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B.P. 47 870, 21078 Dijon, France

email: armen.petrossian@u-bourgogne.fr

(Received: June 16, 2017, and in revised form September 4, 2017.)

Abstract. We investigate an equivalence relation on permutations based on the pure descent statistic. Generating
functions are given for the number of equivalence classes for the set of all permutations, and the sets of permutations
avoiding exactly one pattern of length three. As a byproduct, we exhibit a permutation set in one-to-one correspondence
with forests of ordered binary trees, which provides a new combinatorial class enumerated by the single-source directed
animals on the square lattice. Furthermore, bivariate generating functions for these sets are given according to various
statistics.
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1 Introduction, definitions and notations

Many statistics on permutations have been studied for many years, but two of them appear more
frequently in the literature: the number of descents and the number of excedances. These two statistics
were introduced by MacMahon [15] and are closely related since they have the same distribution.
However, many more articles deal with the descents which have links with other fields such as Coxeter
groups [6] or the theory of lattice paths [11].

Recently [3, 4], two equivalence relations on permutations based on the excedance and descent
statistics were introduced. The main results of these works consist of giving generating functions for
the number of equivalence classes for several restricted sets of permutations such as involutions, cycles,
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derangements, and permutations avoiding at most one pattern of length three. So, it becomes natural
to conduct a similar study for equivalence relations based on other statistics. This paper investigates
an equivalence relation based on the pure descent statistic, first introduced in [5] and formally defined
below. Moreover, we show how these equivalence classes are in one-to-one correspondence with certain
forests of ordered trees, providing some links between several statistics on these sets. As a consequence,
we exhibit a new set of pattern-avoiding permutations with the same cardinality as the set of single-
source directed animals on the square lattice (see Barcucci and al. [2], Bousquet-Mélou [9] for two
studies concerning directed animals, forests and pattern-avoiding permutations).

Now, we present some basic definitions and notation. Let Sn be the set of permutations of length
n, i.e., all one-to-one correspondences from [n] = {1, 2, . . . , n} into itself. The one-line notation of a
permutation π ∈ Sn is π1π2 · · ·πn where πi = π(i) for i ∈ [n]. The graphical representation of π ∈ Sn
is the set of points in the plane at coordinates (i, πi) for i ∈ [n] (see Figure 1).

Let π be a permutation in Sn. A descent of π is an integer i ∈ [n − 1] such that πi > πi+1.
Whenever there does not exist j < i such that πi+1 < πj < πi, we call it a pure descent. Let D(π)
be the set of pure descents in π, and DD(π) be the set of pairs (πi, πi+1) for i ∈ D(π). By abuse
of language, such a pair will be also called a pure descent. For instance, if π = 1 4 2 7 5 3 8 6 then
D(π) = {2, 4} and DD(π) = {(4, 2), (7, 5)}. In [5, Theorem 1], the authors prove that the number of
length n permutations with k pure descents is given by the signless Stirling number of the first kind
c(n, k + 1) where c(n, k) satisfies

c(n, k) = (n− 1) · c(n− 1, k) + c(n− 1, k − 1)

with the initial conditions c(n, k) = 0 if n ≤ 0 or k ≤ 0, except c(0, 0) = 1 ([20, 22] and the sequence
A132393 in the Sloane’s On-line Encyclopedia of Integer Sequences [19]).

We define the following equivalence relation on permutations of length n:

π ∼ σ ⇐⇒ DD(π) = DD(σ).

The set of equivalence classes in Sn (resp. in a restricted set R ⊂ Sn) is denoted S∼n (resp. R∼).
For instance, the permutations π = 1 4 2 7 5 3 8 6 and σ = 1 7 5 6 4 2 3 8 belong to the same
equivalence class (see Figure 1) because DD(π) = DD(σ) = {(4, 2), (7, 5)}, and S∼3 is constituted of
the 5 classes {123, 231}, {132}, {213}, {321} and {312}.
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Figure 1: Two permutations π = 1 4 2 7 5 3 8 6 and σ = 1 7 5 6 4 2 3 8 in the same equivalence class
of S∼8 with DD(π) = DD(σ) = {(4, 2), (7, 5)}.

https://oeis.org/A132393
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A permutation π ∈ Sn avoids the pattern τ ∈ Sk if and only if there is no sequence of indices
1 ≤ i1 < i2 < · · · < ik ≤ n such that π(i1)π(i2) · · ·π(ik) is order-isomorphic to τ (see [14, 18]).
We denote by Sn(τ) the set of permutations of Sn avoiding the pattern τ . For example, if τ = 123
then 52143 ∈ S5(τ) while 21534 /∈ S5(τ). Many classical sequences in combinatorics appear as the
cardinality of pattern-avoiding permutation sets. A large number of these results were firstly obtained
in [7, 12, 14, 15, 18, 21]. Also, we refer to the books of Kitaev [13] and Bóna [8].

