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Abstract. We demonstrate an approach for exact sampling of certain discrete combinatorial distributions, which is
a hybrid of exact Boltzmann sampling and the recursive method, using probabilistic divide-and-conquer (PDC). The
approach specializes to exact Boltzmann sampling in the trivial setting, and specializes to PDC deterministic second half
in the �rst non-trivial application. A large class of examples is given for which this method broadly applies, and several
examples are worked out explicitly.
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1 Introduction

The Boltzmann sampler has transformed the way in which combinatorial structures are analyzed
and sampled by taking advantage of the generating function structure. One starts with a family of
combinatorial objects, C, parameterized by various integer-valued statistics like size and number of
components, and writes C as a disjoint union of �nite sets, for example,

C =
⋃
n

Cn =
⋃
n

⋃
k

Cn,k.

We may have n and k represent, for example, certain statistics like the size of an integer partition and
the number of parts, respectively, and Cn,k is the set of all integer partitions of size n into exactly k
parts. The goal is then to sample from such a set of objects.

A standard approach for specifying a sampling algorithm is to name the Boltzmann model, and
construct a combinatorial object recursively via the sizes of its components [13]; for example, the part
sizes of an integer partition, the block sizes of a set partition, the cycle sizes in a random permutation.
The Boltzmann sampler is then a sampling algorithm which gives a weight to each component-size in
proportion to its prevalence in the set of objects of a given size, and does so via a joint distribution
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of independent random variables. For unlabelled structures, an object of size n is generated with
probability, for some given real-valued tilting parameter x,

P (random object is of size n) =
cn x

n

C(x)
,

where cn is the number of objects of size n and C(x) =
∑

n≥0 cnx
n is the generating function of the

sequence cn, n ≥ 0. For labelled structures, an object of size n is generated with probability, for some
given real-valued tilting parameter x,

P (random object is of size n) =
cn x

n

n! Ĉ(x)
,

where Ĉ(x) =
∑

n≥0 cn
xn

n! is the exponential generating function of the sequence cn, n ≥ 0. The result
of a Boltzmann sampler is a random object of random size; for example, it generates an object in CN ,
where N is a random variable with a certain distribution.

A spectacular property of the Boltzmann sampler is that, conditional on the event {N = n},
the component structure generated is in proportion to the number of objects in Cn which have that
component structure. Thus, one immediately obtains an exact sampling algorithm for the uniform
distribution over Cn by repeatedly sampling until the event {N = n} occurs, discarding samples which
do not satisfy this event; this is known as exact Boltzmann sampling [13]. The limitation of exact
Boltzmann sampling is then the probability that a random-sized object generated via a Boltzmann
sampler satis�es the event {N = n}. Owing to the plethora of results pertaining to combinatorial
enumeration, local limit theorems, and saddle point analysis, one can estimate this probability, and
de�ne the rejection cost as P(N = n)−1, since it is the expected number of times we must sample using
the Boltzmann sampler before a sample satis�es the event {N = n}. This rejection cost can grow
polynomially or even exponentially in n, depending on the combinatorial structure and the event of
interest.

A general method for the random sampling of combinatorial structures is the recursive method of
Nijenhuis and Wilf [25, 26]. The method samples the components of a combinatorial structure one at
a time, in proportion to its prevalence in the overall target set, by constructing a table of values based
on a recursion that the combinatorial sequences satis�es. This is equivalent to forming a conditional
probability distribution of component-sizes, and is also equivalent to an unranking algorithm, which
enumerates all possible objects of size n, say p(n), samples a uniform number between 1 and p(n),
and determines the component structures via the recursion. Once this table is complete, sampling is
e�cient. The main drawback of this method is that the table size may be overwhelming, and often
only a small portion of the table is utilized with high probability, even though the full table is needed
in principle.

Probabilistic divide-and-conquer (PDC) is an exact sampling method which divides a sample space
into two separate parts, samples each part separately, and then combines them to form an exact sample
from the target distribution; see [3, 11]. It was successfully utilized in [3] to obtain an asymptotically
e�cient random sampling algorithm for integer partitions. A similar approach was used in [2] for the
random sampling of Motzkin words, also obtaining an asymptotically e�cient sampling algorithm. In
both applications, the key to obtaining an asymptotically e�cient algorithm was the explicit, e�cient
computing of certain rejection functions, which are not always present in more general contexts. Thus,
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in our present treatment, we have applied PDC in such a way that the corresponding rejection for-
mulas are always explicit and e�cient to compute. In addition, our main algorithm, Algorithm 5, is
embarassingly parallel, see Remark 3.3.

In Section 2, we review various available sampling methods. In Section 3, we present our main
algorithm, which combines elements of exact Boltzmann sampling with the recursive method. An
analysis of the costs and bene�ts are contained in Section 4. We apply this idea to integer partitions
in Section 5 and to set partitions in Section 6, and demonstrate how this idea generalizes to a larger
class of combinatorial structures in Section 7.

2 Exact sampling

2.1 Alternatives to exact sampling

An alternative to exact Boltzmann sampling is to run a forward Markov chain on the state space.
The main drawback is that, unless we can already sample uniformly from the state space, after any
�nite number of steps (chosen in advance) there will always be some form of bias in the chain. If one
can prove that the chain is rapidly mixing, then this error is usually considered an acceptable form of
bias, as it is often of the same order of magnitude of other forms of errors after a polynomial number
of steps. However, there are many examples where proving that a Markov chain is rapidly mixing is
not so straightforward, see for example [22, Chapter 23], and other examples where it is proved that
mixing takes an exponentially long time, see for example [6, 24].

Another alternative is the Boltzmann sampler (note the absence of the word exact), which samples
a random combinatorial structure of random size N , tilted so that EN is close to n, with each object
of a given size equally likely. There are many quantitative reasons why accepting a random sample
of a random size serves as a good surrogate for an exact sample. A primary example is the limit
shape of integer partitions, see [27], where it was shown that the limit shape of integer partitions
coincides with the limit shape obtained by a Boltzmann model; see also [7, 9, 20, 35] for related results.
However, it is shown in [28] for set partitions that there exist statistics which are qualitatively di�erent,
even asymptotically as n tends to in�nity, depending on whether or not the true joint distribution of
component-sizes is used; i.e., whether or not the event {N = n} is required for all samples.

A standard approach to improve on exact Boltzmann sampling is to consider an event of the form
En,ε = {N ∈ (n(1 − ε), n(1 + ε))}, for some ε > 0. This e�ectively widens the target by a small
factor of n, and often improves the rejection rate to O(1). To see this, we note that, as in [4], many
Boltzmann samplers with appropriately chosen tilting parameter x produce random target sizes N
which are asymptotically normally distributed with mean n and standard deviation O(n−a), for some
a > 0. This means, then, that the exact Boltzmann sampler rejects an expected O(na) number of
samples before a sample is accepted. When a < 1, e.g., a = 3/4 in the case of integer partitions,
this implies that eventually, for large enough n, all approximate samples will be accepted, making this
approach asymptotically equivalent to a Boltzmann sampler.

