Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago)

Dorota RICHTER¹, Mirosława PIETRYKA¹ and Jan MATUŁA²

¹ Katedra Botaniki i Ekologii Roślin, Uniwersytet Przyrodniczy we Wrocławiu, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland
² Instytut Biologii, Uniwersytet Przyrodniczy we Wrocławiu, ul. Kożuchowska 5B, 51-631 Wrocław, Poland
< dorota.richter@up.wroc.pl > < miroslawa.pietryka@up.wroc.pl > < jan.matula@up.wroc.pl >

Abstract: The paper presents the results of a study of cyanobacteria and green algae assemblages occurring in various tundra types determined on the basis of mosses and vascular plants and habitat conditions. The research was carried out during summer in the years 2009–2013 on the north sea-coast of Hornsund fjord (West Spitsbergen, Svalbard Archipelago). 58 sites were studied in various tundra types differing in composition of vascular plants, mosses and in trophy and humidity. 141 cyanobacteria and green algae were noted in the research area in total. Cyanobacteria and green algae flora is a significant element of many tundra types and sometimes even dominate there. Despite its importance, it has not been hitherto taken into account in the description and classification of tundra. The aim of the present study was to demonstrate the legitimacy of using phycoflora in supplementing the descriptions of hitherto described tundra and distinguishing new tundra types. Numeric hierarchical-accumulative classification (MVSP 3.1 software) methods were used to analyze the cyanobacterial and algal assemblages and their co-relations with particular tundra types. The analysis determined dominant and distinctive species in the communities in concordance with ecologically diverse types of tundra. The results show the importance of these organisms in the composition of the vegetation of tundra types and their role in the ecosystems of this part of the Arctic.

Key words: Arctic, cyanobacteria, algae, community classification.

Introduction

Severe climate and habitat conditions in polar regions not only limit the colonization process but also determine the directions and the speed of succession of vegetation in these regions. On open surfaces, especially near the margins of glaciers,

In the Spitsbergen tundra these organisms are still relatively unknown, despite the fact that cyanobacteria and algae co-dominate in various tundra communities on large surfaces. Previous studies of Spitsbergen phycoflora were concentrated mainly on the diversity of the freshwater and terrestrial cyanobacteria and algae (Matuła 1982; Elster et al. 1994; Matula et al. 2007; Kim et al. 2008, 2011; Richter et al. 2009; Komárek J. et al. 2012; Davydov 2014) and describing individual species (Kvíderová et al. 2011; Strunecký et al. 2012; Komárek J. and Kovacik 2013; Richter and Matuła 2013; Richter et al. 2014). There are, however, no complementary data characterizing phycoflora in connection with vascular vegetation and mosses in the area.

The description of algal and cyanobacterial assemblages in ecologically diverse types of tundra is the next step in understanding the role of these organisms in creating plant communities in the area. A detailed analysis of cyanobacterial and algal assemblages allowed us to determine the dominant and distinctive species for tundra types in the studied area.

This article is the first attempt to analyze and discuss the relevant relations (or lack thereof) at the level of associations between cyanobacteria, algae and vegetation.

Study area, material and methods

The research was carried out at the base and on the Ariekammen mountain slope (512 m), the Fuglebergsletta marine terrace and Fuglebekken catchment, reaching to the sea shore and the bay situated on the southwest side of Hornsund (West Spitsbergen, Svalbard Archipelago). The locations chosen for the study were situated in different types of tundra (18 types). Within the tundra, 58 sites were nominated for phycological research (Table 1, Figs 1–3).

Samples were collected during the Arctic summer in July and August in the years 2009–2013. Species observations were conducted with a Nikon Eclipse TE2000-S light digital microscope, equipped with a Nikon DS-Fi1 camera. Taxa were digitally archived using the NIS image analysis program, which enables to save the images with the proper scale of objects. The identification was performed live and also on material preserved with “etaform” (3:1 alcohol, formalin). The abundance of particular species was estimated on a scale of 1–10, where 1 means sporadic occurrence and 10 means 90–100% representation of the species in the assemblages.

