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Abstract. Health care accessibility can be measured by the number of prospective patients who could reach a medical 
facility within a prescribed time limit. The representation of health care demand in estimating accessibility is an impor-
tant consideration since different spatial aggregations of demand have different consequences with regard to accessi-
bility estimates. This article examines the effects of aggregating population demand for primary health care, ranging 
from census tract to aggregated census block, on estimates of primary health care accessibility. Spatial representations 
of aggregated demand were incorporated into a location-allocation model in order to determine a measure of acces-
sibility represented by the unmet demand for primary health care services. The model was implemented for the U.S. 
State of Idaho, based on the allocation of Idaho residents’ demand for primary health care to the state’s existing pri-
mary health care facilities. The results confirm a relationship between the level of demand aggregation and the level 
of potential accessibility. In case of a rural state such as Idaho the relationship is positive; higher levels of aggregation 
result in higher measures of accessibility.
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Introduction

This article examines the effect of scale in rep-
resenting the demand for primary health care 
services in modeling health care accessibility. The 
concept of spatial accessibility in health care ser-
vices refers to the ability of an individual to: 1) 
reach a location of health care service from a loca-
tion of his/her residency within some prescribed 
maximum time interval, and 2) receive a medical 
service. In geographical health research, the con-
cept of accessibility has been investigated through 
the lens of spatial analysis (Wang 2011, Kwan, 

Weber 2008, Laditka, 2004, Martin, Wiliams 1992) 
and Geographic Information Systems (GIS) (Bur-
key et al. 2012, Cromley, McLafferty 2002, Lin et 
al. 2002, Lovett et al. 2002, Parker, Cambell 1998). 
Among the modeling approaches to health care 
accessibility, gravity models (Wang, Roisman 
2011) and location-allocation models (Oppong, 
Hodgson 1994, Langford, Higgs 2006) have been 
frequently used to account for the effects of dis-
tance, availability of health care, and demand for 
service.

Health care accessibility can be investigated 
from two different perspectives. First, potential 
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accessibility measures can be derived based on 
the estimated number of people who could reach 
a medical facility within a prescribed time limit. 
Second, realized accessibility measures can be 
computed showing how many people actually 
did receive medical services. With regard to the 
second perspective, detailed patient-level infor-
mation is typically unavailable. As a result, most 
accessibility studies have developed potential 
measures of accessibility based on straight-line 
distances or travel-time distances between loca-
tions of health services and aggregate locations of 
the population. These measures can then be used 
to identify areas where accessibility is poor and 
where additional health facilities are needed to 
improve accessibility (Langford, Higgs 2006).

One of the requirements, and challenges at 
the same time, of assessing potential accessibili-
ty to health care services with location-allocation 
models has been the choice of scale, at which 
population’s demand for health care services 
is represented. Typically, demand for goods or 
services, health care including, is represented in 
location-allocation models at a point (Rushton 
1989). Because the population data are almost 
always available at statistical enumeration units 
(e.g. zip codes or census tracts), most accessibili-
ty studies have used the centroid of the enumer-
ation unit to represent that enumeration unit’s 
population. Verter and Lapierre (2002) used the 
centroids of 638 populated regions as the de-
mand locations for a location-allocation model in 
order to locate preventative health care facilities 
that maximized participation in prevention pro-
grams with the rationale that distance is a major 
determinant of participation in such programs. 
In a study by Mitropoulos et al. (2006), patient 
level data about the annual number of visits to 
existing health care facilities was obtained for all 
inhabitants of 228 population regions in semi-ru-
ral Achaia, Greece. The centroids of these regions 
were used as the locations of demand for health 
care facilities. Brabyn and Skelly (2002) used the 
centroids of meshblocks in New Zealand (mesh-
blocks are the most detailed census enumeration 
units available) as the locations of demand in 
an accessibility model. In a study by Wang and 
Luo (2005), population-weighted centroids of 
census tracts (based on block-level population 
data) were used instead of simple geographic 

centroids, to represent population locations more 
accurately. This process resulted in a computa-
tionally manageable number of demand points 
(2952) and was particularly successful in refining 
the locations of population in rural areas where 
notable areas of land are unpopulated.