Later, Babson and Steingŕımsson [1] defined generalized patterns (also called vincular patterns)
where any pair of two adjacent values in the pattern may be underlined, which means that the
corresponding values in the permutation must be adjacent. For instance, the pattern 231 occurs in
the permutation 316452 two times as the subsequences 352 and 452, while the pattern 231 occurs four
times.

Moreover, we will consider a barred pattern τ̄ , i.e., a permutation in Sk having a bar over one value
(see [17] and [21] for instance). Let τ be the permutation on [k] identical to τ̄ but unbarred, and τ̂ be
the permutation on [k − 1] made up of the k − 1 unbarred values of τ̄ rewritten to be a permutation
on [k − 1]. Then π ∈ Sn avoids the pattern τ̄ if and only if each pattern τ̂ in π can be expanded
into a pattern τ in π where the expanded value corresponds to the barred value in τ̄ . For instance,
the permutation 3241 does not avoid 213̄ since 41 cannot be expanded into a 213 pattern, while 3124
avoids it.

In the following, we will consider permutations avoiding the generalized and barred pattern 51423,
consisting in permutations where any pattern 4123 can be expanded into a pattern 51423.

The main goal of this paper is to calculate the number of equivalence classes (modulo pure descents)
for some subsets of permutations avoiding at most one pattern of length three. See Table 1 for an
overview of our results.

The paper is organized as follows. In Section 2, we give a one-to-one correspondence between S∼n
and the set of noncrossing partitions of [n], proving that the cardinalities of S∼n for n ≥ 1 are given
by the Catalan numbers (see A000108 in the On-line Encyclopedia of Integer Sequences [19]). For
the case of permutations avoiding the pattern 231, we prove that any equivalence class contains only
one permutation on which we construct a forest of ordered trees. Also, we prove that Sn(312)∼ and
Sn(321)∼ are enumerated by 2n−1 (A011782 in [19]).

In Section 3, we describe a bijection between forests of ordered binary trees with n nodes and the set
Sn(231, 51423), giving a new set of pattern-avoiding permutations in bijection with the single-source
directed animals on the square lattice (see Barcucci et al. [2], and Bousquet-Mélou [9]). Bivariate
generating functions are given for these sets according to various statistics.

In Section 4, we investigate the equivalence relation on the set Sn(123) of permutations avoiding
the pattern 123. We give a constructive bijection between forests of ordered binary trees and the
classes in Sn(123)∼, proving that the cardinality of Sn(123)∼ is also given by the sequence A005773
that counts the single-source directed animals as above.

2 Enumeration of S∼n , Sn(231)∼, Sn(312)∼ and Sn(321)∼

In this section, we provide the cardinality of S∼n , Sn(231)∼, Sn(312)∼ and Sn(321)∼. Note that if a
permutation π avoids the pattern 231 then any descent of π is a pure descent.

A partition Π of [n] is a collection of non-empty pairwise disjoint subsets, called blocks, whose union

https://oeis.org/A000108
https://oeis.org/A011782
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Pattern Sequence OEIS an, 1 ≤ n ≤ 9

{}, {231} Catalan A000108 1, 2, 5, 14, 42, 132, 429, 1430, 4862

{312}, {321} 2n−1 A011782 1, 2, 4, 8, 16, 32, 64, 128, 256

{231, 51423} Directed animals A005773 1, 2, 5, 13, 35, 96, 267, 750, 2123

{123} Directed animals A005773 1, 2, 5, 13, 35, 96, 267, 750, 2123

Table 1: Number of equivalence classes for the set of all permutations, and for some restricted sets of
pattern-avoiding permutations.

is [n] (see [16]). The standard form of Π is Π1/Π2/ · · · , where the blocks Πi are arranged in increasing
order of their smallest elements, and elements in a same block are in decreasing order. Let Pn be the
set of partitions of [n], and NCPn ⊂ Pn be the set of noncrossing partitions, i.e. all partitions Π
where there do not exist four integers p < q < r < s such that p, r ∈ Πi and q, s ∈ Πj with i 6= j.