In order to classify the results by qualitative and quantitative analyses of the species composition of cyanobacteria and green algae, we used numerical analysis including hierarchical-accumulative classification using the MVSP 3.1 software.
In order to estimate the degree of phycoflora similarity between the habitats, Cosine Theta Analysis was used. This analysis allows to obtain a classification dendrogram showing the hierarchy of similarities between the habitats (Figs 4, 5).

Fig. 1. A. Location of the Hornsund fjord. B. Fuglebekken catchment and Fuglebergsletta marine terrace. Gray: location of *Alle alle* colonies; 1–58: sampling points (detailed description in Table 1).
<table>
<thead>
<tr>
<th>Type of tundra (vegetations)</th>
<th>Sites</th>
<th>Characteristics of tundra</th>
<th>Trophy</th>
<th>Moisture</th>
<th>Vegetation</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ornithocoprophilous tundra with Prasiola crispa</td>
<td>1–3</td>
<td>located 200 m high, inclination 35–40°, under strong influence of little auk (Alle alle); samples were collected from soil surface and dead plant remains</td>
<td></td>
<td>dry</td>
<td>Prasiola crispa community with a small share of Plagiomnium ellipticum, Sanionia uncinata, Tetraplodon mnioides, Dicranum sp. (mainly as dead remains)</td>
<td>77°00’36.3”</td>
<td>015°31’2”–015°31’7”</td>
</tr>
<tr>
<td>Ornithocoprophilous tundra</td>
<td>4–5</td>
<td>located 100–150 m high, under strong influence of little auk; samples collected from the soil and moss turf mosaic</td>
<td></td>
<td>dry</td>
<td>Chrysosplenium tetradrum–Cochlearia groenlandica communities with Poa alpina var. vivipara, Cerastium arcticum, Salix polaris, Plagiomnium ellipticum, Sanionia uncinata, Tetraplodon mnioides, Dicranum sp., Brachythecium turgidum</td>
<td>77°00’35.9”</td>
<td>015°31’28.3”</td>
</tr>
<tr>
<td>High eutrophic wet moss tundra</td>
<td>6–18</td>
<td>located at the base of Arieikammen slope, under the flow of waters from bird colony, moss layer with 70–100% cover; samples collected: sites 6–10 from flows of water on the slope and mosaics growing in the tundra; sites 11–14 from mosses and water and from shallow streams; sites 15–18 from puddles with deep water up to 10 cm</td>
<td></td>
<td>highly eutrophic</td>
<td>Straminergon stramineum, Sanionia uncinata, Warnstorfia exannulata, Aulacomnium palustre, Bryum pseudotriquetrum, Tetraplodon mnioides</td>
<td>77°00’32.5”</td>
<td>015°32’30”</td>
</tr>
<tr>
<td>Mesotrophic wet moss tundra</td>
<td>19–24</td>
<td>located 500–700 m from the base of Arieikammen slope, under moderate influence of Alle alle; samples collected: sites 19–21 from streams, deep up to 40 cm, with silty, gravelly or stony bottom; sites 22–24 between mosses</td>
<td></td>
<td>mesotrophic</td>
<td>Sanionia uncinata, Ptyidium ciliare, Cetrariella sp., Saxifraga oppositifolia, S. rivularis</td>
<td>77°00’32.0”</td>
<td>015°31’9”–015°32’5”</td>
</tr>
<tr>
<td>Flooded moss tundra</td>
<td>25</td>
<td>located 700 m from the base of Arieikammen slope, without bird influence; samples collected from the bottom and from rocks in a broad stream, depth up to 30 cm</td>
<td></td>
<td>oligotrophic</td>
<td>Sanionia uncinata, Warnstorfia sarmentosa, Straminergon stramineum, Aulacomnium palustre, Bryum pseudotriquetrum</td>
<td>77°00’33.0”</td>
<td>015°33’50”</td>
</tr>
<tr>
<td>Stage</td>
<td>Location</td>
<td>Soil Conditions</td>
<td>Cyanobacteria Crusts</td>
<td>Coordinates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial stage of cyanobacteria-moss tundra</td>
<td>26–28 Fuglebekken catchment, located on initial soils, close to lateral moraine Hansbreen, 600–850 m from the base of Ariekammen slope, without bird influence; samples collected from moist soil and small pockets</td>
<td>oligotrophic wet</td>
<td>cyanobacteria crusts with Anthelia juratzkana, Sanionia uncinata, Saxifraga cespitosa, S. oppositifolia</td>
<td>77°00'33.0" 015°33'50"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligotrophic wet moss tundra</td>
<td>29–30 Fuglebekken catchment, located 700–800 m from the base of Ariekammen slope, without bird influence; samples collected from mosses and slow streams</td>
<td>oligotrophic wet</td>
<td>cyanobacteria crust with Sanionia uncinata, Warnstorfia sarmentosa, Straminergon stramineum, Aulacomnium palustre, Bryum pseudotriquetrum</td>
<td>77°00'32.0" 015°32'8"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygonal tundra</td>
<td>31–34 located on patterned ground, 700-850 m from the base of Ariekammen slope, without bird influence; samples collected from soil</td>
<td>oligotrophic moderately wet</td>
