over 200 nt long tran-
scripts that lack functionally open reading frame. 
They are involved in cellular differentiation and pro-
liferation. The mechanisms through which they act 
are molecular scaffolds, which are involved in tran-
scriptional machinery, as post-transcriptional regu-
lators of splicing or as molecular decoys for miR-
NA.4,10 The lncRNA research is a new field emerg-
ing in molecular genetics, therefore only a small 
number of lncRNA were characterized. Comparing 
to miRNA, lncRNA studies are scarcer, nonetheless 
some promising evidence of using lncRNA as bio-
markers for diagnosis and prognosis exist.

PiRNA are a class of regulatory small non-
coding RNAs, 23-29 nt in length, which form the 
piRNA-induced silencing complex in the germ line 
of many animal species. PiRNA are specifically as-
sociated with PIWI proteins, which are germline-
specific members of AGO protein family. The main 
function of piRNAs is defence against transpos-
able elements in germ cells, and this role is highly 
conserved across animal species. Transposable ele-
ments threaten the genomic integrity of the host. 
PiRNAs and their interacting proteins have impor-
tant role in cellular processes, and some of them are 
potential regulators of cancer cell development.11

SnoRNAs are 60-300 nucleotides in length and 
are predominantly found in nucleus. Their clas-
sical function is connected to post-transcriptional 
modification of ribosomal RNAs and some spliceo-
somal RNAs. These modifications are necessary for 
efficient and accurate production of ribosomes.12 
Modification of ribosome biogenesis has been im-
plicated in cancer development, which indicates 

snoRNAs might contribute to cancer, although this 
area needs further research.12,13

SiRNA are usually 19-23 nucleotides in length, 
which are known to guide silencing of target mR-
NA by directing the RNA-induced silencing com-
plex to mediate site-specific cleavage, and destruc-
tion of targeted mRNA.14 Genes associated with 
cancer are a potential target of siRNAs, their po-
tential is in inhibition and therapeutics. 14-17

In this review we will highlight the potential of 
miRNA and lncRNA for diagnosis and therapy, 
focusing on specific and sensitive biomarkers and 
their availability in body fluids. Additionally we 
will address the therapeutic benefits of miRNA 
and strategies of delivery to damaged tissues.

Potential in diagnostics

Biomarkers are biological indicators of disease 
states, used to classify cancer types or subtypes.18 
Effective and clinically relevant biomarkers are 
important for subsequent patient’s treatment.19 
The research on detection of both miRNAs and 
lncRNAs is orientated toward their detection in 
body fluids. Comparing to mRNA, the level of 
expressions of either miRNA or lncRNA may be 
a better tool for indication of a certain disease. 
Furthermore, this can be diagnostically applicable 
when a distinctly specific pattern of expression for 
a certain disease exists.

One of the reasons of extensive research done on 
miRNAs connected to cancer is the possibility of 
conducting research on formalin fixed paraffin em-
bedded (FFPE) samples. Due to their small length, 
miRNAs are not affected by formalin fixation and 
degradation over time like longer RNA molecules, 
such as mRNA and lncRNA, where fresh frozen 
samples are needed.20-22

MiRNA diagnostic 

The most commonly observed miRNA, which is 
up-regulated in human cancers, is miR-21 (Table 1). 
Overexpression was observed in breast, lung, pros-
tate and other cancers, where it was shown to in-
crease cell proliferation and invasion, and its sup-
pression led to decrease in the cell proliferation, 
invasion, and induced apoptosis.23-25

Another miRNA up-regulated in breast, lung, 
pancreatic and other cancers is miR-155, which 
overexpression is also associated with tumorigen-
esis in lymphoma.52 Also in blood samples these 
two miRNAs are the most deregulated. Other 

FIguRe 1. Schematic presentation of ncRNAs biogenesis.
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miRNAs do not overlap in the cancer type groups 
either in tissue or blood samples. The overlap be-
tween the tissue and blood samples of the same 
cancer type was observed in prostate cancer, where 
miRNA-141 is expressed in tissue and patients se-
ra, and could differentiate between patients with 
cancer and healthy controls.51 Another example is 
observed in plasma of patients with colorectal can-
cer (CRC), where levels of miR-29a and miR-92a 
are able to distinguish advanced adenomas and 
negative controls.53 In the research of circulating 
miR-141 in 102 plasma samples, a significant cor-
relation to colon cancer stage IV was determined.54 
The accuracy was further improved by combining 
the levels of miR-141 to carcinoembryonic antigen 
marker. For more accurate diagnostics, expression 
levels of several miRNAs should be monitored. 

