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AbstrAct: Existing resources of population data, provided by national censuses in the form of areal aggregates, have 
usually insufficient resolution for many practical applications. Dasymetric modelling has been a standard technique to 
disaggregate census aggregates into finer grids. Although dasymetric modelling of population distribution is well-es-
tablished, most literature focuses on proposing new variants of the technique, while only few are devoted to devel-
oping broad-scale population grids that could be used for real-life applications. This paper reviews literature on con-
struction of broad-scale population grids using dasymetric modelling. It also describes an R implementation of fully 
automated framework to calculate such grids from aggregated data provided by national censuses. The presented 
implementation has been used to produce high resolution, multi-year comparable, U.S.-wide population datasets that 
are the part of the SocScape (Social Landscape) project.

key worDs: population grids, dasymetric modelling, R

Corresponding author: Anna Dmowska, dmowska@amu.edu.pl

Introduction

An access to high resolution data on popula-
tion distribution is needed for a wide range of 
applications related to urban and transport plan-
ning (Benn 1995, Murray et al. 1998, Pattnaik et 
al. 1998), resources management (Gleick 1996), 
disaster/relief mitigation (Bhaduri et al. 2002), 
assessment of human pressure on the environ-
ment (Weber, Christophersen 2002) and quan-
tifying environmental impact on population 
(Vinkx, Visee 2008). Reliable information on pop-
ulation distribution is also essential for charac-
terizing population at risk from natural hazards 
(Dobson et al. 2000, Chen et al. 2004, Tralli et al. 

2005, Thieken et al. 2006, McGranahan et al. 2007, 
Maantay, Maroko 2009, Mondal, Tatem 2012, 
Tatem et al. 2012, Berke et al. 2015, Tenerelli et al. 
2015, Calka et al. 2017) and for public health ap-
plications such as disease burden estimation and 
epidemic modelling (Hay et al. 2005, Tatem et al. 
2008, 2011, 2012).

The quality of population data varies from one 
country to another, especially between low-in-
come and high-income countries. Low-income 
countries are often lacking population data or 
data has a poor quality (Tatem et al. 2007). High-
income countries usually have resources to col-
lect data for each household, but such data is only 
released in the form of areal aggregates to protect 
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privacy (Langford 2013, Bakillah et al. 2014). 
The size of aggregation units differ between the 
countries. However, even the smallest aggregat-
ed units have often insufficient spatial resolu-
tion for many practical applications. Aggregated 
data also has many limitations (Schroeder 2007, 
Dmowska et al. 2017), including:
1. spatial resolution depends on the choice of 

census units, and it is spatially varying (low 
in rural areas, higher in urban areas),

2. mapped population is distributed uniformly 
within each census unit, even if majority of the 
area is uninhabited (covered by parks, forest, 
water, etc.), and

3. spatial extents of census units change with 
time, which makes difficult to conduct year-
to-year comparisons.
Furthermore, such data is usually available 

in the form of attribute tables, with the option to 
join them to vector files containing boundaries of 
aggregation units in order to perform GIS-based 
analysis. This makes the data difficult to work 
with, especially for the large areas.

Most of aforementioned limitations of ag-
gregated data can be overcome by gridded (ras-
ter) data. The advantage of using gridded data 
include:
1. spatial resolution, defined by the size of the 

cell, is high and spatially constant over the 
whole area;

2. the extend of cells does not change between 
years making year-to-year comparison easy to 
perform, and

3. the uninhabited areas can be properly iden-
tifies and properly mapped via dasymetric 
modelling thus making population maps 
more accurate.
Several methods for disaggregating census 

data into grid cells (or smaller areal units) have 
been introduced over the years. Such methods 
can be divided into two groups: areal weighting 
(Goodchild, Lam 1980, Flowerdew, Green 1992, 
Goodchild et al. 1993) and dasymetric model-
ling (Wright 1936, Langford, Unwin 1994, Eicher, 
Brewer 2001, Mennis 2003). Areal weighting is a 
type of an areal interpolation used to transform 
geographic data from one set of boundaries to 
another. Areal weighting assigns to each grid cell 
population value based on its percentage area of 
the host areal units (Mennis 2003). Dasymetric 
modelling uses ancillary information of higher 

spatial resolution to help refine location of pop-
ulation during the process of disaggregating spa-
tial data to finer units (Mennis 2003).