<td>cyanobacteria crusts with Racomitrium lanuginosum, Anthelia juratzkana, Sanionia uncinata, Bryum sp., Polytrichum sp., and Saxifraga oppositifolia, S. cespitosa, Juncus biglumis, Equisetum arcticum, Sagina nivalis</td>
<td>77°00'30.5" 015°32'90"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesotrophic wet moss tundra</td>
<td>35–36 Fuglebergsetta marine terrace, located 700 m from the base of Ariekammen slope, under moderate influence of Alle alle; samples collected from soil and mosses growing in the tundra</td>
<td>mesotrophic wet</td>
<td>Sanionia uncinata and Straminergon stramineum, Tetraplodon nitidus, Bryum sp., Polytichum sp., Ptilidium ciliare, Warnstorfia sarmentosa and Cetrariella sp.</td>
<td>77°00'33.5" 015°32'5"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligotrophic flowing water moss tundra</td>
<td>37–38 Fuglebekken catchment, located 850-900 m from the base of Ariekammen slope, without bird influence; samples collected from slowly flowing, shallow streams with water from melting snow</td>
<td>oligotrophic wet</td>
<td>Sanionia uncinata, Straminergon stramineum, Warnstorfia exanulatus, Barbula sp.</td>
<td>77°00'13.5" 015°32'10"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snowbed cyanobacteria-moss tundra</td>
<td>39–40 Fuglebekken catchment, located 850–900 m from the base of Ariekammen slope, from area with long-lasting snow cover without bird influence; samples collected from soil</td>
<td>oligotrophic damp</td>
<td>cyanobacteria crusts with Sanionia uncinata, Saxifraga oppositifolia, S. cespitosa, Anthelia juratzkana, Ochrolechia frigida, Cetrariella delisei</td>
<td>77°00'13.0" 015°32'38.7"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesotrophic flooded moss tundra</td>
<td>41–43 located 900–100 m from Ariekammen slope, under influence of little auk; samples collected from the stream and among clumps of moss</td>
<td>mesotrophic wet</td>
<td>Sanionia uncinata, Polytichum sp., Warnstorfia sarmentosa, Straminergon stramineum and Saxifraga oppositifolia, S. rivularis</td>
<td>77°00'33.5" 015°32'5"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Tundra</td>
<td>Description</td>
<td>Location Details</td>
<td>Habitat Characteristics</td>
<td>Sample Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanobacterial mats tundra with Saxifraga oppositifolia</td>
<td>Located on low slope with stream water, 900–100 m from Ariekammen slope, without bird influence; samples collected from the cyanobacterial mats among clumps of mosses.</td>
<td>Oligotrophic periodical supply of water</td>
<td>cyanobacteria mats with Saxifraga oppositifolia, Sanionia uncinata, S. cespitosa</td>
<td>77°00'13.0" 015°32'38.7"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet cyanobacterial mats tundra</td>
<td>Located 1000–1050 m from the base of the slope, outflow of underground water among coarse rock fragments and stones, without bird influence; samples collected from the surface of soil, surface of coarse rock fragments and stones.</td>
<td>Oligotrophic wet</td>
<td>Sanionia uncinata</td>
<td>77°00'11.0" 015°32'43.5"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligotrophic flowing water moss tundra under influence of sea spray</td>
<td>Located near the shore, under influence of sea spray; samples collected from temporally dried up stream with depth of 15 cm.</td>
<td>Oligotrophic wet</td>
<td>cyanobacteria mats with Paludella squarrosa, Sanionia uncinata</td>
<td>76°59'50" 015°31'60"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowing water cyanobacterial mats tundra</td>
<td>Streams and pools with depth between 10 and 30 cm, the bottom covered in sludge, gravel or rocks, without bird influence; samples collected from the bottom of streams spreading broadly on eroded ground and small moss surfaces.</td>
<td>Oligotrophic permanent supply of water</td>
<td>cyanobacteria mats, Paludella squarrosa, Sanionia uncinata</td>
<td>77°00'12.0" 015°28'65"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligomesotrophic wet moss tundra</td>
<td>Under little influence of birds; samples collected from moss tundra pools and among the mosses.</td>
<td>Oligomesotrophic wet</td>
<td>cyanobacteria crust with Sanionia uncinata, Straminergon stramineum, Polytrichum sp., Warnstorfia sarmentosa, Saxifraga oppositifolia and S. nivalis</td>
<td>77°00'13.0" 015°29'9.5"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet oligotrophic cyanobacterial mats tundra</td>
<td>Without bird influence; samples collected from moist soil surfaces with numerous pockets with rain and exudation water.</td>
<td>Oligotrophic permanent supply of water</td>
<td>Saxifraga oppositifolia community with Saxifraga cespitosa, Salix polaris, Sanionia uncinata, Ochrolechia frigida</td>
<td>77°00'13.0" 015°30'30"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results and discussion