Expression of 47 miRNAs in 101 FFPE samples of 
primary cancers and metastasis was evaluated, de-
termining the tissue of origin. The identification of 
tissue was 100% for primary cancers and 78% for 
metastases. The accuracy remained high for inde-
pendent sample validation.55 miRNA expression 
arrays can be utilized, when the other established 
clinical tests are inconclusive.

LncRNA diagnostic

lncRNA is a fast growing field of research and 
many discovered lncRNA are deregulated in can-
cer (Table 2). 

HOTAIR interacts with polycomb repressor 
complex PRC2, which causes the transcriptional 
silencing of several metastasis suppressor genes lo-

TAbLe 1. Potential diagnostic miRNA biomarkers in tissue and blood samples

Cancer Tissue samples (FFPE)
(expression status , ) Reference Blood samples

(expression status , ) Reference

Breast cancer miR-21, miR-155 , miR-191 , miR-196a , miR-
125b , miR-221 , let-7a , miR-145 , miR-205 

23, 26 Serum: miR-10b , miR-34a , miR-155 , miR-21 , 
miR-106a , miR-155 , miR-126 , miR-199a , 
miR-335  Whole blood: miR-195 

27-29

Lung cancer miR-21, miR-205 30 Serum: miR-10b , miR-155  31

Gastric cancer miR-106a , miR-31  32, 33 Serum: miR-10a , miR-22 , miR-100 , miR-148b , 
miR-223 , miR-133a , miR-127-3p , miR-1 ,  
miR-20a , miR-27a , miR-34 , miR-423-5p 

34, 35

Pancreatic 
cancer

miR-452 , miR-105 , miR-127 , miR-518a-2 , 
miR-187 , miR-30a-3p , miR-21 , miR-155 , 
miR-221 , miR-222 , let-7a 

36-38 Serum: miR-21 , miR-155 , miR-196a 
Plasma: miR-21 , miR-155 , miR-196a , miR-210 

39-41

Prostate 
cancer

miR-125b , miR-15a , miR-16 , miR-184 ,  
miR-146a , miR-203 , miR-34c , miR-141 

42-46 Serum: miR-141 , miR-21 , miR-141 , miR-221 , 
miR-375 

47-51

TAbLe 2. lncRNA deregulated in cancer

Name Size (kb) Cancer Type Expression Reference

ANRIL ~3.9 Prostate, leukemia  58

BC200 0.2 Breast, cervix, esophagus, lung, ovary, parotid, tongue  59, 60

PRNCR1 13 Prostate 61

H19 2.3 Bladder, lung, liver, breast, esophagus, choriocarcinoma, colorectal cancer 62-68

HOTAIR 2.2 Breast, hepatocellular  56, 57, 69, 70

HULC ~0.5 Hepatocellular  71, 72

MALAT1 7.5 Breast, prostate, colon, liver, uterus  73-76

MEG3 1.6 Brain  77, 78

PTNEP1 3.9 Prostate 79

Spry4-it1 ~0.7 Melanoma  80

SRA 1.965 Breast, uterus, ovary  81, 82

UCA1/CUDR 1.4, 2.2, 2.7 Bladder, colon, cervix, lung, thyroid, liver, breast, esophagus, stomach  83, 84

PCA3 0.6-4 Prostate  85

GAS5 isoforms Breast  86
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cated in HOXD locus on chromosome 2.56 Elevated 
expression of HOTAIR was observed in primary 
and metastatic breast cancer compared to normal 
tissue. The high expression of HOTAIR is also 
correlated to metastasis and poor survival rate.56 
HOTAIR can be a potential biomarker for the ex-
istence of lymph node metastasis in hepatocelular 
carcinoma (HCC).57 

ANRIL activates two polycomb repressor com-
plexes, PRC1 and PRC2, which results in chro-
matin reorganization, silencing the INK4b-ARF-
INK4a locus encoding tumor suppressor genes, in-
volved in cell cycle inhibition, and stress-induced 
apoptosis. Overexpression of ANRIL in prostate 
cancer has shown silencing of INK4b-ARF-INK4a 
and p15/CDKN2B by heterochromatin reforma-
tion.58,87 