Since the demand for health care services 
is a function of population distribution across 
a geographical space, any area-to-point trans-
formation is inherently burdened with an error 
resulting from continuous demand distribu-
tion (statistical enumeration zones) aggregated 
into discrete (point) representations of demand 
(Daskin et al. 1989). It is also possible to distrib-
ute the population evenly across an enumeration 
unit (so called pro rata method) as a series of even-
ly spaced points dispersed throughout the entire 
enumeration unit (Langford, Higgs 2006). If uni-
form distribution is a valid assumption, the pro 
rata method may offer more accurate estimates 
of population location than the centroid method. 
This assumption may be valid in small, dense 
urban environments but is less likely to be valid 
in rural areas where population tends to concen-
trate in small settlements separated by areas of 
unoccupied/unpopulated land. In addition, this 
pro-rata technique for representing population 
locations typically results in a vast number of 
demand points, which presents a computational 
challenge for assessing accessibility with a loca-
tion–allocation model. The use of large-scale/
small-area statistical enumeration units (e.g. cen-
sus blocks in the U.S.), in order to reduce the ar-
ea-to-point transformation error, results in a sim-
ilar computational challenge and is only practical 
for small study areas.

This article examines the effects of area-to-
point demand aggregation in location-alloca-
tion model on accessibility to primary health 
care service centers. The level of accessibility is 
measured by unmet demand for primary health 
care services due to distance and/or lack of ser-
vice capacity. This approach results in identify-
ing areas without adequate accessibility (given 
the driving distance and service capacity con-
straints). The article explores the consequences 
of different demand representations from the 
coarsest (small scale) to the finest (large scale) in-
cluding tract centroid, block group centroid, and 
block centroid on the amount of unmet demand. 
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These progressively larger-scale representations 
and the resulting accessibilities are examined at 
different driving times, beginning with 30 min-
utes driving time, through 45 and 60 minutes 
travel times. In the remainder of the paper a loca-
tion-allocation model adopted for calculating the 
unmet demand for primary health care services 
is presented in section two along with data re-
quirements and study area description. Results 
of modeling accessibility to primary health care 
services under different spatial representations 
of demand are presented in section three. The 
discussion and conclusion are offered in section 
four.

Modeling approach, data requirements, 
and study area

Accessibility is one of the most widely used 
metrics in measuring the value of location in 
service delivery (Church, Murray 2009). Acces-
sibility can also be conceptualized as a function 
of allocating demand for services distributed 
among multiple locations to service centers. This 
conceptualization has motivated the use of loca-
tion-allocation models in studies of accessibil-
ity to health services and in planning of health 
services with explicit consideration given to the 
locations of service providers, service capacities, 
geographical distribution of patients, and ease of 
access to health services (Mitropoulos et al. 2012, 
Harper et al. 2005). In this study a location-allo-
cation model maximizing the coverage of ser-
vice, called Maximal Covering Location Problem 
(MCLP) has been used to account for accessibility 
to primary health care services. The MCLP model 
introduced by Church and ReVelle (1974) is de-
signed to maximize the demand for service as-
signed to a selected number of service sites with-
in a specified distance. Traditionally, the model 
has been used to find an optimal subset of service 
sites from the set of all possible service sites (Ger-
rard et al. 1997, Oppong, Hodgson 1994). In this 
study, the model was used in a non-traditional 
way by employing all existing service sites into 
the allocation of demand, thus effectively forcing 
the model algorithm to select all existing service 
sites and then assign the demand to the sites in 

a manner that would maximize the total assigned 
demand, and hence the coverage of service de-
mand.

2.1. Model formulation

A mathematical formulation of the MCLP is 
as follows:
Maximize 

Subject to:

1)    for all i ∈ I

2)  
3)  xj = (0,1) for all j ∈ J

4)  yi = (0,1) for all i ∈ I 
where:
I = the set of demand locations,
J = the set of service sites,
Ni = {j ∈ J | dij ≤ S}; the set of service sites j that 
can reach demand location i within the maximal 
service distance S,
S = the distance beyond which a demand loca-
tion is considered “uncovered” (the value of S 
can be chosen differently for each demand loca-
tion if desired),
dij = the shortest distance from location i to loca-
tion j;
xj = {1 if a service is allocated to site j, 0 other-
wise};
yi = {1 if a service is allocated to site i, 0 other-
wise},
ai = service demand in location i,
p = the number of service facilities to be located.