Diversity of cyanobacteria and green algae in studied ecosystems. — Phycological studies identified 141 taxa of cyanobacteria and green algae, among which 100 species belonged to Cyanobacteria and 41 to Chlorophyta. The characterization of the habitats was based on cyanobacteria species, whereas Chlorophyta species were included either for their dominant role in the habitat or their characteristics distinguishing habitat.

Within the Cyanobacteria group 36 coccoid type of species were discovered, as well as 18 heterocytous filamentous species and 46 non-heterocytous filamentous species. Within the Chlorophyta group the study revealed desmids (20 species), filamentous green algae (9 species) and coccoid and non-filamentous green algae (12 species). In the studied tundra, in various zones and with various bird influence, the species composition of cyanobacteria and green algae assemblages varied significantly (Table 2). Within the habitats there were dominant and distinctive species. Similar habitats were combined to create tundra types as a supplement to the tundra distinguished earlier on the basis of mosses and vascular plants (by Wojtuń and Matuła, unpublished data) (Table 1).

Community analyses. — As a result of the Cosine Theta analysis based on the species composition of cyanobacteria and green algae, a dendrogram was obtained, where the habitats were arranged into separate groups and subgroups according to the types of tundra distinguished on the basis of moss and vascular plant communities’ composition with different humidity and trophy (Figs 4, 5).

The first cluster (I) showed a similarity between cyanobacteria and green algae communities occurring on ornithocoprophilous, high eu- and mesotrophic tundra with various degrees of humidity (Fig. 5). In the second, less homogeneous cluster (II), there were cyanobacteria and green algae communities occupying oligotrophic habitats with various humidity (Fig. 5).

Cluster I includes phycoflora habitats with dominating *Prasiola crispa* and *Phormidium autumnale* along with a numerous group of non-heterocytous cyanobacteria, located on ornithocoprophilous, high eutrophic and mesotrophic wet moss tundra (Fig. 4). Within this cluster the phycoflora communities formed 2 groups, 1 and 2, differing in the proportion of dominants and species richness. In group 1 there were three subgroups (1a–c) with various proportions of *P. crispa* (40–100% in the community), which, depending on the humidity, formed various forms of thalli (Table 2, Fig. 4). In group 2 the dominant role was taken by *P. autumnale*, whose proportion was between 40 and 50% in cyanobacteria and green algae communities. The proportion of *P. crispa* in the community, however, decreased to 3–5%, and only young filaments were recorded (Table 2, Fig. 4).