2.2 Other exact sampling methods

An alternative to running a standard Markov chain forward in time is Markov chain coupling from
the past, see [29], where one instead runs simultaneously a Markov chain on every state in the state
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space, starting from some time in the past, forward in time, and couples together chains when they
transition into the same state, treating them as the same chain from that time forward. If after one
step forward in time, starting from time −1, all chains are not coupled, then we restart from time −2
and run the chain forward two steps, coupling the chains as they coincide. If not all chains are coupled
at time 0, we reset at time −2b, for b = 1, 2, . . ., until all chains are coupled at time 0, at which point
the chain is in exact stationarity. This approach has obvious drawbacks, but can also be very e�ective
when there exists a monotonic structure on the transitions and a coupling which allows us to only
consider a few extreme chains, with the implication that all chains will be coupled once those extreme
chains are coupled. Once all chains are coupled, we do indeed have an exact sample in �nite time.
See [19] for further examples.

Another approach intimately related to exact sampling is importance sampling, where instead of
demanding an exact sample from a structure, one instead demands the ability to associate a weight to
the generated sample, which is a measure for the bias in the sampling algorithm. The weights can then
be used to obtain unbiased estimates of statistics. An importance sampling algorithm can be converted
into an exact sampling algorithm by applying a rejection to the generated sample. The rejection may
be particularly severe, as e.g., one very special case of contingency tables [6], where it was shown that
the weights can be exponentially small.

We should also note, as is often the case with fundamental combinatorial structures, that alternative
sampling algorithms exist which are tailored to the speci�c form of the components and their intricate
dependencies. For example, one would not attempt to compete with the Fisher-Yates shu�e [16]
to generate a random permutation, nor is it likely to be fruitful to generate a random set partition
according to the Ewen's measure in block structure form more optimally than the Chinese restaurant
process, see for example [1]. However, if one deviates from the classical form of the combinatorial
structure, then it is not always apparent how to adapt these sampling algorithms.

2.3 The Recursive Method

The recursive method [25, 26] exploits the recursive nature of a combinatorial sequence in order
to extract the conditional distribution of component-sizes in a random sample. For example, letting
p(n, k) denote the number of integer partitions of size n into parts of size at most k, we have the
well-known recursion

p(n, k) = p(n− k, k) + p(n, k − 1) 1 ≤ k ≤ n, (1)

with p(k, 0) = 1 when k ≥ 0, p(k, n) = p(n, n) when k > n, and p(k, n) = 0 otherwise. This recursion
encodes the idea that we can build a partition of size n into parts of size at most k by either appending
another part of size k and repeating with n replaced by n − k, or by deciding that there shall be no
more parts of size k, and continuing with k replaced by k − 1.

To obtain a uniform measure, we simply weight these decisions appropriately, and note a surprising
independence of our decision at each step; i.e., once we make a decision, the sampling problem restarts
with smaller parameters, and is then independent of previous decisions, depending only on the current
input parameters k and n. In this way, it is straightforward to sample part sizes one at a time using a
single table of size n× n until we reach a trivial completion.

The main drawback is the requirement that we are able to compute the values of p(n, k) exactly,
or at least with enough precision on demand to decide de�nitely between the two courses of action;
see Remark 2.1 below. The dimension of the table is a priori n× n, and with the asymptotic analysis
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in [15], speci�cally in the special case of integer partitions, only the entries in the �rst t
√
n log(n) rows

are needed with high probability, taking t > 0 large enough.
An alternative recursive approach, the one originally developed in [25], is to consider a recursion

on the sequence p(n), the number of integer partitions of n, directly, and use its combinatorial in-
terpretation to sample the combinatorial structure in a similar albeit inherently distinct manner. A
well-known recursion due to Euler is

n p(n) =
∑
m<n

σ(n−m) p(m), n ≥ 1, (2)

where we take p(0) = 1, and σ(m) is the sum of all divisors of m. This recursion can be seen by writing
out n copies of all p(n) partitions of n, and then combining partitions of m with certain partitions of
(n−m) via divisors of n−m.

To obtain a uniform distribution, one samples a random variable X with distribution given by

P(X = m) =
σ(n−m) p(m)

n p(n)
, m = 0, 1, . . . , n− 1.

This random variable captures the correct proportion of partially completed partitions, after which
we must determine the part sizes d in proportion to the number of partitions of m corresponding to
divisors of n−m, i.e.,

P(Y = d) =
d

σ(n−m)
, d | (n−m).

Once we have chosen this d, we then �ll in (n−m)/d parts of size d and update n to be the value m
and repeat.

Remark 2.1 In order to extend from �oating-point accuracy to arbitrary accuracy, it has been pointed
out by many authors, see for example [10, Section 4] and [3, Section 5.2], that one does not need to
compute all quantities in an exact sampling procedure to arbitrary precision initially, as long as one
can keep track of su�ciently small intervals for which the exact quantities lie, and further precision
is available on demand. This applies to both numerical calculations as well as generation of random
variables, and is referred to as the ADZ method (after Alonso, Denise, Zimmerman) in [10].

Many straightforward generalizations to (1) and (2) have previously been exploited for integer
partitions, see for example [14]. A very broad generalization of (1), applicable to more than just integer
partitions, is contained in [26, Chapter 13], where it is noted that many combinatorial sequences satisfy
a recurrence relation of the form

a(n, k) = ϕ(n, k)a(nw, k) + ψ(n, k)a(ns, k − 1),

where ϕ,ψ are given explicitly depending on the combinatorial family, and nw and ns are typically of
the form n− a for some a ≥ 0.

A generalization to (2) is also included in [26, Postscript: deux ex machina], which is connected to
the �prefab" concept of [5]. As is often the case, it is easiest to think of these generalizations as origi-
nating from a special case like integer partitions. Brie�y, one attempts to decompose a combinatorial
structure into �prime" components with multiplicities, which is then used to obtain the form of the
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generating function and establish recurrence relations. For integer partitions, the prime components
are the positive integers, and every integer partition of n can be uniquely decomposed into components
of sizes 1, 2, . . . , n with multiplicities. There are of course technical conditions which must be satis�ed,
but under reasonable assumptions on how to synthesize two combinatorial objects the idea generalizes
to other �decomposable" combinatorial structures in a natural manner; see [26] for more examples.