MALAT1 is widely expressed in normal human 
tissues and is found to be up-regulated in a vari-
ety of human cancers of the breast, prostate, colon, 
liver and uterus.75,76 The MALAT1 locus is located 
at 11q13.1 and was found to harbour chromosomal 
translocation break points associated with cancer.88 
It has been shown that increased expression of 
MALAT1 can be used as a prognostic marker for 
HCC patients following liver transplantation.89

H19 and the insulin-like growing factor 2 (IGF2) 
are imprinted, and expressed from the maternal al-
lele, and from parental allele, respectively.62,68 The 
loss of imprinting results in misexpression of H19 
and was observed in many tumors including hepa-
tocellular and bladder cancer.64 c-MYC induces the 
expression of H19 in different cell types where H19 
potentiates tumorigenesis.68 

LncRNA MEG3 is a transcript of the maternally 
imprinted gene. In normal pituitary cells MEG3 
is expressed, the loss of expression is observed in 
pituitary adenomas and the majority of meningi-
omas and meningioma cell lines. MEG3 activates 
regulation of tumor suppressor protein p53.77,78

Growth Arrest-Specific 5 (GAS5) functions as 
a starvation or growth arrest-linked riborepres-
sor for the glucocorticoid receptors by binding to 
their DNA binding domain inhibiting the associa-
tion of these receptors with their DNA recognition 
sequence. This suppresses the induction of several 
responsive genes including the gene encoding cel-
lular inhibitor of apoptosis 2 (cIAP2), reducing cell 
metabolism and synthesizes cells to apoptosis.90 
GAS5 can induce apoptosis directly or indirectly 
in the prostate and breast cancer cell lines, where 
it was shown that GAS5 has a significantly lower 
expression in breast cancers compared to normal 
breast epithelial tissues.86

One of the lncRNA utilized in a clinical test is 
prostate cancer associated (PCA3), which is a pros-
tate cancer specific lncRNA. It can be detected 
in urine samples obtained after a prostatic mas-
sage.91,92 Studies, comparing the levels of PCA3 to 
current biomarker prostate specific antigen (PSA), 
were conducted, showing that PCA3 has higher 
specificity than PSA, reducing the number of biop-
sies. Also PCA3 levels correlate better to identifica-
tion of disease, since PSA levels can be also elevat-
ed due to inflammatory reasons. The accuracy was 
improved when profiling of both PCA3 and PSA in 
blood was performed.93

There are two lncRNA connected to HCC, 
highly up-regulated in liver cancer (HULC) and 
HOTAIR. HULC is detected in peripheral blood 
cells and therefore has a potential as a biomarker.72 
HOTAIR has also been correlated to HCC and has 
potential to become a biomarker for lymph node 
metastasis and tumor recurrence in HCC patients’ 
undergone a liver transplant.57,70

Clinical trials on biomarkers are mostly per-
formed on specimens that are easily obtainable, 
such as blood or urine, and present little discom-
fort to patients, where on the other hand trials are 
rare on tumor tissue, due to the specimen unavail-
ability. The detection of early stage disease in body 
fluids is ideal for patients, due to its non-invasive 
nature. Still many questions persist, like stability 
of the circulating molecules, and their stability in 
the progression of disease. There is also evidence 
of some specific expression in cancers, but with the 
on-going research on this topic there will be more 
evidence of involvement of lncRNA in cancer.71,93

Potential of therapy

After proving many miRNA and lncRNA are de-
regulated in cancer, the research now focuses on 
their role as therapeutic targets.94

MiRNAs involved and deregulated in cancer 
are divided into tumor suppressor and oncogenic 
miRNAs. Oncogenic miRNAs are overexpressed in 
cancer, downregulating tumor suppressor genes.95 
To reverse the oncogenic miRNA expression they 
have to be inhibited to relieve their targets. This can 
be achieved by introducing mRNAs targeting spe-
cific miRNAs or by using antisense single-stranded 
oligonucleotides complementary to miRNA, acting 
as miRNA sponges and miRNA antagonists, re-
spectively.96-98 On the other hand tumor suppressor 
miRNAs are under expressed in the cancer, their 
role being down-regulation of oncogenes.95,99 To 
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restore the levels of tumor suppressor miRNAs the 
replacement therapy of mimics miRNA or DNA 
coding for specific miRNAs is needed.96,100 This is 
schematically presented in Figure 2.