We associate to a permutation π ∈ Sn the unique partition Π defined as follows. Two elements
x and y, x > y, belong to the same block in Π if and only if there exist i and j, i < j, such that
the pairs (x = πi, πi+1), (πi+1, πi+2), . . . , (πj−1, πj = y) are pure descents in π. For instance, the two
permutations in Figure 1 are associated to the same partition (in standard form) Π = 1/42/3/75/
6/8. In fact, the associated partitions are always noncrossing partitions. Indeed, let us consider a
block Πi = πaπa+1 · · ·πb with a < b, πa > πa+1 > · · · > πb. Since πaπa+1 · · ·πb is a subsequence of
consecutive pure descents in π, there is no πc, c < a, such that πc ∈ [πb, πa]. So, let us assume that
there is c > b such that πc ∈ [πb, πa]; then, for the same argument, all elements in the same block as
πc are greater than πb and lower than πa, which implies that there is no πd in the block of πc such
that πd < πb < πc < πa with a < b < c < d. Mutatis mutandis, there is no πd in the block of πc such
that πb < πc < πa < πd with a < b < c < d. Thus, the partition Π is noncrossing.

Conversely, any noncrossing partition Π of standard form Π = Π1/Π2/ . . . /Πk, k ≥ 1, is associated
to the permutation π = Π1Π2 · · ·Πk that avoids the pattern 231. Indeed, the noncrossing property
forces all descents of π to be pure, implying that π does not contain any pattern 231. As the set
NCPn (and also Sn(231)) is enumerated by the nth Catalan number (see A000108, [19]), we obtain
Theorem 2.1. As an immediate consequence, equivalence classes in Sn(231)∼ are singletons, and the
set Sn(231) is a set of representatives of S∼n .

Theorem 2.1 The sets S∼n (resp. Sn(231)∼), n ≥ 1, are enumerated by the Catalan numbers.

As a byproduct of Theorem 2.1, we obtain the cardinalities of Sn(312)∼ and Sn(321)∼. Since
Sn(231) is a set of representatives of S∼n , there is a unique π′ ∈ Sn(231) equivalent to π ∈ Sn(312),
and π′ is obtained from the noncrossing partition associated to π (in standard form) Π = Π1/Π2/ . . . /
Πk by deleting all ‘/’, i.e., π′ = Π1Π2 · · ·Πk. Notice that for any permutation π ∈ Sn(312), a pure
descent in π is necessarily an adjacency, i.e., a descent (πi, πi+1) with πi+1 = πi − 1. Then, any block
Πj , 1 ≤ j ≤ k, is an interval, which implies that π′ avoids also the pattern 312. So, the set Sn(312)∼

is in one-to-one correspondence with the set of Sn(231, 312) which induces Theorem 2.2 (see Simion
and Schmidt [18]). Theorem 2.3 is obtained mutatis mutandis.

Theorem 2.2 The sets Sn(312)∼, n ≥ 1, are enumerated by 2n−1.

https://oeis.org/A000108
https://oeis.org/A011782
https://oeis.org/A005773
https://oeis.org/A005773
https://oeis.org/A000108
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Theorem 2.3 The sets Sn(321)∼, n ≥ 1, are enumerated by 2n−1.

3 Forests and 231-avoiding permutations

In this section, we establish a constructive bijection between Sn(231) and the set Fn of forests of
ordered trees, i.e. collections of rooted trees in which children of each node are ordered and the total
number of nodes is n. Taking advantage of the recursive definition of the forests, we exhibit a new
set of permutations Sn(231, 51423) having the same cardinality as the set of single-source directed
animals on the square lattice (see [2, 9] and A005773, [19]). Moreover, we show how the bijection
transports various statistics (see Table 2). As a byproduct, we provide several bivariate generating
functions with respect to the length and these statistics for the two sets Sn(231) and Sn(231, 51423)
(see Theorems 3.1 and 3.2).

Let π be a permutation in Sn(231). We construct a forest fπ ∈ Fn as follows: we cross the graphical
representation of π from left to right; if the point (i, πi) is a left-to-right maximum (that is πi > πj
for all j < i), then it corresponds to the root of a new tree in fπ; otherwise we add an edge between
(i, πi) and (j, πj) where j is the rightmost j < i such that πj > πi. See Figure 2 for an example of this
construction. Notice that in [10], the authors have a different way of converting a permutation to a
graph (not necessary a forest) based on ascents.

By construction, the map φ : Sn(231)→ Fn defined by π 7→ fπ is injective. Since Fn is enumerated
by the nth Catalan number as Sn(231), we deduce the bijectivity of φ.
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Π = 8 4 1/2/3/6 5/7/9/13 11 10/12

Figure 2: The permutation π = 8 4 1 2 3 6 5 7 9 13 11 10 12 with its corresponding forest fπ and the
noncrossing partition Π = 8 4 1/2/3/6 5/7/9/13 11 10/12.