2.4 Probabilistic Divide-and-Conquer

Probabilistic divide-and-conquer (PDC) is a technique for exact sampling, which divides a sample
space into two pieces, samples each separately, and then combines them to form an exact sample
from the target space. In this paper, our focus is on a particular parameterization of a sample space
speci�cally suited to Boltzmann sampling. Rather than recursively build a Boltzmann model, we
instead assume a target sample space which can be written as a joint distribution of real-valued
random variables as follows: for each integer n ≥ 1, let X = (X1, X2, . . . , Xn) denote an Rn�valued
joint distribution of mutually independent random variables, and denote by F the Borel σ-algebra of
measurable events on Rn. Given a set En ∈ F , we de�ne the distribution of X′n as

L(X′n) := L
(

(X1, X2, . . . , Xn)
∣∣∣ X ∈ En) . (3)

Many exact Boltzmann samplers, in particular the examples in [13], can be described in this context
using the event En = {

∑n
i=1 iXi = n}, where the weighted sum is attributing weight i to component i.

A ubiquitous �rst technique for sampling from conditional distributions of the form (3) is rejection
sampling [34], for which we describe two main forms. The �rst is to sample from the unconstrained
distribution L(X) and reject with probability 1 if the event {X ∈ En} is not satis�ed; we refer to this
form of rejection sampling as hard rejection sampling since the rejection probability is in the set {0, 1}.
The second form samples from some alternative distribution L(Y), for which the rejection probability
lies in the interval [0, 1], and is rejected depending on the observed outcome of the sample, say a,
with some auxiliary randomness; we refer to this form as soft rejection sampling, since it requires an
auxiliary random variable U , uniform over the interval [0, 1], and the computation of a function t(a),
with the decision to reject only when the event {U > t(a)} occurs.

For our particular parameterization, the hard rejection sampling algorithm is to sample from
L (X1, X2, . . . , Xn) repeatedly until the event {X ∈ En} occurs, which is equivalent to an exact Boltz-
mann sampler. The overall number of rejections is geometrically distributed, see for example [12], with
expected value P (X ∈ En)−1.

PDC allows us to fashion divisions which attempt to lower the total amount of uncertainty at any
given stage of the algorithm, and hence improve upon the rejection cost. To apply PDC, we choose a
division of the sample space consisting of A ∈ A and B ∈ B, where A and B are independent and can
be sampled separately, and the target set S ∈ A× B can be described as

{(A,B) ∈ A× B : (A,B) ∈ E},

where E is an event either of positive probability or which satis�es a regularity condition. The PDC
Lemma below motivates an approach for exact sampling.
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Lemma 2.2 (PDC Lemma [3]) Assume E is an event of positive probability. Suppose X is a random
element of A with distribution

L(X) = L(A | (A,B) ∈ E ), (4)

and Y is a random element of B with conditional distribution

L(Y |X = a) = L(B | (a,B) ∈ E ). (5)

Then L(X,Y ) = L((A,B)|(A,B) ∈ E).

Algorithms 1 and 2 below present the standard hard rejection sampling algorithm and the standard
PDC sampling algorithm, respectively, in the language of a PDC division. Note that the designer of
the algorithm must specify the division in advance, and that PDC algorithms are very sensitive to the
speci�ed division, since one must be able to sample from the corresponding conditional probability
distributions.

Algorithm 1 Hard rejection sampling from L((A,B) | (A,B) ∈ E)

1. Generate sample from L(A), call it a.
2. Generate sample from L(B), call it b.
3. Check if (A,B) ∈ E; if so, return (a, b), otherwise restart.

Algorithm 2 Probabilistic Divide-and-Conquer sampling from L((A,B) | (A,B) ∈ E)

1. Generate sample from L(A | (A,B) ∈ E), call it x.
2. Generate sample from L(B | (x,B) ∈ E) call it y.
3. Return (x, y).

As a �rst approach for fashioning an explicit and practical PDC algorithm, we modify Algo-
rithm 2 above to utilize soft rejection sampling for the sampling of the �rst conditional distribution
L(A | (A,B) ∈ E), and present this algorithm in Algorithm 3 below.

Algorithm 3 Probabilistic Divide-and-Conquer sampling from L((A,B) | (A,B) ∈ E) using soft re-
jection sampling
1. Generate sample from L(A), call it a.
2. Accept a with probability t(a), where t(a) is a function of L(B)

and E; otherwise, restart.
3. Generate sample from L(B | (a,B) ∈ E), call it y.
4. Return (a, y).

At this point, it is apparent that two quantities are necessary to apply this PDC algorithm

1. The rejection function t(a), for each a ∈ A;

2. L(B | (a,B) ∈ E) for each a ∈ A.
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Given our assumed parameterization of the target sample space, for many reasonable choices of
divisions it is often straightforward to write down an explicit expression for t(a), which we shall
demonstrate shortly. It is not necessarily straightforward to evaluate t(a), however, which is why
previous PDC algorithms have utilized divisions which make t(a) explicit and e�cient to compute;
see [3, 11]. In addition, previous PDC algorithms have either been fashioned such that |{(a,B) ∈
E}| = 1 for each a ∈ A, i.e., deterministic second half [11]; or, where L(B | (a,B) ∈ E) is equivalent to
a reduced version of L(A | (A,B) ∈ E), i.e., self-similar PDC; see [3, Section 3.5], see also Section 2.6.

2.5 PDC deterministic second half

In [11], a general framework is presented for random sampling using Algorithm 3 when |{(a,B) ∈
E}| = 1. The main algorithm in the discrete setting is Algorithm 4 below, which also serves as an
important special case to our main algorithm, Algorithm 5, in Section 3. We �rst introduce some
notation.

We shall always assume that n is a large, �nite positive integer. The set I = {i1, i2, . . .} ⊂
{1, 2, . . . , n} will denote some �xed, �nite index set of positive integers. Given such an index set I, we
de�ne A ≡ AI = R|I|, B ≡ BI = Rn−|I|, with

X(I) = (Xi)i/∈I ∈ A, XI = (Xi)i∈I ∈ B,

and
E(I) := {x ∈ A : ∃y ∈ B such that (x, y) ∈ E}.

We also de�ne the function σI : Rn−|I|×R|I| to be the operation which combines the elements in two vec-
tors x = (x1, . . . , xn−|I|) and y = (y1, . . . , y|I|) in such a way that z = σI((x1, . . . , xn−|I|), (y1, . . . , y|I|))
is the (unique) permutation of size n such that the elements of x and y maintain their original order,
with elements zij = yj , for j = 1, . . . , |I|. In other words, we wish to divide up the sample space
(X1, . . . , Xn) via the set I, which will vary by example, work with X(I) = (Xi)i/∈I and XI = (Xi)i∈I
separately, and then denote, e.g., the acceptance event as {σI(X(I), XI) ∈ E}.

We shall also let U denote a uniform random variable in the interval (0, 1), independent of all other
random variables, and u will denote a random variate generated from this distribution.