The model’s objective is to maximize the 
amount of covered demand. Constraint (1) en-
sures that demand is covered (allocated to point 
of service) if there is at least one service location 
available within the admissible service distance 
S. Constraint (2) requires that p service locations 
be selected (the p number is set by a modeler). 
Constraints (3) and (4) serve as binary integer 
restrictions on model location (xj) and allocation 
(yi) variables. The MCLP model can be solved 
on a transportation network, where the network 
nodes represent locations of demand and service 
centers, and the network links represent linkag-
es between the nodes. Each of the network links 
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has some defined impedance (e.g. travel time or 
distance) that represents the separation between 
nodes. The total impedance between each de-
mand node and each service node is defined as 
the total impedance encountered between the 
two nodes while traveling the shortest distance 
over the network. A demand node (location) is 
considered covered if it is within some user spec-
ified S distance to a service node.

MCLP model data requirements

The MCLP model that relies on transportation 
network representation of demand and service 
locations can be conveniently implemented and 
solved with GIS software supporting network 
data model. To solve the MLCP model in a GIS 
environment, three different data sets/GIS layers 
are required:
–– a road network as a line layer,
–– locations of service centers in a point layer, 

and
–– locations of demand, also in a point layer.

The network representation in GIS requires 
that all demand and service locations be con-
nected to the road network in order to correctly 
model the network flows. This requirement has 
practical implication on data pre-processing as 
demand locations, which are customarily rep-
resented by centroids of geographical statistical 
units (e.g. census tracts or postal codes), are fre-
quently found off the road network and must be 
connected to the network in order to facilitate the 
model solution.

Four different representations of demand 
were used in this study. They included, in the 
progression from small to large scale; census 
tract, census block group, aggregated block re-
gion – comprised of contiguous populated blocks 
within each census block, and aggregated block 
region weighted by the block population. In each 
four representations, the demand for health care 
services was assigned to a corresponding cen-
troid. Figure 1 illustrates various representations 
of demand used in the study (cases A, B, E, and 
F). Cases C and D, not used in the study, repre-
sent populated census blocks with their centroids 
(C) and populated blocks aggregated into regions 
(D). These two cases are included in Figure 1 for 
illustrative purpose to: (1) demonstrate a situa-

tion common in rural areas where some census 
blocks do not have any resident population, and 
(2) explain how block regions (cases E and F) 
were derived from aggregating the contiguous, 
populated blocks.

Study area

The MCLP model was applied to assess the 
accessibility to primary health care services 
in the U.S. State of Idaho. In the U.S., access to 
medical facilities is considered vital not only to 
individuals needing medical care, but also to the 
communities in which these individuals partic-
ipate. The federal guideline for adequate access 
to primary care services states that all individ-
uals should reside within a 30-minute driving 
distance (roughly 20 miles under normal condi-
tions with primary roads available or 15 miles in 
mountainous terrain with only secondary roads 
available) from a primary health care facility 
(PHCF) (U.S. Department of Health and Human 
Services 1993). While this is a laudable goal, it is 
often difficult to achieve.

The low population density of most rural ar-
eas, along with a low patient to doctor ratio, re-
sults in a large percentage of the rural population 
residing further than 30 minutes from a health 
care facility. The resulting inequality in health 
care services between urban and rural residents 
has been a matter of concern to federal and state 
health officials.

The state of Idaho is a good example of the dif-
ficulties of providing access to health care equal-
ly to all residents. In 2010, Idaho had the second 
lowest active physician to population ratio of all 
(50) U.S. states and the third lowest active prima-
ry care physician to population ratio, with 184.2 
active physicians per 100,000 people, and 67.2 ac-
tive primary care physicians per 100,000 people. 
These ratios were far below the national rates of 
258.7 active physicians per 100,000 people and 
90.5 active primary care physicians per 100,000 
people (Association of American Medical Colleg-
es 2011). The low physician to population ratios 
might be explained partially by the low popula-
tion density within the state. In 2010, Idaho was 
estimated to have a population density of 19 per-
sons per square mile (7.34 persons per square 
km), compared to the estimated national average 
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of 87.4 persons per square mile (33.75 persons per 
square km) (U.S. Census Bureau 2010). In order 
to improve health care accessibility in rural are-
as like Idaho, it is necessary to know where un-
der-serviced areas exist, or in other words, where 
demand for healthcare is unmet.