Dasymetric modelling takes advantage of a 
correlation (a model) between population density 
and values of ancillary variable; the stronger the 
correlation (the better the model) the more accu-
rate is the resulting population grid. Dasymetric 
modelling is well established in the literature (for 
a review see Petrov 2012). It has been defined 
and developed in 1911 by Benjamin (Veniamin) 
Petrovich Semenov-Tyan-Shansky (Bielecka 
2005, Petrov 2012) and popularized by Wright 
(1936). After 2000, an interest in dasymetric map-
ping had significantly increased due to the pro-
gress in the GIS and remote sensing technologies 
(Mennis 2009, Petrov 2012). Published papers 
described development of new approaches to 
dasymetric modelling based on different ancil-
lary data and a variety of techniques to establish 
relation between population density and values 
of ancillary variable. These papers focus on the 
theory and do not provide actual datasets which 
are the results of proposed techniques.

Among the ancillary data used to disaggregate 
population, the most popular is the land cover 
data (Wright 1936, Mennis 2003, Bielecka 2005, 
Gallego et al. 2011, Linard et al. 2011, Dmowska, 
Stepinski 2014, 2017a, b, Dmowska et al. 2017). 
Land cover data is provided in the form of a cat-
egorical grid, with different categories indicating 
types of land cover. Broad-scale land cover data-
sets are obtained by classifying large mosaics of 
remotely sensed multispectral images. They have 
spatial resolution higher than the resolution of 
census aggregated units. One problem with land 
cover datasets is that they are based on surface 
spectral properties leading to possible confusion 
between populated and unpopulated objects (for 
example buildings) having same spectral signa-
tures. This problem can be minimized by adding 
land use data as an additional ancillary variable 
(Dmowska, Stepinski 2017a).

The other source of ancillary data is high res-
olution satellite images (Lu et al. 2010, Ural et 
al. 2011, Lung et al. 2013), LIDAR data (Lu et al. 
2010), tax parcel data (Maantay et al. 2007, Tapp 
2010, Jia et al. 2014, Jia, Gaughan 2016), street 
density (Reibel, Bufalino 2005), density of point 
of interests (Bakillah et al. 2014), light emission 
data (Briggs et al. 2007, Sridharan, Qiu 2013) and 
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address datasets (Zandbergen 2011). Recently, 
social media data also are used (Patel et al. 2017). 
Such datasets can be used individually or in com-
bination to construct a dasymetric model.

Many papers concentrate on establishing re-
lation between population and ancillary data in 
dasymetric modelling. These approaches had 
changed over the years from using predeter-
mined weights (binary approach or limiting var-
iable estimation (Eicher, Brewer 2001), through 
using empirical sampling (Mennis 2003, Mennis, 
Hultgren 2006), to employ statistical techniques 
such as regression analysis (Flowerdew, Green 
1992, Briggs et al. 2007) or random forest (Stevens 
et al. 2015). An overview of developed methods 
can be found among others in Wu et al. (2005) 
and Maantay et al. (2007).

Despite the increasing body of the literature 
describing various techniques for dasymetric 
modelling, there is still lack of high resolution 
population grids. There are only few products 
which provide high resolution population grids 
on global or continental scale (Table 1).

LandScan and Gridded Population of the 
world, Version 4 (GPwv4) provide popula-
tion grids at global scale at a resolution of 30 
arc-seconds (approximately 1 km at the equa-
tor). LandScan is developed by the Oak Ridge 
National Laboratory using the best available cen-
sus data for particular regions. It is a product of 
dasymetric modelling based on land cover, roads, 
slope, urban areas, village locations, and high 
resolution imagery analysis as ancillary data and 
sub-national level census counts for each country 
as population data. LandScan population grid is 
a combination of locally adoptive models that are 
tailored to account the differences in spatial data 

availability, quality, scale, and accuracy of data 
for each individual country and region (ORNL 
2019).