It is perhaps surprising that such a simple division, i.e., using I = {i} for some 1 ≤ i ≤ n so that

X(I) = (X1, . . . , Xi−1, Xi+1, . . . , Xn) and XI = (Xi),

produces an automatic speedup over hard rejection sampling, in terms of the expected number of
rejections, at the cost of evaluating the probability mass function of Xi and computing its maximum
value. To see that this is indeed more e�cient, consider the acceptance event for rejection sampling from
X ∈ E. Given any x(I) ∈ E(I), let yI ≡ yI(x

(I)) denote the unique value such that σI(x(I), yI) ∈ E.
The acceptance event for hard rejection sampling can be written as

{X(I) ∈ E(I) and U < P (XI = yI)}. (6)

The acceptance event for Algorithm 4 can be written as{
X(I) ∈ E(I) and U <

P(XI = yI)

max` P(XI = `)

}
. (7)
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Algorithm 4 [11] PDC deterministic second half for independent discrete random variables

procedure Discrete_PDC_DSH(X1, X2, . . . , Xn, E, I)

Assume: I = {i}, for some 1 ≤ i ≤ n.
Assume: For each x(I) ∈ E(I), there is a unique yI such that σI(x(I), yI) ∈ E.

Let X(I) := (X1, . . . , Xi−1, Xi+1, . . . Xn).
Sample from L(X(I)), denote the observation by x(I).
Let yI denote the unique value such that σI(x(I), yI) ∈ E.
if x(I) ∈ E(I) and u < P (Xi=yI)

max` P (Xi=`)
then

return σI(x
(I), yI)

else

restart

end if

end procedure

The added e�ciency comes from accepting the sample in proportion to the likelihood of the remaining
uncertainty in (7), rather than its likelihood in (6). This approach, then, favors selecting indices I for
which the distribution of XI is not dominated by a single point mass, i.e., a small maximum point
probability. There is a similar adaptation for continuous random variables, see [11], where in many
situations of interest the default rejection sampling algorithm has an in�nite expected wait time, and
the analogous PDC deterministic second half algorithm has a �nite expected wait time.

Remark 2.3 All exact Boltzmann samplers which can be written in terms of (3), with components
consisting of explicitly computable probability mass functions, can take advantage of Algorithm 4, as
any selection of index I is guaranteed to reduce the expected number of rejections, at the cost of what
is often a simple and explicit arithmetic calculation.

2.6 Self-similar PDC

The PDC deterministic second half approach of the previous section, while o�ering a simple, guar-
anteed speedup in many cases of interest, can be improved if more knowledge of the distributions and
conditioning event E is available. As was noted earlier in Algorithm 3, it is possible to sample from
L(A | (A,B) ∈ E) by sampling from L(A) and applying an appropriate rejection. In many cases of
interest, the division is such that the remaining part, L(B | (a,B) ∈ E) is equivalent to the original
sampling problem with smaller values of parameters.

Such an approach was utilized in [2] for the exact random sampling of Motzkin words, yielding an
overall asymptotically constant rejection rate. The general principle for the aforementioned application
was developed independently in [3] and given the name self-similar PDC, and was used to produce an
exact sampling algorithm for integer partitions with an overall asymptotic rejection rate of at most
2
√

2.
The main cost associated with this approach is the calculation of the rejection function t(a), which

was available for Motzkin words as the quotient of binomial coe�cients, and for integer partitions
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due to the enumeration results of Hardy and Ramanujan [18], Rademacher [30], and Lehmer [21]. In
many other cases, especially when leaving the realm of fundamental combinatorial structures, such
enumeration formulas are often not available.

3 PDC and the recursive method

We now present the main algorithm for exact sampling via PDC and the recursive method. The
combination of the recursive method and PDC is designed to control the size of the table required for
the recursive method, while at the same time improve on the rejection probability of exact Boltzmann
sampling and PDC deterministic second half, without requiring any complicated auxiliary calculations
of rejection functions as discussed in Section 2.6. Also, for this section recall the notation that U
denotes a random variable with the uniform distribution over the unit interval [0, 1] and u denotes a
random variate generated from this distribution.

To demonstrate the method, let us start by extending the PDC deterministic second half algorithm
of Section 2.5, so that two components are sampled in the second stage; i.e., let I = {1, 2}, so that

X(I) = (X3, . . . , Xn) and XI = (X1, X2),

and we take E = {
∑n

i=1 i Zi = n}. Then E(I) = {
∑n

i=3 i Zi ≤ n}, and the acceptance event for the
�rst stage of Algorithm 3 can be described by{

X(I) ∈ E(I) and U <
P(X1 + 2X2 = yI)

max` P(X1 + 2X2 = `)

}
. (8)

(In this setting, even though yI is uniquely determined, XI may not be, since the set {(x1, x2) :
x1 + 2x2 = yI} may consist of a great many elements.) Once this outcome is accepted, we then have
the task of sampling from

L ((X1, X2) |X1 + 2X2 = yI) . (9)

Note that this is a reduced problem, but not identical to the original problem, since yI is not guaranteed
to be 2.

At this point, we pause to note that this approach requires two further tasks:

1. Calculation of P(X1+2X2=yI)
max` P(X1+2X2=`)

in (8).

2. Sampling from L ((X1, X2) |X1 + 2X2 = yI) in (9).

In this small case, the two tasks above can often be handled by brute force and/or ad hoc methods;
however, at this point we make a simplifying assumption on the joint distribution (X1, . . . , Xn), one
which is not necessary to apply PDC in general, but which is often satis�ed in examples involving
Boltzmann sampling and makes the utilization of the recursive method practical.



32 IMPROVEMENTS TO EXACT BOLTZMANN SAMPLING

Assumption 1 (Boltzmann Assumption) Assume for each I ⊂ {1, . . . , n} and ` ≥ 0, the joint distri-
bution XI is such that we have

rI(`) := P(Xi1 = zi1 , Xi2 = zi2 , . . .) (10)

for any collection of constants zi1 , zi2 , . . . satisfying
∑

i∈I i zi = `; i.e., rI(`) does not depend on the
zi1 , zi2 , . . ., only its weighted sum. Then, letting aI(`) denote the number of such collections, we may
write

P

(∑
i∈I

iXi = `

)
=

∑
zi1 ,zi2 ,...:

∑
i∈I i zi=`

P(Xi1 = zi1 , Xi2 = zi2 , . . .) = aI(`) rI(`). (11)

In addition, we assume that the sequence aI(`), ` ≥ 0, satis�es a recursion which is amenable to
applying the recursive method.

Remark 3.1 Many Boltzmann samplers utilize tilting parameters, say x and θ, whose value does not
a�ect the unbiased nature of the algorithm, and whose purpose is to optimize the probability that the
target is hit. In terms of Assumption 1, this means that the righthand side of (11) can be written as

aI(`) rI(`, x, θ),

and the key property remains, which is that the probability of generating an object of a given weight
depends only on the weight, and not on the particular component structure. Another particularly
advantageous aspect of PDC is that once the �rst stage is performed, i.e., after we have applied
the rejection step and locked in the observation for X(I), we may subsequently adjust the tilting
parameters for the second stage, choosing their values to optimize the completion of the remaining
sampling algorithm; see [3, Section 4.3.1].