Location-allocation accessibility modeling can 
be used to determine where demand for primary 
health care services (PHCS) is unmet. This mode-
ling approach can also be used to determine opti-
mal locations for potential new health care facil-
ities that would reduce unmet demand in rural 
areas. In this paper the former use of location-al-
location accessibility modeling is presented.

Data preparation

The implementation of MCLP model in order 
to calculate the amount of unmet demand for 
PHCS (representing the accessibility to PHCS) 
required population data by sex and age groups 
at the block, block group, and census tract levels. 
The population data was obtained from the pub-
lically available U.S. Census 2010 Summary File 
1. The estimated annual rates of primary health 
care visits based on age and sex were obtained 
from the Center for Disease Control (2008). The 
rates were then multiplied by the population 
figures for each census enumeration unit (block, 

Fig. 1. Demand representations used in the study
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block group, or tract) to arrive at the estimate of 
demand for primary health care services. De-
tailed road network coverage in a GIS file format 
(ESRI’s line feature layer) was secured from Ida-
ho Department of Transportation. Finally, point-
based GIS data layer (ESRI’s shape file format) 
containing information regarding the locations of 
all primary health care facilities in Idaho and the 
number of primary care hours they can provide 
was obtained from Idaho Department of Health 
and Welfare. The estimated number of visits per 
year was then calculated for all primary health 
care facilities using the U.S. Public Health Service 
standard of 4,200 visits per year for primary care 
physicians and 2,100 visits per year for midlevel 
providers. This calculation yielded the estimate 
of service supply for each primary health care fa-
cility in Idaho.

The MCLP model was implemented in GIS 
software (ArcGIS 9.3). Running the model re-
quired creating a network data layer in GIS with 
point-based demand locations (populated area 
centroids) and primary health care service facil-

ities represented by the network nodes. A few 
of the block group and aggregated block region 
centroids located off the network had to be con-
nected to the network, in order to maintain the 
network’s topology. This was accomplished by 
digitizing linear segments ranging in length from 
160 m to 805 m (0.1 mile to 0.5 mile). The overall 
effect of these artifacts on the modeling results 
was deemed negligible.

Results

The MCLP model was run with four different 
representations of demand ranging from census 
tract, through census block group, aggregated 
block region, to aggregated block region weight-
ed by the block population, and with three driv-
ing time constraints; 30 minutes (corresponding 
to the federal guideline), 45, and 60 minutes. The 
latter two driving time constraints were intro-
duced in order to gain a better understanding of 
the amount of unmet demand under the relaxa-

Fig. 2. Tract model: distance vs. demand

Table 1. Tract model results

Driving time
(min) Meters Miles Met demand: 

patient visits % Met Unmet demand: 
patient visits % Unmet

30 24,140 15.0 3,179,030 80.1 787,706 19.9
45 36,210 22.5 3,513,030 88.6 453,702 11.4
60 48,280 30.0 3,778,126 95.2 188,608 4.8
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tion of the federal guideline. Overall, there were 
12 specific instances of the MCLP model repre-
senting the combinations of scale of demand 
representation and travel time constraint. These 
models are referred to in this paper as determin-
istic models (as opposed to predictive models) 
since they were run in order to determine an op-
timal allocation scheme of demand to all existing 
service centers rather than to find out, which of 
the candidate locations would be selected for sit-
ting new service centers.

As representation of demand used in the 
model moved from a low number of enumera-
tion units (tract models) to a higher number of 
enumeration units (weighted and non-weighted 

aggregated block models), the amount of unmet 
demand for PHCS, representing accessibility, de-
creased. Results of the weighted aggregated block 
model, which is assumed to be the most accurate 
model because of its potential to more accurately 
locate population/demand, indicate that 11.6% 
of Idaho’s population is farther than the federal 
guideline of 30 minutes driving distance to the 
nearest primary health care provider. A more de-
tailed presentation of the results follows below.