The second cluster (II) (Fig. 4) includes communities of cyanobacteria and green algae inhabiting tundra with various degrees of humidity, formed on oligotrophic habitats. Occurrence of many heterocytous species not found in the
The first cluster is characteristic of the second (Table 2). Six groups (3–8) were distinguished in this cluster on the basis of dominants, sub-dominants and characteristic species. Group 3 comprises communities with dominance of the granular form of *Leptolyngbya* sp. and *Oscillatoria* cf. *ornata*. Group 4 includes three subgroups (4a–4c) of soil habitats with the dominance of cyanobacteria crusts with the aerophytic form of *Schizothrix lacustris* and *Nostoc commune*. Habitats included in group 5 were wet habitats covered with cyanobacterial mats, formed in a community of the subaerophytic form of *Schizothrix* cf. *lacustris*. Group 6 comprises of strongly humid habitats with the dominance of the plankton form of *Schizothrix* cf. *lacustris*. In group 7 there is an individual habitat of a broad stream formed by sea sprays, with the dominance of cyanobacteria mats with *Geitlerinema acutissimum* and *Lyngbya aestuarii*. The most distinguishable phycoflora is found in group 8, which comprises of habitats with dominating *N. commune*, *Dichothrix gypsophila* and the brown sheath form of *Tolypothrix* sp. and cyanobacteria mats with *Schizothrix* cf. *calcicola*, not recorded in any of the previous habitats (Table 2; Fig. 4).

Cyanobacteria and green algae in relation to tundra types. — The particular climatic and environmental conditions of the Arctic influence the formation of particular tundra communities with a large proportion of cyanobacteria and green algae. The specific habitat conditions in the area caused by bird colonies and the highest concentration of excrements (Akiyama et al. 1986; Smykla et al. 2007; Jakubas et al. 2008) led to the formation of a community with a clear dominance of *Prasiola crispa*. It is a typical species in polar and cold-temperate regions, where it is usually associated with habitats rich in organic nitrogen (Klekowski and Opaliński 1986; Olech 1990; Graeve et al. 2002; Holzinger et al. 2006; Matula et al. 2007; Karsten et al. 2009; Richter et al. 2009; Kosugi et al. 2010; Broady et al. 2012). In that zone the ornithocoprophilous tundra with *Prasiola crispa* occurs and it is located in the direct vicinity of the nesting birds (sites 1–3). This zone is almost completely void of vascular plants, and it is covered by *P. crispa* (80% to 100%), which covers the ground and dead mosses. It occurs as monostromatic lamellar, cracked form, which is connected with the degree of surface humidity (the habitat is in risk of drying up in summer) (Tables 1, 2, Figs 4, 5).

The further the study locations were from grounds trampled by little auks, the more the ornithocoprophilous tundra (sites 4–6) was covered with rare moss clusters and vascular plants. The proportion of *P. crispa* in the community decreased by about 70%, and there were other species between its lobes, such as brown filaments of *Phormidium autumnale* and elastic, dirty-gray crusts with the short cell.
form of *Leptolyngbya valderiana* (sub-dominants). The study also revealed that the crusts had a significant proportion of coccoid and non-filamentous green algae (Table 2) and *Merismopedia* sp. – a species considered typical for plankton (Komárek J. and Anagnostidis 1999). In this case cyanobacteria crusts and gelatinous envelopes of coccoid green algae protect it from drying up and create a sufficiently humid habitat. Uncovered soil also had *Klebsormidium* sp. thalli in the form of green coating. The *Klebsormidium* species owes its survival ability to the resistance to drying up (Elster *et al.* 2008).