Inhibition of oncogenic miRNAs has been wide-
ly researched through siRNA-based therapeutic 
modalities, and antisense oligonucleotides, which 
have been a straightforward approach relieving 
repressed targets of miRNA.101,102 Antisense oligo-
nucleotides can be designed to potentially block 
several steps during the biogenesis and action of 
miRNA, miRNA processing or miRNA pairing with 
targeted mRNA. In vitro and in vivo mice studies 
used modified antisense oligonucleotides to inhibit 
tumor proliferation, migration, invasion, and apop-
tosis.96 Antisense oligonucleotide targeting miR-21 
in in vitro and in vivo xenograft model resulted in the 
inhibition of breast cancer cell growth, inhibited cell 
proliferation, and increased apoptosis.103 Besides an-
tisense oligonucleotide inhibition, miRNA sponges 
as another technique to effectively lower the levels 
of miRNA has been used, where targeted sequence 
is cloned in multiple copies, and upon transfection 
into a tumor cell should act as a sponge for the miR-
NA and relieve its natural target.104 In breast cancer 
cell lines, a miRNA sponge trapping up-regulated 
miR-9 connected to cancer metastasis effectively re-
duced invasiveness of the tumor cells.105 

The replacement therapy for down-regulated 
tumor suppressor miRNA is administration of 
synthetic miRNA. Tumor suppressor let-7 miRNA, 
known to be associated with many tumors, was 
delivered intratumorally in a mouse model of non-
small-cell lung cancer, which led to reduction of 
tumor burden.106 Several studies suggest that let-7 
acts through direct repression of KRAS and c-MYC 
oncogenes.107 Another deregulated miRNA associ-
ated with several cancers is miR-34. Through trans-
fection or lentiviral-mediated delivery of mimic 
miR-34 to cancer cells, the cell-cycle arrest, apop-
tosis and reduction in tumor size was observed.108

It is observed, in both EU and US, a large in-
crease of patents connected to miRNA. Many 
miRNA based therapeutics is either in preclinical 
or clinical trial phase. In cancer treatment Mirna 
Therapeutics has developed miRNA mimic thera-
peutics for miR-34 (phase I) and let-7 (preclinical).

While many targeting strategies are implied 
to reverse the levels of miRNA, for lncRNA these 
strategies are still being developed. In principle the 
same strategies as for miRNA could be used, like 
introducing molecules designed to target lncRNA 
to lower the expression levels or disrupt the lncR-
NA in structural or functional way. 

There is evidence that the expression can be low-
ered through RNAi technology, degradation by 
RnaseH or by genomic integration of RNA destabi-
lizing elements.109 Modifying the expression levels 
can represent some difficulty due to possible sec-
ondary structure of lncRNA. Inactivation of lncR-
NA is also possible through inhibition of active site 
via small molecule inhibitors. To be able to do this 
the molecular function needs to be known, which 
for most lncRNA is still elusive. It is also possible 
to disrupt the structure of lncRNA. Due to their 
length it is presumed some secondary structures 
exist. With the use of specially designed small mol-
ecules this structures would be disrupted leading 
to lncRNA loss of function. The potential of using 
specific therapeutics that would enable the mim-
icking or inhibition of certain non-coding RNA is 
promising and enormous.110 

To reverse the levels of disrupted lncRNA in 
cancer a replacement therapy is also an option. 

FIguRe 2. Schematic presentation of oncogenic and tumor suppressor miRNAs in 
normal and cancer cell and the potential of modifying state in cancer cell with 
therapy.
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Some strategies of delivery are being explored. The 
use of lncRNA H19 specific expression in tumors 
has been explored through a plasmid delivery. 
Intratumoral delivery of plasmid, which carries 
the gene for the A subunit of diphtheria toxin un-
der the regulation of H19 promoter, induces high 
expression of diphtheria toxin, which results in re-
duced tumor size.111

Conclusions

Studies of miRNA and lncRNA have highlighted 
the importance of non-coding part of human ge-
nome. Of all lncRNA only few have been well char-
acterized. Research also shows they have impor-
tant function in cancer initiation, progression and 
metastasis. Further expression patterns in cancer 
will improve diagnosis and prognosis of cancer. 
With more functional and structural studies the 
potential of lncRNA therapies will be seen.

MiRNA as regulators of multiple genes promise 
a great potential in therapeutics and a switch from 
one drug one target to one drug multiple target 
therapy. Although there were great advances made 
in replacement and inhibitory strategies there are 
still challenges that include stability, safety and de-
livery of the chosen therapeutics. For therapeutics 
to become a successful application, the drug needs 
to be delivered in a way that ensures the stability 
of the molecules’ transport to the appropriate cells.
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