Tract-based model

Idaho contains 280 census tracts, with an aver-
age census tract size of 772.0 km2 and a standard 

Fig. 3. Tract model coverage (dd = driving distance)
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Table 2. Block group model results
Driving time 

(min) Meters Miles Met demand % Met Unmet  
Demand % Unmet

30 24,140 15.0 3,401,997.8 85.8 564,736.3 14.2
45 36,210 22.5 3,664,521.3 92.4 302,212.8 7.6
60 48,280 30.0 3,812,745.3 96.1 153,988.8 3.9

Fig. 4. Block group model: distance vs. demand

deviation of 1,994.9 km2. Each of the three de-
terministic tract models (30, 45, and 60 minutes 
driving time constraint) was run using a rep-
resentation of demand at the centroid of the tract 
resulting in 280 demand points. In the tract mod-
els, the average distance from a tract demand 
point to the nearest primary health care facility is 
18,415.8 meters (11.44 miles), and the average de-
mand for primary health care services for a tract 
is 14,166.9 visits per year.

In Figure 2, all of the 280 tract demand points 
are plotted based on their respective distances to 
the nearest PHCF and their demand for PHCS.

The tract model at the 30 minute driving dis-
tance constraint resulted in 19.9% of the state’s 
demand for PHCS unmet (80.1 of the demand 
was met). Using the 45 and 60 minute driving 
distance constraints resulted in 11.4% and 4.8% 
respectively of the demand for PHCS unmet (see 
Table 1).

Figure 3 shows the results of the deterministic 
tract models. Census tracts that are farther than 
60 minutes driving time from the nearest prima-

ry health care service center are shown in black. 
Tracts that are between 45 and 60 minutes driv-
ing distance from the nearest service center are 
shown in dark grey. Tracts that are between 30 
and 45 minutes driving distance from the nearest 
service center are shown in light grey and tracts 
that are within 30 minutes driving distance from 
the nearest hospital (tracts that are covered within 
the federal guideline) are shown in white. The re-
sulting pattern of accessibility to primary health 
care services, expressed by the coverage under 
the specific driving time constraints, corresponds 
to the distribution of Idaho’s population with the 
bulk of the population located in northern Ida-
ho (the region called Idaho Panhandle) and in 
southern Idaho along the Snake River plane.

Block group model

Idaho contains 952 block groups, with an av-
erage block group size of 226.7 km2, with a stand-
ard deviation of 739.4 km2. The block group mod-
els were run using a representation of demand 
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at the centroid of each of the 952 block groups; 
this resulted in 3.4 times the number of demand 
points as in the tract models. Manual editing in 
GIS was required to properly connect four of the 
block group centroid points to the road network.

The average distance from a block group de-
mand location to the nearest primary health care 
facility is 14,592.4 meters (9.07 miles), and the 

average demand for primary health care servic-
es for a block group is 4,166.7 visits per year. In 
Figure 4 all of the 952 block group demand points 
are plotted based on their respective distances to 
the nearest PHCF and their demand for PHCS.

The percentage of unmet demand for PHCS 
yielded by the block group models at a 30 min-
ute driving constraint is 14.2% (met demand is 

Table 3. Aggregated block model results
Driving time 

(min) Meters Miles Met demand % Met Unmet  
Demand % Unmet

30 24,140 15.0 3,527,236.0 88.9 439,497.8 11.1
45 36,210 22.5 3,734,338.3 94.1 232,395.8 5.9
60 48,280 30.0 3,836,851.8 96.7 129,882.2 3.3

Fig. 5. Block group model coverage
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Table 4. Weighted aggregated block model results
Driving time 

(min) Meters Miles Met demand % Met Unmet  
Demand % Unmet

30 24,140 15.0 3,508,209.8 88.4 458,524.3 11.6
45 36,210 22.5 3,724,111.5 93.9 242,622.4 6.1
60 48,280 30.0 3,887,181.3 98.0 79,552.9 2.0

Fig. 6. Aggregated block model: distance vs. demand

85.8%). At the 45 and 60 minute driving times, 
7.6% and 3.9% respectively of the state’s demand 
for PHCS is unmet (see Table 2).