Now we define some statistics on Sn(231) and Fn, and we show how the map φ establishes a
correspondence between them.

For a permutation π ∈ Sn(231), we define:

https://oeis.org/A005773
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• des(π) = number of descents (which is also the number of pure descents);
• ides(π) = number of descents in π−1 (for π ∈ Sn(231), we have ides(π) =des(π));
• adj(π) = number of adjacencies, i.e. descent (πi, πi+1) such that πi+1 = πi − 1;
• lrM(π) = number of left-to-right maxima, i.e. i ≥ 1 such that πi > πj for all j < i;
• rlm(π) = number of right-to-left minima, i.e. i ≥ 1 such that πi < πj for all j > i;
• inv(π) = number of inversions, i.e. pairs (πi, πj) with πi > πj and i < j,
• lmax(π) = maximum value of the Lehmer code `1`2 · · · `n of π, i.e. max1≤i≤n `i where `i = |{πj >
πi, j < i}|;
• lsum(π) = sum of all values of the Lehmer code of π.

For instance, if π = 8 4 1 2 3 6 5 7 9 13 11 10 12 is the permutation in Figure 2, then we have
des(π) = 5, ides(π) = 5, adj(π) = 2, lrM(π) = 3, rlm(π) = 8, inv(π) = 15, lmax(π) = 2, and
lsum(π) = 15. For a forest f ∈ Fn, we define

• ledg(f) = number of left edges, i.e., leftmost edges among its siblings;
• redg(f) = number of right edges, i.e., rightmost edges among its siblings (ledg(f)=redg(f));
• nod1(f) = number of nodes with only one child;
• ordt(f) = number of ordered trees;
• leav(f) = number of leaves, i.e., nodes without child;
• vpat(f) = number of vertical paths (a vertical path is a path between a node and one of its ancestors);
• dept(f) = depth, i.e., the maximal length of a vertical path;
• inpl(f) = internal path length, i.e., the sum of the lengths of all paths from a node to the root.

For instance, if f is the associated forest of the permutation in Figure 2, then we have ledg(f) = 5,
redg(f) = 5, nod1(f) = 2, ordt(f) = 3, leav(f) = 8, vpat(f) = 15, dept(f) = 2, and inpl(f) = 15.

In the following, the notation st will be refer to one of these statistics on the sets Sn(231) or
Fn. According to these definitions, it is straightforward to check that φ transports these statistics as
related in Table 2.

Sn(231) des = ides adj lrM rlm inv lmax lsum

Fn ledg = redg nod1 ordt leav vpat dept inpl

Table 2: Correspondences of statistics by the bijection φ from Sn(231) to Fn.

Using the correspondence between these statistics and taking advantage of the recursive structure of
a forest, we derive several bivariate generating functions for two sets of pattern-avoiding permutations
with respect to the length and the statistics above.

Theorem 3.1 Let F (z, y) be the bivariate generating function where the coefficient of znyk is the
number of permutations π ∈ Sn(231) with st(π) = k. Then, we have:

• if st is des, ides, or lmax, then F (z, y) =
1−z+zy−

√
z2y2−2 z2y+z2−2 zy−2 z+1

2zy ,

• if st is adj, then F (z, y) =
1−zy+z−

√
z2y2+2 z2y−3 z2−2 zy−2 z+1

2z ,

• if st is lrM, then F (z, y) = 2
2−y+y

√
1−4z ,
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• if st is rlm, then F (z, y) =
1+z−zy−

√
z2y2−2 z2y+z2−2 zy−2 z+1

2z .

Whenever st is inv or lsum, the generating function satisfies the functional equation

F (z, y) =
1

1− z(F (zy, y)− 1)− z
.