Gridded Population of the World, Version 4 
(SEDAC 2019) provides gridded population es-
timates with a resolution of 30 arc-seconds (ap-
proximately 1 km at the equator) for the years 
2000, 2005, 2010, 2015, and 2020. The census 
data, collected around 2010 (between 2005 and 
2014) are extrapolated to a series of output years. 
GPWv4 is the result of uniform areal weighting 
approach (Doxsey-Whitfield et al. 2015).

The WorldPop project (2019) provides pop-
ulation grids at a resolution of 1km at the con-
tinental scale and 100 m/cell for most individu-
al countries in Africa, Asia, as well as in South 
and Central Americas. It was initiated in 2013 by 
combining the AfriPop, AsiaPop and AmeriPop 
population mapping projects (Gaughan et al. 
2013, Tatem et al. 2013). Population grids are the 
result of dasymetric modelling, performed for 
each country separately based on census data (or 
official population estimates) at the finest level of 
aggregation available for each country and using 
remotely-sensed and geospatial datasets (e.g. set-
tlement locations, settlement extents, land cover, 
roads, building maps, health facility locations, 
satellite night lights, vegetation, topography, ref-
ugee camps) as ancillary data. Dasymetric mod-
elling follows a procedure described by stevens 
et al. (2015).

The WorldPop project (2019) also provides 
data for mapping births and pregnancies (Tatem 
et al. 2014), age and sex structure (Alegana et al. 
2015) and population dynamics based on cell 
phone data (Deville et al. 2014). The recent ini-
tiative (WorldPop Archives) aims at providing 

Table 1. Characteristics of broad-scale population grids. 
Project Region Resolution Timestamp Availability

worldPop South America, Central 
America, Africa, Asia

100 m (country), 
1 km (continent)

2010–2020 with 5 year 
interval

http://www.worldpop.org.uk

LandScan world-wide 1 km 2000–2017 with 1 year 
interval

https://landscan.ornl.gov

GPwv4 world-wide 1 km 2000, 2010, 2015, 2020 http://sedac.ciesin.columbia.edu
E.U. pop grid European Union 

countries
100 m 2000 http://www.eea.europa.eu

Australian 
pop.grid

Australia 1 km 2011 http://www.abs.gov.au

SEDAC-USA United states 1 km (UsA), 
250 m (MSA)

1990, 2000, 2010 http://sedac.ciesin.columbia.edu

socscape United states 30 m 1990, 2000, 2010 http://sil.uc.edu
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uniform, resampled and co-registered spatial 
data layers at two different resolutions (3 and 30 
arc-second) ready-to-use for modelling and map-
ping population distribution (Lloyd et al. 2018).

A 100 m/cell population grid (Gallego 2010, 
Gallego et al. 2011) has been developed for the 
European Union (EU) countries; it is available 
from the European Environment Agency data 
warehouse (EEA 2019). This dataset is a result of 
dasymetric modelling calculated using popula-
tion data from the 2000/2001 round of censuses 
aggregated to nearly 115,000 areal units and 100 
m/cell raster version of CORINE Land Cover 
2000 as an ancillary data.

Batista e Silva et al. (2013) reported on produc-
ing 2006 population estimates at 100 × 100 meter 
cells, for the territory of the EU27 (except Greece) 
and Andorra, norway, Iceland, san Marino, 
Monaco, Lichtenstein, the Vatican City. Authors 
tested several different approaches to establish 
relation between population data and ancillary 
variables as well several different ancillary da-
tasets to check whether using more detailed an-
cillary data in the dasymetric mapping leads to 
improved accuracy. The final map uses popula-
tion data aggregated to 100,925 local administra-
tive units (LAU2) downloaded from EUROSTAT 
with a refined version of CORINE Land Cover 
2006 and information on the soil sealing degree. 
The final map is only made available in the PDF 
format as a supplementary material to paper 
Batista e Silva et al. (2013).