Figure 5 shows the results of the deterministic 
block group model. The pattern of accessibility to 
primary health care at the scale of block group is 
similar to the pattern at the tract scale (Fig. 3) but 
not identical. In the allocation pattern obtained 
with the block group models there is a visible ex-
pansion of areas meeting the 30 and 45 minute 
driving time constraints as compared to the allo-
cation pattern produced by the tract models.

Aggregated block model

Idaho contains 1926 aggregated block clusters 
(groups of contiguous census blocks within the 
existing census block groups). Using the cen-
troids of these aggregated block clusters results 
in roughly twice the number of demand points 
present in the block group model. The aver-
age size of these block clusters is 52.8 km2, with 
a standard deviation of 188.4 km2. The average 

distance from an aggregated block cluster de-
mand point to the nearest PHCF is 21,242.5 me-
ters (13.2 miles), and the average demand for pri-
mary health care services for an aggregate block 
group is 2,059.6 visits per year. Manual editing 
in GIS was required to properly connect 68 of the 
aggregated block cluster centroids to the road 
network. In Figure 6, all of the 1926 aggregated 
block group demand points are plotted based on 
their respective distances to the nearest PHCF 
and their demand for PHCS.

The percentage of unmet demand for PHCS 
yielded by the aggregated block group models at 
a 30 minute driving constraint is 11.1%. At the 45 
and 60 minute driving time constraints, 5.9% and 
3.3% respectively of the state’s demand for PHCS 
is unmet (see Table 3).

Figure 7 shows the results of the aggregat-
ed block model. The allocation pattern at the 
block scale reveals large unpopulated areas in 
the north-eastern, central, south-western, and 
south-eastern parts of Idaho, confirming the low 
population density of the state (7.34 people per 
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square km). The general pattern of the spatial 
distribution of demand for primary health servic-
es, covered by the 30 and 45 minute driving time 
constraints, is similar to the allocation patterns 
produced by the tract and block group models. 
The difference between the former and the latter 
can be easily observed as the pattern produced 
by the aggregated block model is much more 
fragmented than the patterns produced by the 
tract and block group models due to small area 
size of census block – the fundamental areal unit 
used in the aggregate block model.

Weighted aggregated block model

All the weighted aggregated block models 
used the same number of demand points as the 
aggregated block models: 1,926. However, unlike 
the aggregate block models that placed demand 
at the centroids of the contiguous block clusters, 
in the weighted aggregated block model, the 
placement of those 1,926 demand points was in-
fluenced (weighted) by the amount of demand in 
each of the individual blocks that comprise the 
block group clusters, causing shift in location 
of some of the centroids. Out of 1,926 demand 
centroids 544 had no change in their placement 
between the non-weighted and weighted ag-

Fig. 7. Aggregated block model coverage
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Fig. 8. Coverage change from non-weighted aggregated block model to weighted aggregated block model

gregated block models. Of the 1,382 demand 
centroid that did have a shift in placement, the 
average shift was 2,129.6 meters. Figure 8 shows 
the change in coverage from the non-weight-
ed aggregated block model to the aggregated 
block model. Block clusters with negative val-
ues showed a decrease in their degree of cov-
erage from the non-weighted to the weighted 
block model, block clusters with positive values 
showed an increase in their degree of coverage. 
A one degree coverage change in Figure 8 corre-
sponds to an increase/decrease by one distance 
interval, e.g. from 30 to 45 minutes.

The average distance from a weighted aggre-
gated block cluster demand point to the nearest 

primary health care facility is 21,301.6 meters, and 
the average demand for primary health care ser-
vices is 2,059.6 visits per year. The percentage of 
unmet demand for PHCS yielded by the weight-
ed aggregated block group models at a 30 minute 
driving constraint is 11.6% (88.4% of demand is 
met). At the 45 and 60 minute driving distances, 
6.1% and 2.0% respectively of the state’s demand 
for PHCS is unmet (see Table 4).