At the base of the Ariekammen slope within high eutrophic wet moss tundra (sites 7–18) the dominating and distinctive species was still *Prasiola crispa*, which formed a morphologically different thallus (typically the leafy form), which is associated with increased habitat humidity. The proportion of *P. crispa* in the phycoflora community decreased in comparison to ornithocoprophilous tundra by 40–50%. At the same time the study revealed an increase in *Phormidium autumnale* quantity; covering mosses formed dark brown, thin thalli accompanied by *Leptolyngbya valderiana* (sub-dominant) (Table 2). High eutrophic wet moss tundra was characterized by the presence of *Scotiella* spp. and filamentous cyanobacteria without heterocytes, such as the granular form of *Leptolyngbya* sp., *Komvophoron minutum*, *Lyngbya* sp. and *Pseudanabaena catenata*.

In mesotrophic flooded moss tundra (sites 41–43) the dominating species was *Phormidium autumnale*, which had a 50–60% representation in the communities. It occurred in water and at the bottom of the streams in the shape of long, thin, brown thalli breaking up into individual filaments. In polar regions *P. autumnale* is characteristic of streams and humid subaerophytic habitats (Vincent 2000; Komárek J. and Elster 2008; Strunecký *et al.* 2012). In Hornsund tundras it is found in every nitrophilous habitat.

The presence of *Prasiola crispa* decreased by about 20–30% in the community and occurred in the form of young filaments. The species distinctive for this tundra was *Schizothrix cf. facilis* (sub-dominant), occurring as long filaments in water and at the bottom of streams, and *Chamaesiphon rostafinskii*, growing on them. These species are thought to be distinctive for fast streams (Komárek J. *et al.* 2012), but in the studied habitat they occurred in a slowly flowing, wide stream. There were also large quantities of *Pseudanabaena frigida*, which has a broad spectrum occurrence in relation to trophy and surface (Fumanti *et al.* 1995; Fumanti *et al.* 1997; Matula *et al.* 2007; Richter *et al.* 2009; Davydov 2014), but occurs most often in mesotrophic flooded moss tundra. The study also recorded species such as *Tetraspora gelatinosa* and *Geitlerinema acutissimum* (Table 2).

Fig. 3. Study area: a, Snowbed cyanobacteria-moss tundra (subgroup 4b) with details of cyanobacteria crust and *Nostoc commune* (b); c, Initial stage of cyanobacteria-moss tundra (subgroup 4c) with details of cyanobacteria crust (d); e, Polygonal tundra (subgroup 4b); f, Mesotrophic flooded moss tundra (subgroup 4c); g, Flowing water cyanobacterial mats tundra (subgroup 8); h, Cyanobacterial mats tundra with *Saxifraga oppositifolia* community (subgrup 5).
Fig. 4. Hierarchical cluster Cosine Theta analysis based on the similarity of cyanobacteria and green algae communities included in the quantities of the species; 1–58, sampling points; 1–8, type of algae and cyanobacteria communities.
Mesotrophic wet moss tundra (sites 19–24, 35–36) was also characterized by the dominance of *Phormidium autumnale*, whose proportion in the community was between 40 and 60%. It occurred as brown, thin thalli on mosses, rocks and wet soil. Between the leaves of mosses there were also lobular thalli of the thin Cyanobacterial and algal assemblages in Arctic tundra

![Hierarchical cluster Cosine Theta analysis](image)

Fig. 5. Hierarchical cluster Cosine Theta analysis based on the similarity of cyanobacteria and green algae communities included in the quantities of the species, showing their connection to the types of tundras distinguished on the basis of mosses and vascular plants; 1–58, sampling points; 1–8, type of algae and cyanobacteria communities.

Mesotrophic wet moss tundra (sites 19–24, 35–36) was also characterized by the dominance of *Phormidium autumnale*, whose proportion in the community was between 40 and 60%. It occurred as brown, thin thalli on mosses, rocks and wet soil. Between the leaves of mosses there were also lobular thalli of the thin
Table 2

Type of tundra, their characteristics according to the cyanobacteria and green algae flora. A–I, the number of species of particular groups of cyanobacteria and algae: A, coccolid type of cyanobacteria; B, non-heterocystous type of cyanobacteria; C, heterocystous type of cyanobacteria; D, total of cyanobacteria; E, desmids; F, coccolid and non-filamentous type of green algae; G, filamentous type of green algae; H, the total of green algae; I, the total of cyanobacteria and green algae.