In the North America WorldPop project 
(WorldPop 2019) provides data for Mexico and a 
few separate projects provide data for the United 
States. Until recently, the only available data for 
the entire U.S. were the population grids devel-
oped by sEDAC as a result of aerial interpolation 
of U.S. census data. These grids are available of 
30 arc-seconds (approximately 1 km at the equa-
tor) resolution for the U.S. for 1990, 2000 and 
2010 year and at a 7.5 arc-second (approximately 
250 m) resolution for major metropolitan areas 
(MSA) for 1990 and 2000 year. Although there 
are prepared for 1990, 2000, 2010, they cannot be 
used for direct comparison studies due to differ-
ent format (2000 year dataset use integer counts, 
whereas 1990 and 2010 real number counts 
which makes those datasets non-comparable). 
Also ~1km resolution is not sufficient for many 
practical applications.

Since 2014 the other resource of popula-
tion grids are provided by SocScape project 
(Dmowska, Stepinski 2017a, Dmowska et al. 
2017). SocScape project makes available two 
types of products for the conterminous U.S.:
1. 30m high resolution grids of the entire popu-

lation and for race/ethnicity subpopulations 
in 1990, 2000, 2010,

2. racial diversity grids.
High resolution grids are the product of dasy-

metric modelling performed on block-level cen-
sus data (the smallest level of aggregation in the 
U.S.) and 30 m National Land Cover Datasets 
(NLCD). Racial diversity grids show spatial char-
acter of racial diversity across the U.S. in the form 
of three-dimensional classification of grid cells 
based on population density, dominant race and 
diversity level expressed by standardized entro-
py (Dmowska et al. 2017). SocScape data are the 
only available on the public domain broad-scale 
population grids comparable between years that 
can be used for quantitatively assessment of pop-
ulation changes.

Although dasymetric modelling is a well-
known technique and straightforward to apply, 
its application for producing broad-scale, high 
resolution grids presents several challenges. The 
main challenge is the availability of the high reso-
lution ancillary data, which must be available for 
the entire area of interests in uniform fashion and 
quality and must be comparable between differ-
ent years if population grids are intended to be 
use for change analysis. Producing broad-scale 
high resolution maps require development of an 
efficient, fully automated algorithm to work with 
large datasets, so calculations can be performed 
within a reasonable time.

This paper is not focused on the development 
of new techniques and testing different types of 
ancillary data for the dasymetric modelling, but 
on developing fully automated computational 
framework and applying it to provide actual, 
broad-scale, multi-year comparable population 
grids that can be an input to the wide range of 
applications. This paper consists of three parts:
1. an extensive review of the literature on con-

structing broad-scale population grids,
2. description of the development of R-based 

implementation of computational framework, 
3. showing examples of resultant population 

grids.
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In addition, Section 2 briefly describes data 
and presents short overview of methodology 
used to produce high-resolution, multi-year 
compatible population grids for the entire U.S, 
which are the part of the SocScape project. Final 
conclusions are drawn in Section 4.

Data and methods

To produce population grids, which are tem-
porarily comparable, requires the following con-
dition on the data:
1. usage of contemporarily collected popula-

tion and ancillary data to construct a grid for 
a given epoch (for example, 2000 census data 
should be coupled with circa 2000 land cover 
data), and

2. ancillary data should have the same meaning 
over all epochs (for example, land cover data 
at different years should have the same cate-
gories).
Data in the SocScape project fulfils those con-

ditions, thus making the resultant population 
grids comparable between different years.

Population data

The source of the population data in the 
SocScape project is the 1990, 2000, and 2010 
decennial U.S. Censuses data aggregated at 
the block level. The block level is the small-
est aggregated units of the U.S. Census. This 
data consists of two components: shapefiles 
(TIGER/Line Files), indicating blocks geograph-
ical boundaries, and summary text files which 
lists population data for each block. Data has 
been downloaded from national Historical 
Geographic Information System (NHGIS) (MPC 
2019). NHGIS project distributes population and 
shapefiles with additional key identifier making 
easier joining boundaries with an attribute tabu-
lar data. Tabular data are available as a one file 
for the entire U.S., whereas shapefiles are pro-
vided at the state level. Size of shapefiles con-
taining block boundaries and their population 
counts vary from 34 MB for District of Columbia 
to 4037 MB for the state of California. The overall 
size is 39 GB. Number of blocks in 1990, 2000 and 
2010 is ~7.15 million (1990), ~8.2 million (2000), 
and ~11.15 million (2010).