Proof. Since a forest f ∈ Fn is a collection of ordered trees, we have F (z, y) = 1
1−T (z,y) where T (z, y)

is the generating function for the number of ordered trees with respect to the length and the statistic
st. Now, using the fact that a nonempty ordered tree is a node connected to the roots of the trees of
a forest, we easily derive functional equations for each statistic st:

- for ledg, redg and dept, T (z, y) = zy(F (z, y)− 1) + z;
- for nod1, T (z, y) = zyT (z, y) + z(F (z, y)− T (z, y));
- for ordt, T (z, y) = zyF (z, 1);
- for leav, T (z, y) = z(F (z, y)− 1) + zy;
- for vpat and inpl, T (z, y) = z(F (zy, y)− 1) + z.
A simple calculation (using Maple for instance) completes the proof. 2

Theorem 3.2 The sets Sn(231, 51423), n ≥ 1, are enumerated by the number of single-source directed
animals on the square lattice (A005773, [19]). Let G(z, y) be the bivariate generating function where
the coefficient of znyk is the number of permutations π ∈ Sn(231, 51423) with st(π) = k. Then, we
have:

• if st is des, ides, or lmax, then G(z, y) = 2yz

3 yz−1+
√
y2z2−4 yz2−2 yz+1

,

• if st is adj, then G(z, y) = 2z

2z−1+yz+
√
y2z2−2 yz−4 z2+1

,

• if st is lrM, then G(z, y) = 2z
yz−y+2 z+y

√
−3 z2−2 z+1

,

• if st is rlm, then G(z, y) = 2z

3 z−1+
√
−4 yz2+z2−2 z+1

.

Whenever st is inv or lsum, the generating function satisfies the functional equation R (z, y) = z + zR (yz, y) + zR (yz, y)2

G(z, y) = 1
1−R(z,y)

.

Proof. Let Gn ⊂ Fn be the set of forests of ordered binary trees, i.e., ordered trees where each node has
at most two children. Let us prove that we have φ−1(Gn) = Sn(231, 51423). Let π be a permutation
in Sn(231, 51423) and fπ = φ(π). Since π avoids 51423, any pattern 4123 can be expanded into a
pattern 51423 which implies that the corresponding forest fπ does not contain a node with more than
two children. Conversely, if the forest fπ belongs to Gn, then the degree of any node of f is at most
two. Let us suppose that π contains the pattern 4123 on πiπi+1πjπk, i+ 1 < j < k. If there does not

https://oeis.org/A005773
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exist `, i + 1 < ` < j such that πk < π` < πi, by construction the forest fπ has the node πi with at
least three children πi+1, πj and πk. So, any pattern 4123 in π can be expanded into a pattern 51423,
which proves that π avoids 51423.

Let G(z, y) be the generating function where the coefficient of znyk is the number of forests
f ∈ Gn with st(f) = k. Since a forest f ∈ Gn is a collection of the ordered binary trees, we have
G(z, y) = 1

1−R(z,y) where R(z, y) is the generating function for the number of ordered binary trees with
respect to the length and the parameter st. Now, using the fact that a nonempty ordered binary tree
is a node connected to the roots of at most two ordered binary trees, we can easily derive functional
equations for each statistic st:

- for ledg, redg and dept, R(z, y) = z + zyR(z, y) + zyR(z, y)2;

- for nod1, R(z, y) = z + zyR(z, y) + zR(z, y)2;

- for ordt, R(z, y) = zy + zyR(z, 1) + zyR(z, 1)2;

- for leav, R(z, y) = zy + zR(z, y) + zR(z, y)2;

- for vpat and inpl, R(z, y) = z + zR(z, y) + zR(z, y)2.

A simple calculation (using Maple for instance) completes the proof. 2

Notice that for inv and lsum, functional equations provide generating functions as continued
fractions instead of closed forms.

4 Enumeration of Sn(123)∼

In this section we prove that the set Sn(123)∼ is enumerated by the number of single-source directed
animals on the square lattice (A005773, [19]). To achieve this, we construct a bijection between
Sn(123)∼ and the set of forests of ordered binary trees, i.e., trees where nodes have at most two ordered
children (if a node has only one child then the corresponding link is called 0-edge the corresponding
link, and if a node has two children then the two corresponding links are called 0-edge and 1-edge,
which defines an order on siblings).

A run of pure descents (also called run for short) in π = π1 · · ·πn ∈ Sn is a maximal subsequence
πiπi+1 · · ·πj , 1 ≤ i ≤ j ≤ n, of successive pure descents, i.e. (πk, πk+1) is a pure descent for i ≤ k ≤
j − 1, and the two pairs (πi−1πi), (πjπj+1) are not pure descents (a run contains at least one entry,
that is πi). To any run R of π ∈ Sn, we associate the interval I(R) = [a, b] ⊆ [n] where a and b are
the extremities of R, that is a = minR and b = maxR.