All of our examples will henceforth be assumed to satisfy Assumption 1, even if not explicitly
stated. Generalizing this approach, for any k ≥ 1 we next consider divisions of the form

X(I) = (Xk+1, . . . , Xn) and XI = (X1, . . . , Xk),

and the acceptance event is given by, with I = {1, . . . , k},{
X(I) ∈ E(I) and U <

P(
∑k

i=1 iXi = yI)

max` P(
∑k

i=1 iXi = `)

}
. (12)

As stated previously, the main impediment for applying PDC to a chosen division is calculating the
rejection probability, and sampling from the remaining conditional distribution, and the recursive
method solves both tasks! To see this, let us rewrite (12) using Assumption 1:{

X(I) ∈ E(I) and U <
aI(yI) rI(yI)

max` aI(`) rI(`)

}
. (13)

Thus, in order to evaluate the acceptance event, we need to know the values of aI(`) for ` = 0, 1, . . .,
which can be obtained via a recursion on the sequence aI(`), as well as the values of rI(`), ` = 0, 1, . . .,
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which will be obtained from calculations derived from the particular combinatorial structure; see
sections 5, 6, and 7 for explicitly worked out examples.

The second part, i.e., sampling from L
(
XI

∣∣∑
i∈I iXi = yI

)
, is in fact precisely the distribution

that the recursive method samples from using a table, we need only supply an appropriate recursion
for the sequence aI(`), ` ≥ 0. Algorithm 5 below describes the procedure assuming one is able to create
and randomly access such a table of values from the recursive method.

Algorithm 5 PDC with the recursive method
procedure PDC_with_Recursive_Method(X1, X2, . . . , Xn, E, I)

Assume: (X1, . . . , Xn) satis�es Assumption 1.
Assume: E = {

∑n
i=1 iXi = n} .

1: Generate table T via the recursive method, with T (j) = aI(j) for j ≥ 0.
2: Sample from L(X(I)), denote the observation by x(I), and let m =

∑
i/∈I i xi.

3: Let yI = n−m and

t(yI) =
T (yI) rI(yI)

max` T (`) rI(`)
.

4: If x(I) ∈ E(I) and u < t(yI) then

5: Generate xI from L(XI |σI(x(I), XI) ∈ E) via the recursive method.
6: Return σI(xI , x(I)).
7: else
8: Repeat
9: endif

end procedure

Theorem 3.2 Algorithm 5 generates an unbiased sample from the distribution (3).

Proof. The rejection function t(yI) in Line 3 is de�ned such that once the algorithm reaches Line 5,
the sample x(I) has distribution L(A |σI(A,B) ∈ E) for A = X(I), B = XI and E = {

∑n
i=1 iXi = n} .

The recursive method generates the remaining part of the sample according to the conditional distribu-
tion L(B |σI(x(I), B) ∈ E). By Lemma 2.2, (xI , x

(I)) is an exact sample from L((A,B) |σI(A,B) ∈ E).
2

Remark 3.3 An advantage of Algorithm 5 is that the generation of the table in Line 1 and the
�rst stage of sampling in Line 2 can be performed concurrently, which is ideal when a large number
of samples are desired. That is, while we are generating the table, we may generate concurrently
the samples x(I)1, x(I)2, . . .. Then, once the table is complete, applying rejection and sampling the
remaining parts xI from the table is e�cient.

4 Cost of the algorithm

The overall cost of the algorithm consists of
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1. the cost to sample from L(X(I)), and the expected number of rejections before acceptance;

2. the cost to generate and store the table;

3. the cost to generate a random object via the table.

The cost to sample L(X(I)) is one which we shall not analyze in great detail, except to point out
that the naïve sampling of each coordinate of X(I) separately may not be optimal; see for example the
discussions in sections 5 and 6. Fortunately, the cost to sample L(X(I)) is unrelated to the rejection
cost, which is our main metric for algorithmic e�ciency.

The expected number of rejections in rejection sampling is given by (see [34])

max` P((X1, . . . , Xn) ∈ E|X(I) = `)

P((X1, . . . , Xn) ∈ E)
.

That is, it is the quotient of the overall probability of landing in the target, with an added boost from
soft rejection sampling. We de�ne the boost factor of a PDC algorithm as the inverse of this maximal
probability, i.e.,

boost factor =
1

max` P((X1, . . . , Xn) ∈ E|X(I) = `)
.

To summarize, whereas the expected number of rejections in exact Boltzmann sampling is

1

P((X1, . . . , Xn) ∈ E)
,

using PDC we obtain an expected number of rejections which is

max` P((X1, . . . , Xn) ∈ E|X(I) = `)

P((X1, . . . , Xn) ∈ E)
.

The arithmetic cost to generate a table via the recursive method, and to generate a random object
from that table, has been studied previously, see for example [10] and the references therein, and so
we refer the interested reader to their treatment.

Finally, we note that the degree to which the combination of PDC and the recursive method is an
improvement overall depends on the choice of the PDC division, which we now highlight with speci�c
examples.

We next introduce several standard de�nitions regarding the order of growth of a function. For
two real-valued functions f and g and n a real number, we say f(n) = O(g(n)) if and only if there are
constants C > 0 and n0 > 0 such that f(n)

g(n) ≤ C for all n ≥ n0. We say f(n) = Ω(g(n)) if and only if

there are constants C > 0 and n0 > 0 such that f(n)
g(n) ≥ C for all n ≥ n0. Finally, we say f(n) ∼ g(n)

if and only if limn→∞
f(n)
g(n) = 1.

5 Example 1: integer partitions

5.1 Unrestricted integer partitions

An integer partition of size n is a collection of unordered positive integers which sum to n; we
denote the total number of integer partitions of size n as p(n). Let Z1(x), Z2(x), . . . denote a collection
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of independent geometric random variables, with EZi(x) = 1 − xi for any 0 < x < 1, i = 1, 2, . . . , n.
Letting Tn ≡ Tn(x) :=

∑n
i=1 i Zi(x) denote the sum of the independent random variables, we have

P(Tn = n) =
∑

z1+2z2+...nzn=n

P(Z1 = z1, . . . , Zn = zn) = p(n)xn
n∏
i=1

(1− xi). (14)

Hence, our collection (Z1, . . . , Zn) satis�es Assumption 1 with rI(`) = x`
∏
i∈I(1−xi), and, conditional

on the weighted sum of the independent random variables equalling the target n, and interpreting Zi
as the number of parts of size i in an integer partition, each of the p(n) integer partitions of n are
equally likely to have been chosen. Since we can choose any x between 0 and 1, an optimal choice
which maximizes P(Tn = n) (see e.g., [4, 17, 33]) is x = e−π/

√
6n.