Ancillary data

SocScape project uses land cover datasets 
as ancillary data. This choice is dictated by the 
fact that land cover is the only ancillary data for 
which a single dataset, the National Land Cover 
Dataset or NLCD, covers the entire conterminous 
U.S. (or CONUS) at the same spatial resolution 
(30 m per cell) and the same quality.

NLCD datasets are available for 1992, 2001, 
2006 and 2011. However, NLCD1992 has a 
legend which is incompatible with later edi-
tions. For comparison between 1992 and 2001 
NLCD 1992/2001 Retrofit Land Cover Change 
Product should be used. It is a product based on 
Anderson Level 1 classification and consists of 8 
unchanged categories (open water, urban, barren, 
forest, grass/shrub, wetlands, ice snow) and 55 
categories (the combination of those 8) indicating 
changes between 1992 and 2001. Based on those 
categories 1992/2001 Retrofit Land Cover Change 
Product can be divided into two separate maps 
(for 1992 and for 2001) representing 8 categories 
of land cover types. NLCD2001 and NLCD2011 
consist of 16 classes of land cover categories (in-
cluding 4 categories of developed areas; see Fig. 3 
for legend). Ancillary data are based on the 1992 
land cover maps derived from 1992/2001 Retrofit 
Land Cover Change Product and 2001 and 2011 
edition of NLCD (for example see panels A–C in 
Fig. 3). Land cover data from 1992, 2001 and 2011 
match closely population data from 1990, 2000 
and 2010 U.S. Decennial Censuses. To transform 
all three NLCD maps to a common legend land 
cover maps are reclassified to just three catego-
ries: urban (represents 4 developed categories 
in NLCD and urban category in 1992 land cover 
map), vegetation (represents forest and agricul-
ture categories), and uninhabited (represents wa-
ter, ice/snow, barren land categories). Example 
of ancillary data is shown in Fig. 3. These reclas-
sified maps are used as ancillary data for a dasy-
metric model.

Methods

The overall dasymetric model follows the 
methodology introduce by Dmowska and 
Stepinski (2017a) to obtain 2010 population grid. 
The only difference is in using 3-class land cover 
data instead of the combination of land cover/
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land use classes as ancillary data. According to 
this methodology the population in each block 
is redistributed to its cells using block-specific 
weights assigned to the cells having different an-
cillary classes. The weights are assigned based on 
the relative density of population for each ancil-
lary class and the area of each block occupied by 
each class (Mennis 2003). The population in each 
cell is calculated by multiplying the number of 
people in the block by a weight assigned to the 
cell based on its ancillary class.

The important step in dasymetric modelling 
is the establishment of the relationship between 
ancillary and population data. A presented mod-
el uses the set of characteristic (or representative) 
values of population densities in each ancillary 
class (Mennis, Hultgren 2006). Representative 
population density for each class is established 
using a set of blocks (selected from the entire con-
terminous U.S.) having relatively homogeneous 
land cover (90% for urban class and 95% for veg-
etation class). The representative density for par-
ticular ancillary class is calculated by dividing the 
sum of population living in the selected blocks by 
the overall area of these blocks. Representative 
densities are required to establish the relative 
density of population used to calculate block-spe-
cific weights. Relative density of population for 
each ancillary class is calculated by dividing the 
representative density for this class and the sum 
of representative densities for all ancillary classes.

Computation and results

R implementation of dasymetric modelling

The major challenge to calculating 30m dasy-
metric model of population density for the entire 

conterminous U.S. is the size of input and output 
data. Population grids provided by SocScape pro-
ject are the result of disaggregating ~11 millions 
of census blocks into over 8 billion (8,651,157,015) 
of grid cells. The choice of output resolution (30m) 
is dictated by the resolution of ancillary data as it 
is most convenient to disaggregate census data to 
the resolution of the ancillary data.