Figure 9 shows the results of the weighted ag-
gregated block model. Upon a closer inspection, 
the differences in the coverage pattern between 
the weighted and unweighted models emerge. 
In the weighted model there are more aggre-
gated block regions covered by the 30 minute 



	 Health care accessibility modeling: effects of change in spatial representation of demand...	 51

driving time from the nearest service center in 
northern Idaho (near the border with Canada), 
north-western Idaho (bordering the state line 
separating Idaho from Oregon and Washington), 
and in the center of the state, than there are in the 
unweighted model. These finding, corroborated 
by Figure 8, can be explained by more accurate 
representation of demand distribution in the 
weighted model than in the unweighted model.

Discussion and conclusion

The modeling results show that as the rep-
resentation of demand in the MCLP model moved 

from a smaller scale/lower number of enumera-
tion units (tract models) to a larger scale/high-
er number of enumeration units (weighted and 
non-weighted aggregated block models), the 
amount of unmet demand for PHCS decreased 
and consequently the pattern of accessibility 
improved. The tract model yielded the great-
est amount of unmet demand. The aggregated 
block model yielded the lowest amount (except 
at the furthest driving time constraint), and the 
weighted aggregated block model yielded slight-
ly greater amounts of unmet demand than the 
non-weighted aggregated block model, and it 
yielded the least amount of unmet demand at the 
furthest driving time constraint. This can be ex-

Fig. 9. Weighted aggregated block model coverage
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plained by the shift of centroids (in the weighted 
model) from non-populated to populated blocks. 
Figure 10 shows the amount of unmet demand 
found in the 12 deterministic models (four de-
mand representations each at the three driving 
time constraints). All models in the study had the 
same total demand for PHCS: 3,966,732 visits per 
year. It can be seen that the tract model results in 
greater amounts of unmet demand at all driving 
distance constraints than the other three models.

The results of this study are subject to a num-
ber of assumptions beginning with the driving 
time; it is assumed that it takes 30 minutes to drive 
15 miles. This assumes that in a rural, mountain-
ous area, typical for much of Idaho, few freeways 
exist and roads are narrow, and often windy. This 
assumption does not account for traffic conges-
tion, difficult intersections, weather conditions, 
etc. Another assumption was made that all resi-
dents would travel to their closest primary health 
care facility. This may be an acceptable assump-
tion because in many rural areas a secondary 
PHCF would likely be quite far away. This study 
also assumes that demand exists at the centroids 
of enumeration units only and that that demand 
travels to service center from that single point. It 
is assumed that the Center for Disease Control’s 
estimated visits per year for the different age and 
sex groups are accurate. It is also assumed that the 

conversion from PHCF visit hours per year into 
number of visits per year for each existing PHCF 
supply site is accurate.

The major finding of this study with potential 
relevance for future studies of accessibility, uti-
lizing a location-allocation modeling approach, 
is that there is a relationship between the scale, 
at which the demand for service is represented 
and the level of service accessibility. In the case 
of Idaho, which is predominantly a rural state, 
this relationship is positive; increasing the scale, 
at which the demand is represented, results in an 
improved pattern of accessibility. The surpris-
ing finding is that the targeted representation of 
demand that was achieved by means of popu-
lation weighting did not improve markedly the 
measure of accessibility, with the exception of the 
longest driving distance considered (60 minutes).

Future research could explore the capabili-
ties of dasymetric mapping for improving the 
determination of population location in rural, 
sparsely populated areas for use in location-al-
location coverage models. Dasymetric mapping 
is a technique used to refine information shown 
on choropleth maps by supplementing the data 
contained in choropleth maps with ancillary 
data. The ancillary data chosen should corre-
spond to the information presented in the choro-
pleth map. In this study, for example, the block 

Fig. 10. Results of the models run with four representations of demand. The distances on the horizontal axis represent the 
equivalents (in meters) of 30, 45, and 60 minute driving time constraints
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demand map layer might be combined with an 
ancillary land-cover map that could distinguish 
developed from undeveloped locations. The use 
of dasymetric mapping techniques to determine 
locations of demand might allow for a more ac-
curate placement of demand centroids within 
a populated region.
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