The exact Boltzmann sampler samples from (Z1, Z2, . . . , Zn) repeatedly until the event
∑n

i=1 i Zi =

n is satis�ed. It is known, see [17], that with the choice x = eπ/
√
6n, we have

P(Tn = n) ∼ 1
4
√

96n3
,

and so we reject an expected O(n3/4) samples before we obtain an integer partition of exactly size n.
Using PDC deterministic second half, an optimal choice of division is given by X(I) = (Z2, . . . , Zn)

and XI = (Z1), with a boost factor of

boost factor =
1

maxk P(Z1 = k)
=

1

1− x
∼
√

6n

π
,

whence the overall total number of times we must sample from the distribution L(X(I)) is thus O(n1/4),
a noteworthy speedup; see [3]. In addition, since the geometric distribution has point probabilities
which are monotonically decreasing, i.e., P(Zi = k) ≥ P(Zi = k + 1) for all k ≥ 0 and i ≥ 1, the
maximum point probability occurs at k = 0, and so the acceptance event (7) is simply{

n∑
i=2

i Zi ≤ n and U < e−π (n−
∑n

i=2 i Zi)/
√
6n

}
,

where we recall that U is a uniform random variable in the interval (0, 1). Note that this division is
optimal in choice of index i = 1, since P(Zi = 0) = 1− xi ≥ 1− x for all i = 1, 2, . . . , with equality for
i = 1.

Extending the previous division, we consider X(I) = (Zk+1, Zk+2, . . . , Zn) and XI = (Z1, . . . , Zk)
for any 1 ≤ k ≤ n. Then we have

boost factor =
1

max1≤`≤n P(
∑k

i=1 i Zi(x) = `)
.

Fortunately, the extensive work in asymptotic enumeration surrounding the integer partition function
and its many variations is applicable, in particular [31, 32], which implies that

∑k
i=1 i Zi is close to

a normal distribution with maximum density asymptotically O(
√
k n) for k = O(

√
n). Thus, if we

demand an expected number of rejections which is O(na), for some 0 ≤ a ≤ 1
4 , then we may take any

k = Ω
(
n

1
2
−2a
)
. On the other hand, if we are only willing to store a table of size n×O(nb), for some

0 ≤ b ≤ 1
2 , the expected number of rejections is then Ω

(
n

1
4
− b

2

)
and O

(
n

1
4

)
.
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Remark 5.1 The case when k = 1 is PDC deterministic second half, whereas the case k =
√
n implies

a constant rejection probability, at the cost of creating an n×O(
√
n) table. A �middle" ground might

be k = n1/4, with a table of size n×O(n1/4) and an expected number of rejections O(n1/8).

Let us make this example even more explicit, in order to highlight its practicality. Recall that the
number of integer partitions of n into parts of size at most k satis�es the recursion (1), from which we
have calculated a table for values of p(n, k) for n and k between 1 and 10 below. (Note: the diagonal
entries are precisely p(n) for n = 1, 2, . . . , 10.)

1 1 1 1 1 1 1 1 1 1

1 2 2 3 3 4 4 5 5 6

1 2 3 4 5 7 8 10 12 14

1 2 3 5 6 9 11 15 18 23

1 2 3 5 7 10 13 18 23 30

1 2 3 5 7 11 14 20 26 35

1 2 3 5 7 11 15 21 28 38

1 2 3 5 7 11 15 22 29 40

1 2 3 5 7 11 15 22 30 41

1 2 3 5 7 11 15 22 30 42

We can sample a uniformly random integer partition of size 10 via the recursive method as follows:
looking at the �nal column, one generates a uniform integer between 1 and 42, say 27, which determines
that the largest part is 5 since 27 lies between the values in the 4th and 5th rows. Shifting to the 5th
column, we either generate a random integer between 1 and 7, or continue to use our original value of
27 subtracted by the cuto� value of 23 in the fourth row of the tenth column. This leaves us with the
value 4, and we repeat the process in this 5th column, selecting the next largest part as 3 since 4 lies
between the value in the second and third rows. Shifting again now to column 2, and subtracting 4 by
the value in the second row of the �fth column, we obtain a 0, which means that we �ll out the rest of
the partition with 1s. Thus, our partition of 10 generated in this manner is 5, 3, 1, 1.

We now demonstrate how to apply Algorithm 5 to integer partitions. We consider the vector
(Z1, . . . , Zn) describing an integer partition of size n, and with some k speci�ed, we use the PDC
division X(I) = (Zk+1, Zk+2, . . . , Zn) and XI = (Z1, . . . , Zk). The PDC algorithm is then

(1) Generate a table T of values of p(i, j) for 0 ≤ i ≤ k and 0 ≤ j ≤ n. Denote the entries in the
�nal row by T (j) = p(k, j), j ≥ 0.

(2) Sample from L(Zk+1, Zk+2, . . . , Zn), say observing (zk+1, . . . , zn), with weight m :=
∑n

i=k+1 i zi.

(3) Let yI := n−m. We accept the sample with probability

t(a) =
p(k,m)xm

max` p(k, `)x`
=

T (m)xm

max` T (`)x`
.

(4) Sample from L
(
Z1, . . . , Zk)

∣∣∣∑k
i=1 i Zi = yI

)
from the table T using the recursive method.

For example, let us take n = 10 and I = {1, 2, 3}, i.e., k = 3. Rather than make a full n× n table
of values, we instead only need the �rst three rows.
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1 1 1 1 1 1 1 1 1 1

1 2 2 3 3 4 4 5 5 6

1 2 3 4 5 7 8 10 12 14

The algorithm is then to sample from (Z4, . . . , Z10), a vector of independent geometric random
variables, and then reject depending on the value of

∑10
`=4 `Z`. Let's say we observed (z4, . . . , z10) =

(1, 0, 0, 0, 0, 0, 0) for this �rst step, which corresponds to one part of size 4, and no parts of larger size.
The rejection probability is then given by

t(a) =
p(3, 6)x6

max` p(3, `)x`
=

T (6)x6

max` T (`)x`
.

Taking x = e−π/
√
60, and multiplying each entry in the jth column by xj , we obtain the following

�oating point values for the last row in the table above

Columns 1 � 5: 0.666591 0.888688 0.888588 0.789767 0.658065
Columns 6 � 10: 0.614125 0.467852 0.389833 0.311831 0.242508.

The rejection probability is thus

t(a) =
0.614125

0.888688
= 0.691047.

Suppose we accept this sample (otherwise we would resample (Z4, . . . , Z10) and apply rejection as
before), then we complete the partition of size 6 into parts of size at most 3 by sampling from an
integer between 1 and 7 and applying the recursive method starting in the 6th column.

We end our discussion of this example with a suggestion for sampling e�ciently from X(I) =
(Xk+1, Xk+1, . . . , Xn) for any k ≥ 0. One could sample each Xi via a uniform random variable Ui
over the unit interval (0, 1), and apply the transformation

⌊
ln(Ui)
i ln(x)

⌋
to obtain a random variate with

distribution L(Xi), i = k + 1, . . . , n. However, this requires generation of n − k uniform random
variables. It was shown in [3, Section 5], however, that the entropy in X(I) is O(

√
n) for any k ≥ 0,

and a Poisson process sampling procedure was speci�ed which is asymptotically e�cient. In fact, it is
not di�cult to show that when k = Ω(n1/2+ε) for any ε > 0, the entropy of X(I) is O(1), whereas the
naïve sampling algorithm would still generate n− k uniform random variables.