Traditionally, dasymetric modelling was com-
puted in a GIS environment, such as ESRI ArcGIS 
(Sleeter, Gould 2007), QGIS (Mileu, Margarida 
2018), GRASS GIS (Dmowska, Stepinski 2014). 
However, for a broad-scale model such approach 
is computationally inefficient. Processing such 
amount of data requires fully automated and flex-
ible computational environment. Dasymeteric 
model used in socscape is implemented in R (R 
Core Team 2018). R is a comprehensive compu-
tational environment that includes libraries to 
work with different types of data: tabular data, 
geospatial data (libraries sp, sf, raster). It also pro-
vides tools for binding to external data sources 
such as GRASS GIS (library rgrass7), GDAL (li-
brary rgdal) or standard relational databases (li-
braries DBI, RSQLite). R provides some advan-
tage over GIS software and other programming 
languages. The main advantage is that it allows 
building efficient, flexible and fully automated 
computational environment to work with large 
dataset without advanced programming skills.

The key factor of calculation for the broad-
scale model is to manage data storage require-
ments and to control the time of computation (see 
Fig. 1).

In order to handle a large dataset in R, geo-
spatial data is first divided into separate counties 
using region concept in GRASS GIS. In GRASS 
GIS, region settings determine the spatial extent 
and resolution of the grid. Geospatial data is next 

Fig. 1. Process of handling large datasets in R. 
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read into R and stored in SpatialGridDataFrame 
object. SpatialGridDataFrame is one of the spatial 
objects provided by sp library to work with spa-
tial data in R (Pebesma, Bivand 2005). It integrates 
bounding box, the Coordinate Reference System 
and grid topology with attribute data stored in 
data.frame (tabular format in R). Working with 
SpatialGridDataFrame object allows integration of 
spatial content (census boundary, ancillary data) 
with Census population data into a single rela-
tional model, performing calculation at tabular 
level (data.frame), and, in the last step, propagat-
ing data into grids cells. The dasymetric model-
ling is performed in R for each county separately. 
In the last step dasymetric maps for individual 
counties are joined into a map for the entire con-
terminous United States.

Figure 2 shows in details the R-based imple-
mentation of dasymetric modelling in socscape 
project. Calculation process has been divided 
into 5 steps:
1. pre-processing of Census and geospatial data,
2. the establishment of the relationship between 

ancillary and population data,
3. performing dasymetric modelling,
4. propagate dasymetric model for geospatial 

grids,
5. post processing: prepare hi-res population 

maps for the entire U.S.
The whole procedure is implemented in R. 

In addition to R, GRASS GIS 7.0, SQLite and 
GDAL library has been used in the pre-process-
ing and post processing steps. The computation-
al framework consists of several scripts used for 
reading U.S. Census text file into SQLite data-
base, reading geospatial data from GRAss GIs 
to SpatialGridDataFrame object in R, performing 
dasymetric modelling, exporting population 
grids into GeoTiff and joining GeoTiffs into U.S.-
wide map.

The first step of calculation procedure is the 
pre-processing of population and ancillary data. 
In this step U.S.-wide census block level data 
are imported from text file to SQLite database 
using R tools designed to work directly with a 
database (library DBI, RSQLite). SQLite is a pub-
lic-domain, single-user relational database man-
agement system which stores the entire database 
as a single cross-platform file and implements a 
subset of the SQL 92 standard, including the core 
table creation, updating, insertion, and selection 

operations. RSQLite package embeds the SQLite 
database engine in R, providing a DBI-compliant 
interface (Mller et al. 2018).

RSQLite provides functions to read data from 
R to SQLite, write data directly from database ta-
ble into data.frame in R, performing SQL queries. 
This functionality will be used to extract popula-
tion data for the particular county and read them 
from a database directly into R data.frame object.