<table>
<thead>
<tr>
<th>Type of tundra</th>
<th>sub-groups</th>
<th>Cyanobacteria (dominant, sub-dominant, characteristic and common species)</th>
<th>Green algae</th>
<th>Cyanobacteria and green algae</th>
<th>(dominant, sub-dominant, characteristic and common species)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ornitocoprophilous tundra with Prasiola crispa</td>
<td>1a</td>
<td></td>
<td>5 13 0 18 0 3 3 6 24</td>
<td>Prasiola crispa community, dominant and distinctive species: monostromatic lamellar, cracked form of P. crispa (80–100% soil surface)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1–3</td>
<td></td>
<td>1–3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ornitocoprophilous tundra</td>
<td>1a</td>
<td></td>
<td>7–18</td>
<td>Prasiola crispa typically leafy form (40–50% soil surface); subdominant: Phormidium autumnale, Leptolyngbya valderiana; distinctive species: Klebsormidium sp., Merismopedia sp. and coccosid green algae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4–6</td>
<td></td>
<td>4–6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High eutrophic wet moss tundra</td>
<td>1b</td>
<td></td>
<td>3 11 0 14 3 5 4 12 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesotrophic flooded moss tundra</td>
<td>1c</td>
<td></td>
<td>4 7 0 11 5 2 3 18 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesotrophic wet moss tundra</td>
<td>1c</td>
<td></td>
<td>19–24 35–36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligo-mesotrophic wet moss tundra</td>
<td>3</td>
<td></td>
<td>53–54 29–36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet oligotrophic cyanobacterial mats tundra</td>
<td>4a</td>
<td></td>
<td>4a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55–58</td>
<td></td>
<td>55–58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 – continued.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Stage</th>
<th>Dominant Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygonal tundra</td>
<td></td>
<td>cyanobacteria crust with aerophytic form of Schizothrix cf. lacustris, Gloeocapsa punctata, Scytonema crustaceum, Microcoleus vaginatus, Tolypothrix tenax; subdominant Nostoc commune (small, round thalli), N. cf. paludosum; distinctive species: Stigonema cf. manillosum, Dichothrix gypsophila (sacconema stage), Calothrix cf. parietana</td>
</tr>
<tr>
<td>Snowbed cyanobacteria-moss tundra</td>
<td>4b</td>
<td>cyanobacteria crust with aerophytic form of Schizothrix cf. lacustris, Gloeocapsa biformis, G. tornensis; subdominant: Nostoc commune, N. cf. punctiforme, N. paludosum; common species: Leptolyngbya foveolarum, Pseudanabaena frigida and desmids</td>
</tr>
<tr>
<td>Initial stage of cyanobacteria-moss tundra</td>
<td>4c</td>
<td>cyanobacteria crust with subaerophytic form of Schizothrix cf. lacustris, Scytonema crustaceum, Tolypothrix tenax, Microcoleus vaginatus, Symplocastrum sp. 1, Gloeocapsa punctata, G. biformis, Chroococcus turgidus; subdominant: Nostoc commune</td>
</tr>
<tr>
<td>Cyanobacterial mats tundra with Saxifraga oppositifolia</td>
<td>5</td>
<td>cyanobacteria mats with planktonic form of Schizothrix cf. lacustris, Gloeocapsa kueteingiana, G. punctata, Symplocastrum sp., Scytonema crustaceum, Microcoleus vaginatus; subdominant: Nostoc commune; common species: Aphanothece clathrata, A. caldariorum</td>
</tr>
<tr>
<td>Wet cyanobacterial tundra</td>
<td>48–49</td>
<td>cyanobacteria mats with planktonic form of Schizothrix cf. lacustris, Gloeocapsa kueteingiana, G. punctata, Symplocastrum sp., Scytonema crustaceum, Microcoleus vaginatus; subdominant: Nostoc commune; common species: Aphanothece clathrata, A. caldariorum</td>
</tr>
<tr>
<td>Flooded moss tundra</td>
<td>6</td>
<td>cyanobacteria mats with planktonic form of Schizothrix cf. lacustris, Gloeocapsa kueteingiana, G. punctata, Symplocastrum sp., Scytonema crustaceum, Microcoleus vaginatus; subdominant: Nostoc commune; common species: Aphanothece clathrata, A. caldariorum</td>
</tr>
<tr>
<td>Oligotrophic flow water moss tundra</td>
<td>37–38</td>
<td>cyanobacteria mats with planktonic form of Schizothrix cf. lacustris, Gloeocapsa kueteingiana, G. punctata, Symplocastrum sp., Scytonema crustaceum, Microcoleus vaginatus; subdominant: Nostoc commune; common species: Aphanothece clathrata, A. caldariorum</td>
</tr>
<tr>
<td>Oligotrophic flow water moss tundra under influence of sea spray</td>
<td>7</td>
<td>cyanobacteria mats with planktonic form of Schizothrix cf. lacustris, Gloeocapsa kueteingiana, G. punctata, Symplocastrum sp., Scytonema crustaceum, Microcoleus vaginatus; subdominant: Nostoc commune; common species: Aphanothece clathrata, A. caldariorum</td>
</tr>
<tr>
<td>Flow water cyanobacterial mats tundra</td>
<td>8</td>
<td>cyanobacteria mats with planktonic form of Schizothrix cf. lacustris, Gloeocapsa kueteingiana, G. punctata, Symplocastrum sp., Scytonema crustaceum, Microcoleus vaginatus; subdominant: Nostoc commune; common species: Aphanothece clathrata, A. caldariorum</td>
</tr>
</tbody>
</table>