In a permutation π ∈ Sn(123), there do not exist three runs R,S and T such that I(S) ⊂ I(R) ⊂
I(T ) (otherwise a pattern 123 would be created on the three entries minT,minR and minS). So,
whenever there are two runs S, R such that I(S) ⊂ I(R), we will say that S is a secondary run, and S
appears necessarily in π at the right of R. A run R that is not secondary will be called primary. The
family of intervals I(R) associated to the primary runs of π ∈ Sn(123) forms a partition of [n]. We
denote by p ≥ 1 the cardinality of this partition, and let Ii, 1 ≤ i ≤ p, be the ith interval (considered
in decreasing order), and let Pi be its associated primary run (I(Pi) = Ii). For 1 ≤ i ≤ p, let Li be
the restriction of π to the interval Ii. It can be decomposed as Li = PiS

1
i S

2
i · · ·S

si
i where Pi is the

ith primary run of π, Sji is the jth secondary run of the interval Ii and si is the number of secondary
runs in Li.

We say there is a break between two consecutive secondary runs Sji and Sj+1
i in Li if minSji =

1 + maxSj+1
i . We refer to Figure 3 for an illustration of such a decomposition.

https://oeis.org/A005773
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} L2 = P2S
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2

} L3 = P3S
1
3S

2
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}L4 = P4

Figure 3: Illustration of the decomposition into runs of the permutation π =
12 8 14 13 7 5 3 11 10 2 1 9 6 4; P1 = 14 13, P2 = 12 8, S1

2 = 11 10, S2
2 = 9, P3 = 7 5 3,

S1
3 = 6, S2

3 = 4, P4 = 2 1. A break occurs between the two consecutive secondary runs S1
2 and S2

2 .

With the above definitions we have Lemma 4.1.

Lemma 4.1 Let π ∈ Sn(123) and 1 ≤ i ≤ p. If there is a break between two consecutive secondary runs
Sji and Sj+1

i in Li, then there exists a unique primary run Pk between Sji and Sj+1
i in the one-line

notation of π, and we necessarily have k > i.

Proof. If there is a break between Sji and Sj+1
i , then we have minSji = 1 + maxSj+1

i and the pair

(minSji ,maxSj+1
i ) is not a pure descent. So, there exists an entry x of π between Sji and Sj+1

i , i.e.

Sji and Sj+1
i are not contiguous. As π avoids 123, x is necessarily less than minPi where Pi is the

primary run of Li, and it does not belong to a secondary run. For a contradiction, let us assume that
there are two entries x and y, x > y, between Sji and Sj+1

i , that do not belong to the same primary
run (we take y maximal such that x > y). Obviously, x is on the left of y, otherwise it would create a
123 pattern on the entries yxminSj+1

i . Let Pk (resp. P`, ` > k) be the primary run that contains x
(resp. y). Since x > y and Pk is on the left of P`, the two primary runs are not contiguous, and there
exists a value z between Pk and P`. The maximality of y implies that z is either below P` or above
Pk, which creates a 123 pattern in both cases. Thus, we obtain the desired contradiction. 2

Lemma 4.1 allows us to define an injective map α from the set B of breaks to the set P of primary
runs, where the image of a break under α is the unique primary run defined in Lemma 1. Moreover,
it is easy to check that the map α is increasing, i.e., if B1, B2, . . . , Br are the breaks of B ordered in
decreasing order (from top to bottom in the graphical representation of π), then the two primary runs
Pk = α(Bi) and P` = α(Bj), 1 ≤ i < j ≤ r, satisfy k < ` (i.e., Pk > P`, which means that Pk is above
P` in the graphical representation of π). The existence of this increasing map α allows us to define
another increasing map β (possibly equal to α) from B to P:
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• β(B1) is the highest primary run below B1 (it always exists since α(B1) is below B1).

• Let us assume that β is defined on Ui = {B1, . . . , Bi}, i ≥ 1, and β is increasing such that
β(Bj) ≤ α(Bj) for 1 ≤ j ≤ i. Setting Vi = β(Ui), we define β(Bi+1) by the highest primary run
below Bi+1 that does not lie in Vi (it always exists since α(Bi+1) is below Bi+1 and α(Bi+1)
cannot lie in Vi since α(Bi+1) is below α(Bi) and thus, also below β(Bi)).

A crucial property of β is that it depends only on the set of primary and secondary runs, which
means that two permutations in the same equivalence class provide the same map β.

Using the map β, we construct a forest χ(π) of ordered binary trees from the graphical represen-
tation of π by adding 0-edges and 1-edges between some entries of π using the following process.

(i) If (πi, πi+1) is a pure descent, then we add a 0-edge between πi and πi+1.

(ii) If there is break between Sji and Sj+1
i , then we add a 0-edge between minSji and maxSj+1

i .