Geospatial data is pre-processed using GRASS 
GIS software (step not shown in Fig. 2.), before it 
is imported to SpatialGridDataFrame object in R. 
Block level census boundaries are available as 
state level shapefiles. Those shapefiles are im-
ported to GRASS GIS, rasterized to match NLCD 
grid topology and divided into separate counties. 
Land cover data, used here as ancillary datasets, 
are stored as U.S.-wide files. Pre-processing of 
ancillary data includes extracting land cover data 
for 1992 from NLCD 1992/2001 Retrofit Land 
Cover Change Product, reclassifying NLCD 
maps into 3 classes (uninhabited, urban, vege-
tation) and dividing data into separate counties 
using region concept in GRASS GIS. Rasterized 
census block’s boundaries and 3-class ancillary 
data are imported to SpatialGridDataFrame ob-
ject in R using rgrass7 package (Bivand 2017). 
Package rgrass7 provides interpreted interface 
between GRASS geographical information sys-
tem, version 7 and R (Bivand 2017). The interface 
uses classes defined in the sp package to hold spa-
tial data (Pebesma, Bivand 2005). This package 
allows reading raster data directly from GRAss 
GIs to SpatialGridDataFrame (or SGDF) object in 
R. The SPGD object for each county with two 
layers (census boundaries and ancillary data) is 
stored as rds file.

In the next step, data for a particular county 
is read to R to perform dasymetric modelling. 
Population data is extracted from SQLite da-
tabase and read directly to data.frame object in 
R. Geospatial data is restored from rds files con-
taining SGDF object with census boundaries and 
ancillary data. Before performing dasymetric 
modelling ancillary data are upgraded based on 
population data by assigning uninhabited class 
to blocks with population equal to 0.

Next, area of each ancillary class in each block 
is calculated and stored in data.frame. Notice, 
that at this point two data.frames are available – 
one of them containing block id and population 
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data and the second containing block id and the 
area of each ancillary class in this block. Using 
these two types of information stored in data.
frames the weights to redistribute population 
among different ancillary classes are calculated 
for each block. Then population in each block is 
multiplied by weights. It results in creating the 
data.frame with the number of people assign to 
each type of ancillary class for each block. Areas, 
weights and the result of dasymetric procedure 
are stored in data.frames and are written to 
SQLite database to be used for further analysis.

The result of dasymetric modelling is also 
propagated into grid and stored as additional 
layer (together with ancillary information and 
census block boundaries) in SpatialGridDataFrame 
object. In the last step dasymetric population grid 
for each county is exported from R to Geotiff us-
ing rgdal library. Package rgdal provides bindings 
to the Geospatial Data Abstraction Library (GDAL) 
(>= 1.11.4) and access to projection/transforma-
tion operations from the PROJ.4 library (Bivand 
et al. 2018). Finally, GDAL library is used to cre-
ate U.S. conterminous population grid based on 
counties Geotiff. First, Virtual Dataset (VRT) that 
is a mosaic of the counties Geotiffs is built using 
gdalbuildvrt program provides by GDAL. Next 
VRT object is converted to U.S.-wide Geotiff 

using gdal_translate program provided by GDAL. 
The result is U.S.-wide population grid at 30m 
resolution.

The calculation of a dasymetric model for a 
single county (containing 10, 000 blocks) takes 14 
seconds. In comparison, using dasymetric mod-
elling toolbox (Sleeter, Gould 2007) in ArcGIS 
software calculations takes 600 seconds. The 
whole procedure from the pre-processing steps 
to obtaining the final dasymetric map for the en-
tire conterminous U.S. takes 55 h using a PC com-
puter with Intel 3.4 GHz, 4-cores processor and 
16 GB of memory running the Linux system. The 
most time consuming step is data pre-processing 
(37 h). Determining a relation between popula-
tion and ancillary data and performing dasyme-
tric model takes 6 h, and creating one map from 
counties’ dasymetric models takes 12 h.

Examples of U.S.-wide population grids

Described implementation of dasymetric 
model has been used to produce high resolution, 
multi-year comparable, U.S.-wide population 
grids which are the part of the SocScape (Social 
Landscape) project. This project provides an open 
access to high resolution (30 m) population, sub-
population (separate race/ethnicity group) and 

Fig. 2. Framework of calculation dasymetric modelling in R. 
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Fig. 3. The city of Frisco, TX located in Collin and Denton county.
(A) Land cover map for 1992 based on 1992/2001 Retrofit Land Cover Change Product. (B) NLCD 2001. (C) NLCD 

2011. (D–F) Land cover data reclassified into 3 categories. (G–I) Block level population data. (J–L) Population density 
shown in 30 m resolution grids. 