5.2 Integer partitions into distinct parts

An example where PDC deterministic second half is limited is the case when the random variables
Z1, Z2, . . . are Bernoulli, which is a special case of combinatorial selections; see Section 7.2. However,
the analogous PDC with the recursive method provides a more signi�cant improvement.

Consider, for example, integer partitions into distinct part sizes. I.e., we take Zi(x) to be a
Bernoulli random variable with parameter xi

1+xi
, i = 1, 2, . . ., and any 0 < x < 1. (We could also

consider equivalently the geometric random variables of the previous section conditioned to be in the set
{0, 1}.) Then, similarly as with unrestricted integer partitions, conditional on Tn :=

∑n
i=1 i Zi(x) = n,

Zi denotes the number of parts of size i in a uniform integer partition of size n into distinct parts. It
was shown in [17] that, taking x = e−π/

√
12n, we optimally have

P(Tn = n) ∼ 1
4
√

192n3
.
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As per Remark 2.3, the �rst approach to speeding up the rejection probability is to take X(I) =
(Z2, . . . , Zn) and XI = (Z1). Unfortunately, the boost factor in this setting is limited, since P(Zi =

0) = xi

1+xi
≥ 1

2 for all i ≥ 1, with i = 1 giving a paltry optimal boost factor of at most 2. Using PDC
with the recursive method, however, we obtain similar boost factors as in the unrestricted case.

Note �rst we have a similar recursion. Letting q(n, k) denote the number of partitions of n into
distinct parts all at most k, we have

q(n, k) = q(n− k, k − 1) + q(n, k − 1), 1 ≤ k ≤ n,

with q(k, 0) = 1 when k ≥ 0, q(k, n) = q(n, n) when k > n, and q(k, n) = 0 otherwise. This recursion
is similar to the one for unrestricted integer partitions in (1), but since we can have at most one part
of each size, if we choose to use a part of that size we must also transition from k to k − 1. The rest
of the details are similar to the previous section, and are left as an exercise.

6 Example 2: set partitions

A partition of a set {1, 2, . . . , n} of size n is a disjoint union of sets whose union is {1, 2, . . . , n}.
The sets are called blocks, and the number of elements in a given block is called the block size. There
is a natural mapping (surjection) from the block sizes of a set partition of size n to the part sizes of
an integer partition of size n. There is also an analogous sampling algorithm, with key di�erences.

For any x > 0, let Z1(x), Z2(x), . . . denote a collection of independent Poisson random variables,
with EZi(x) = λi = xi

i! , for i = 1, 2, . . . , n. Random variable Zi(x) counts the number of blocks of
size i in a random set partition of random size, i = 1, 2, . . .. The number of set partitions of size n is
known as the n-th Bell number, often denoted by Bn, and satis�es the following recurrence:

Bn =

n−1∑
i=0

(
n− 1

i

)
Bi, n ≥ 2, (15)

with B0 = B1 = 1. Let Tn(x) =
∑n

i=1 i Zi(x). We have for z1, . . . , zn satisfying
∑n

i=1 i zi = n (see
e.g., [4]),

P(Z1 = z1, . . . , Zn = zn) =
xn

n!
exp

(
−

n∑
i=1

xi

i!

)
,

whence

P(Tn(x) = n) = Bn
xn

n!
exp

(
−

n∑
i=1

xi

i!

)
,

and so we see that Assumption 1 is satis�ed.
It was shown in [28], see also [23], that with x satisfying xex = n, we have

P(Tn(x) = n) ∼ 1√
2πn(x+ 1)

.

Note that x ∼ log(n) (see [8] for more terms in the asymptotic expansion), and so the exact Boltzmann
sampling algorithm to obtain the block sizes of a uniformly generated set partition of size n has an
expected O(

√
n log n) number of rejections.
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It was shown in [3, Section 3.3.1] that using probabilistic divide-and-conquer deterministic second
half with X(I) = (Z1, Z2, . . . , Z[x]−1, Z[x]+1, . . . Zn) and XI = (Z[x]), one obtains an optimal boost
factor of

boost factor =
1

max` P(Z[x] = `)
∼ O

( √
n

log3/4(n)

)
,

for an overall expected number of rejections of O(log5/4(n)).
For this example, let us explore the recursive method on the recursion in (15). It was shown in [25,

Algorithm S] how to obtain a sampling algorithm using this recursion. Speci�cally, we �rst generate a
new block size n−K using random variable K with distribution

P(K = k) =

(
n− 1

k

)
Bk
Bn

, 0 ≤ k ≤ n− 1,

which generates a given block size in its correct proportion with respect to all set partitions containing
at least one block of size n−K. Then we randomly sample a set of elements to place inside the block,
and continue recursively with the remaining elements. A straightforward calculation, see [25], shows
that a set partition generated in this way is uniform over all set partitions of size n. We now apply
Algorithm 5 in this setting.

Using the heuristic from [4], for some α > 0 we choose index set

I = {[x− α
√
x], [x− α

√
x] + 1, . . . , [x], . . . , [x+ α

√
x]− 1, [x+ α

√
x]},

where recall x is the solution to xex = n, or approximately log(n).
To sample from X(I), we recommend simulating a Poisson process over the interval [0,

∑
i/∈I λi],

assigning a value to Z` based on the number arrivals in the corresponding interval of length λ`, ` ∈
{1, . . . , n} \ I. The expected number of uniform random variables in the unit interval required to run
such a Poisson process to completion is given by

s(n) :=
∑
i/∈I

λi =

x−α
√
x∑

i=1

xi

i!
+

n∑
i=x+α

√
x

xi

i!
.

Let cα := P(Normal(0, 1) ≥ α) denote the tail probability of a standard normal random variable at
cuto� value α, and let Po(x) denote a Poisson random variable with mean x. We have

x−α
√
x∑

i=1

xi

i!
= ex

(
P(Po(x) ≤ x− α

√
x)
)
− 1 ∼ n

x
P (Normal(0, 1) ≤ −α) ∼ cα

n

x
;

n∑
x+α
√
x

xi

i!
= ex

(
P(Po(x) ≥ x+ α

√
x)
)
− 1 ∼ n

x
P (Normal(0, 1) ≥ α) ∼ cα

n

x
.

Thus, to sample X(I) using a Poisson process in this manner requires the generation of s(n) =
O(n/ log(n)) uniform random variates in the unit interval.
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Next, we compute the expected value of the weighted sum over indices in I, viz.,∑
i∈I

i λi = xexP(Po(x) ∈ [x− α
√
x, x+ α

√
x]) ∼ n(1− 2cα),

and the standard deviation √∑
i∈I

i2 λi ∼
√
n(x+ 1)(1− 2cα).