(iii) If Sji is a secondary run and there is no break just before Sji , then we add a 1-edge between

x and maxSj+1
i where x is the smallest entry greater than maxSj+1

i in the primary run Pi.

(iv) If there is a break B between Sji and Sj+1
i , then we add a 1-edge between maxSji and maxβ(B).

At the end of this process, we read the different connected components (rotated clockwise by π
4 )

from top to bottom, and we draw the corresponding trees so that any 0-edge points to the left child
and 1-edge points to the right child. See Figure 4 for an illustration of this construction. Black line
(resp. blue dash-dotted line, red dotted line, green dashed line) edges come from (i) (resp. (ii), (iii),
(iv)). In what follows, an edge e in χ(π) will be denoted (a, b) where a and b are the extremities of e
such that a is the parent of b.

Since any node in χ(π) has at most two children, χ(π) is a forest of ordered binary trees. Let T
be a binary tree of χ(π). For any node v ∈ T we denote by r(v) (resp. l(v)) the number of 1-edges
(resp. 0-edges) in the path connecting the root of T with v. We say that a node v is isolated when it
has no siblings.

Remark 4.2 Let e = (a, b) be a 0-edge in χ(π).

• (a, b) is a pure descent in a primary run of π if and only if r(a) is even.

• (a, b) is a pure descent in a secondary run of π if and only if a is isolated and r(a) is odd.

• There is a break between a and b if and only if a is not isolated and r(a) is odd.

Let rath(v) be the binary word consisting of edge labels in the path from the root to v. Using a
lexicographical order over such binary words (e.g. 101 > 011, 1 > 01), we define a total order on the
set of nodes V in χ(π). For a, b ∈ V , we set

a < b⇐⇒


either a belongs to a tree before that of b in the forest χ(π),

or

{
r(a) < r(b) or

r(a) = r(b) and rath(a) > rath(b)

(F)
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Figure 4: The permutation π = 12 8 14 13 7 5 3 11 10 2 1 9 6 4 and the corresponding forest with nodes
labeled using (F) order relation.

where r(a) and is defined before Remark 4.2. We extend this order for paths v1v2 · · · where vi and vi+1

are nodes of χ(π) connected by a 0-edge: two disjoint paths v1v2v3 · · · and u1u2u3 · · · are compared
by their heads, i.e.

(v1v2v3 · · · ) < (u1u2u3 · · · ) ⇐⇒ v1 < u1.

Extracting from the forest χ(π) certain subsets of disjoint paths and taking into account the above
order relation, we obtain the following.

Remark 4.3 The three statements hold:

• The ith primary run Pi in π (ordered from the top) corresponds to the ith maximal path
v1v2v3 · · · of consecutive nodes joined by 0-edges in χ(π) where r(v1) is even.

• The ith secondary run in π (ordered from the top) corresponds to the ith maximal path v1v2v3 · · ·
of consecutive isolated nodes joined by 0-edges in χ(π) where r(v1) is odd.

• The ith break in π (ordered from the top) corresponds to the the ith 0-edge (a, b) in χ(π) such
that r(a) is odd and a is isolated.

Consequence Let (a, b) be a pure descent in a primary run of π, and e = (a, b) its associated 0-edge
in χ(π). Then, the number of entries of π in the interval (b, a), i.e. a− b− 1, is equal to the number
of nodes in the maximal path of 0-edges starting on the right child of a.

Proposition 4.4 Let π and π′ be two permutations in Sn(123).

- If π and π′ belong to the same equivalence class, then χ(π) = χ(σ).

- If π and π′ belong to different equivalence classes, then χ(π) 6= χ(σ).
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Proof. As we have seen above, the map β depends only on the set of primary and secondary runs.
Thus, our construction applied on two permutations lying in the same class provides the same forest.

Moreover, if two permutations π and π′ do not belong to the same class then their sets of primary
and secondary runs necessarily differ. Due to the statements of Remark 2 and the above consequence,
we deduce easily that χ(π) and χ(π′) are different. 2

Theorem 4.5 The sets Sn(123)∼, n ≥ 1, are enumerated by the numbers of single-source directed
animals on the square lattice (A005773, [19]).

Proof. Proposition 1 proves that χ is injective. So, it suffices to show the surjectivity of χ, i.e., any
forest of ordered binary trees is the image by χ of a permutation avoiding 123.

First, we prove that any binary tree can be obtained from a permutation π ∈ Sn(123) by the
above construction. Let T be a binary tree with n nodes. By Remark 2, a maximal path P of nodes
connected by 0-edges in T such that r(P ) is even corresponds to a primary run of π. Moreover, if a
0-edge e corresponds to a pure descent (a, b) in a primary run of π, b(e) = a− b− 1 is the number of
nodes in the maximal path (possibly reduced to one node) of 0-edges starting on the right child of a.