NLCD 2001, 2011: 11 – open water; 12 – ice/snow; 21 – developed, open space; 22 – developed, low intensity; 23 – 
developed, medium intensity; 24 – developed, high intensity; 31 – barren land; 41 – deciduous forest, 42 – evergreen 
forest, 43 – mixed forest, 52 – shrub/scrub; 71 – grassland; 81 – pasture/hay; 82 – cultivated crops, 90 – woody/wet-

lands, 95 – emergent wetlands. 
LC1992: 1 – open water; 2 – urban; 3 – barren; 4 – forest; 5 – grass/shrub; 6 – wetlands; 7 – wetlands; 8 – ice/snow

Ancillary data: 0 – uninhabited; 1 – urban areas; 2 – nonurban areas. 
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racial diversity grids for the entire conterminous 
United States for 1990, 2000, 2010 (Dmowska, 
Stepinski 2017b, Dmowska et al. 2017). SocScape 
project consists of two parts – GeoWeb applica-
tion designed to explore U.S-wide population 
and racial diversity grids and socscape data web-
site, which provides data for each county and for 
363 MSA as a zip archive.

Figure 3 shows an example of population 
grids for the area centred on the city of Frisco, TX 
located in the Collin and Denton county. Frisco, 
TX is a part of the Dallas-Fort Worth metropoli-
tan area and it is considered as the fastest-grow-
ing city in the United States from 2000–2009 with 
the population of 116,989 people at the 2010 cen-
sus. Figure 3 is divided into 12 panels arranged 
into 3 columns (corresponding to 1990, 2000, 2010 
year respectively) and 4 rows (corresponding to 
different types of data). The panels A–I show 
population and ancillary data used as an input 
to dasymetric modelling. Panels A–C present 
land cover data with the original legends where-
as panels D–F present ancillary data reclassified 
into three categories, which are fully comparable 
between years. Panels G–I show census block 
level population data. The population grids are 
presented in the Panel J–L.

In this example, census block and population 
grids show the main features of population dis-
tribution in a similar way. The main limitation 
of block level data is that they cannot be used 
to quantitatively assess changes in population 
distribution. The boundary of aggregated units 
changed between 1990 and 2010 year. The ur-
banization process, which is seen in the land 
cover maps, caused an increase in the number 
of blocks in the presented area from 2100 in 1990 
year to 10360 in 2010 year. On the other hand, 
population grids can be directly used to assess 
changes in population distribution, as they are 
produced based on multi-year comparable ancil-
lary data.

Conclusion

This paper reviewed literature on production 
of broad-scale population grids and reported on 
the R implementation of an automated frame-
work to perform dasymetric modelling to pro-
duce such grids. Described implementation of 

dasymetric model has been used to produce high 
resolution, multi-year comparable, U.S.-wide 
population grids for 1990, 2000, 2010 year.

Main advantages of using R to perform dasy-
metric calculation are:
1. no advanced programming skills are required,
2. less processing steps are required than using 

GIs software,
3. no intermediate layers are produced,
4. increased flexibility and automation, and
5. easily expandable to variables other than total 

population.
The framework has been implemented to 

work with U.S. Decennial Census popula-
tion data available for 1990, 2000, 2010 years. 
However, it can be easily modified to work with 
other source of data and for other levels of ag-
gregation (i.e. census tracts, block groups). The 
practical advantage of presented framework has 
been already illustrated by computing high reso-
lution demographic grids for race/ethnicity sub-
population using weights established by popu-
lation model. Preparing U.S.-wide demographic 
grids, using already established weights, take 
13 h and it does not required any pre-process-
ing steps. The weights established by population 
model are stored in SQLite database. The other 
demographic grids can be calculated by import-
ing U.S.-wide block level data to SQLite data-
base and by multiplying its counts by weights. 
Also the presented framework can be used to 
preparing high resolution population grids for 
2020, when U.S Decennial Census data become 
available.

Presented framework can be also easily ex-
pandable to calculate other types of maps which 
use as an input the results of dasymetric model-
ling. Examples of such maps are racial diversi-
ty maps (Dmowska, Stepinski 2017b, Dmowska 
et al. 2017) and racial dots maps (Dmowska, 
Stepinski 2019).
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