Finally, to estimate the rejection probability, we assume
∑

i∈I i Zi approximately satis�es a local central
limit theorem, which yields

max` P
(∑

i∈I i Zi = `
)

P (
∑n

i=1 i Zi = n)
∼ 1√

1− 2cα
= O(1).

The next step of the algorithm is to make a table. Instead of a table generated from the recursion
in (15), as was the original approach in [25], we consider the number of set partitions of n into blocks
of sizes in the set I, since we shall be sampling from the random variables in X(I) directly �rst. That
is, we require the generalization of the recursive method in [26, Postscript: deux ex machina], where
the �primes" are the elements in I. Let pI(n) denote the number of set partitions of n into blocks of
sizes in the set I. By appealing to generating functions or recursions, see for example [4, Section 9.4],
one obtains (for any I ⊂ {1, 2, . . . , n})

pI(n) =
∑
i∈I

(
n− 1

i

)
pI(i),

with pI(0) = 1. Thus, the recursion above can be used to make a table which contains the quantities
necessary to de�ne the rejection probability, as well as complete the sample using the recursive method.

7 Generalizations

7.1 A general probabilistic principle

For any n > 0, consider an index set I = {i1, i2, . . .} ⊂ {1, 2, . . . , n}. Let a = (ai1 , ai2 , . . .), be a
sequence of nonnegative integers, and let w = (wi1 , wi2 , . . .) denote nonnegative real-valued weights.
Let N(n,a,w) denote the number of objects of weight n having ai components of size wi, i ∈ I.
Summing over all i ∈ I gives the total weight n =

∑
i∈I wi ai = w · a of the object, where w · a is

the usual dot product on two vectors of the same dimension. The examples of interest will have the
following form:

N(n,a,w) := 1(w · a = n)f(I, n)
∏
i∈I

gi(ai),

for some functions f and gi, i ∈ I, with

pI(n) :=
∑
a

N(n,a,w)

denoting the total number of objects of weight n.
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Suppose now we place a uniform distribution over the corresponding set of pI(n) combinatorial
objects. Then the number of components of size i is a random variable, say with distribution Ci, i ∈ I,
and CI = (Ci1 , Ci2 . . .) is the joint distribution of dependent random component-sizes that satis�es
CI ·w = n. The distribution of CI is given by

P(CI = a) = 1(w · a = n)
f(I, n)

pI(n)

∏
i∈I

gi(ai). (16)

For each x > 0, let independent random variables Zi, i ∈ I, have distributions

P(Zi = k) = ci(x) gi(k)xwik, i ∈ I, (17)

where ci, i ∈ I, are the normalization constants, given by

ci =

∑
k≥0

gi(k)xwik

−1 .
Now we can state the following theorem.

Theorem 7.1 [4] Assume I ⊂ {1, . . . , n}. Let CI = (Ci)i∈I denote the joint distribution of random
component-sizes with distribution given by Equation (16). Let ZI = (Zi)i∈I denote a vector of in-
dependent random variables with distributions given by Equation (17), and de�ne TI =

∑
i∈I wiZi.

Then

L(CI) = L(ZI |TI = n).

Furthermore, we have

P(TI = n) = pI(n)
xn

f(I, n)

∏
i∈I

ci(x). (18)

Immediately, we see that Assumption 1 is satis�ed, and that the corresponding hard rejection
sampling algorithm for sampling from L(ZI |TI = n) has an expected number of rejections which is
P(TI = n)−1, given in (18). The PDC deterministic second half improvement can be applied to any
index j ∈ I, with speedup given by

speedup = O

((
max
k

cj(x) gj(k)xwjk

)−1)
,

and if possible one should choose j such that this speedup is maximized, even though by Remark 2.3
any choice of j will provide a speedup. In order to show how to apply Algorithm 5, we specialize to
three standard classes below.

7.2 Selections

Integer partitions of size n into distinct parts is an example of a selection: each element {1, 2, . . . , n}
is either in the partition or not in the partition. Selections in general allow mi di�erent types of a



42 IMPROVEMENTS TO EXACT BOLTZMANN SAMPLING

component of type i. For integer partitions, this would be similar to assigning mi colors to integer i,
and allowing at most one component of size i of each color. We have for all 0 < x < 1 and i ∈ I,

P(Zi = k) =

(
mi

k

)(
xi

1 + xi

)k (
1

1 + xi

)mi−k
, 0 ≤ k ≤ mi,

which is binomial. Letting pI(n) denote the number of such combinatorial selections of weight n, we
have

P(TI = n) = pI(n)xn
∏
i∈I

(1 + xi)mi .

The recursion given in [4, Equation (158)] yields

k pI(k) =
k∑
i=1

gI(i)pI(k − i), k = 1, 2, . . . ,

where
gI(i) = −xi

∑
k | i

kmk(−1)i/k1(k ∈ I),

and
pI(0) = 1,

so that Assumption 1 is satis�ed.

7.3 Multisets

Unrestricted integer partitions of size n is an example of a multiset: each element {1, 2, . . . , n}
can appear any number of times in the partition. Multisets in general allow mi di�erent types of a
component of type i, similar to selections. We have for all 0 < x < 1

P(Zi = k) =

(
mi + k − 1

k

)
(1− xi)mixik, k = 0, 1, . . . ,

which is negative binomial. Letting pI(n) denote the number of such combinatorial multisets of
weight n, we have

P(TI = n) = pI(n)xn
∏
i∈I

(1− xi)mi .

The recursion given in [4, Equation (157)] yields

k pI(k) =
k∑
i=1

gI(i)pI(k − i), k = 1, 2, . . . ,

where
gI(i) = xi

∑
k | i

kmk1(k ∈ I),

and
pI(0) = 1,

so that Assumption 1 is satis�ed.
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7.4 Assemblies

Assemblies are described using Zi as Poisson(λi), where λi = mix
i

i! , i = 1, . . . , n, and where mi is
the number of di�erent types of a component of type i, i ∈ I, and x > 0. Set partitions are an example
of an assembly, with mi = 1 for all i ∈ I = {1, 2, . . . , n}. In general, we have

P(Z1 = c1, . . . , Zn = cn) =

n∏
i=1

mci
i x

i ci

i!cici!
e−λi = xne−

∑n
i=1 λi

n∏
i=1

mci
i

i!cici!
. (19)

Letting pI(n) denote the number of such combinatorial assemblies of weight n, we have

P(TI = n) = pI(n)
xn

n!
exp

(
−
∑
i∈I

mix
i

i!

)
.

The recursion given in [4, Equation (153)] yields

k pI(k) =

k∑
i=1

gI(i)pI(k − i), k = 1, 2, . . . ,

where
gI(i) = iλi1(i ∈ I),

and
pI(0) = 1,

so that Assumption 1 is satis�ed.
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