Then the primary runs of π are entirely determined by the sequence b1b2 · · · bk with b1 = n and
bi = b(e) where e is the ith 0-edge of T (using the (F) order relation) such that r(e) is even. If p
is the number of primary runs and Pi is the ith primary run of π then the sequence P1P2, . . . Pp is
decreasing.

Consequently, secondary runs of π take values from [n]\ ∪pi Pi, and the breaks correspond to the
0-edges e = (a, b) where a is non-isolated and r(a) is odd, which entirely determines secondary runs
and breaks. If q is the number of secondary runs and Si is the ith secondary run (using the (F) order
relation) then the sequence S1S2 · · ·Sq is decreasing.

Now we construct a permutation π avoiding 123 by a shuffle of the two decreasing sequences
P1P2 · · ·Pp and S1S2 · · ·Sq. We read P1S1S2 · · ·Sq from left to right, and whenever we meet a break
between Si and Si+1 we insert between them the first primary run not yet inserted (this is exactly the
correspondence given by the increasing map β defined above). Obviously, the sequence obtained at
the end of the process is a permutation avoiding the pattern 123 since it is a shuffle of two decreasing
sequences. Finally, the image of π by χ provides the tree T , which means that χ(Sn(123)) contains
the set of all ordered binary trees of size n.

So, let us assume that f is a forest of ordered binary trees T1, T2, . . . , Tk. For 1 ≤ i ≤ k, we
construct the permutation πi from the tree Ti by the previous process, i.e., πi = χ−1(Ti). Let π be
the permutation obtained by the skew sum π1 	 π2 	 . . .	 πk where π	 π′ is the permutation σ such
that

σ(i) =

{
π(i) +m′ for 1 ≤ i ≤ m,
π′(i−m) for m+ 1 ≤ i ≤ m+m′

where m (resp. m′) is the length of π (resp. π′).

Now we read π1 	 π2 	 . . .	 πk from left to right. Whenever a pure descent is created between πi
and πi+1, it is easy to see that πi is necessarily a decreasing sequence. In this case we permute πi and
the first primary run of πi+1. At the end of the process, the permutation π satisfies χ(π) = f . 2

For instance, the previous construction applied on the forest illustrated in Figure 4 provides the
permutation π = 12 8 14 13 11 10 7 5 3 9 6 4 2 1. Indeed, we have π1 = χ−1(T1) = 2 1, π2 = χ−1(T2) =

https://oeis.org/A005773
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10 6 9 8 5 3 1 7 4 2 and π3 = χ−1(T3) = 2 1. Since a pure descent (13, 12) is created in the permutation
π1 	 π2 	 π3 = 1413 12 8 11 10 7 5 3 9 6 421, we permute the two primary runs 12 8 and 14 13, which
gives π = 12 81413 11 10 7 5 3 9 6 4 2 1.

5 Going further

We conclude this paper by giving several open questions and possible research directions.

We experimentally obtained the numbers of classes in Sn(132)∼ and Sn(213)∼ for small values of
n, 1 ≤ n ≤ 9. For Sn(132)∼, we obtain the sequence 1, 2, 4, 10, 26, 66, 169, 437, 1130 and for Sn(213)∼,
we obtain the sequence 1, 2, 4, 9, 22, 56, 146, 388, 1048. The first sequence does not appear in [19],
while the second sequence seems to be A152225 which corresponds to the number of Dyck paths of
semilength n with no peaks at height 0 mod 3 and no valleys at height 2 mod 3. Is it possible to
obtain the generating functions for these sets and to construct a bijection with Dyck paths?

In [2], the authors give a one-to-one correspondence between the set Fn of forests of ordered
trees and the set Sn(321, 41̄523) that transports various parameters. However, they do not give an
interpretation for the number of inversions, the degree of the root less one and the internal-path-
length. In Section 2, we exhibit a bijection between Fn and Sn(231, 51423), which gives a new set of
pattern-avoiding permutations enumerated as the single-source directed animals on the square lattice.
This bijection has the advantage that it transports many parameters (see Section 3), and in particular
the three previous parameters. Is it possible to give an interpretation of these parameters in term of
the single-source directed animals?

In Section 4, we prove that Sn(123)∼ is enumerated by the number of directed animals (or equiv-
alently directed polyominoes). Is it possible to give an interpretation of the equivalence relation in
term of polyominoes?
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