Cyanobacterial and algal assemblages in Arctic tundra
form of *Leptolyngbya* sp. (sub-dominant). The proportion of *P. crispa* in the community decreased by 3–5%, and only the form of young filaments was recorded. Streams flowing through the tundra had a lot of species of filamentous green algae belonging to *Ulothrix* spp., desmids (*Cosmarium holmiense, C. undulatum, C. costatum var. costatum, C. speciosum*), and non-heterocystous types of cyanobacteria (*Geitlerinema acutissimum, Pseudanabaena catenata*, long cell form of *Leptolyngbya valderiana*, *Oscillatoria fracta*).

Areas outside the influence of bird colonies had habitats with cyanobacteria crusts and mats. The dominance of cyanobacteria communities in the form of crusts and mats results from their accommodation to environmental stresses, such as drastic fluctuations in temperature and drying and radiation (Oleksowicz and Luścińska 1992; Hu et al. 2012; Komárek J. and Kovacik 2013). Their formation is aided by filamentous sheath-forming species (e.g. *Schizothrix, Microcoleus*) because the presence of a sheath and mucilage can help protect cells against physical desiccation (Mazor et al. 1996; Gupta and Agrawal 2008).

In oligo-mesotrophic and oligotrophic wet moss tundra (sites 53–54, 29–30), the study recorded dirty green and gray cyanobacteria crusts formed of granules of *Leptolyngbya* sp. and *Oscillatoria* cf. *ornata*. The study also revealed the presence of such species as *Scytonema crustaceum, Microcoleus vaginatus, Gloeocapsa punctata*, and *G. tornensis*. The studied tundra is also characterized by a large proportion of *Nostoc commune* and *N. cf. punctiforme* (sub-dominant), which formed macroscopic leathery lobes of olive-green thallus (Table 2). The high quantity of *N. commune* thalli may result from a high quantity of *Bryum pseudotriquetrum* in the habitat. Its stems and leaves are often covered with *N. commune* (Shuji 1986). The study also recorded a large proportion of green algae, particularly desmids: *Cosmarium costatum var. costatum, C. granatum, C. holmiense, C. hornavense, C. speciosum, C. undulatum*. These species are among the Arctic alpine group and often occur in communities of moist mosses (Coesel 1979, 1996; Coesel and Meesters 2007).

Wet oligotrophic cyanobacterial mat tundra (sites 55–58) was characterized by the dominance of *Nostoc commune*, forming a vast, leathery thallus on the surface. The sub-dominant species was cyanobacterial soil crust formed of elastic, dirty-gray filaments of the aerophytic form of *Schizothrix cf. lacustris* (dominant), accompanied by filaments of *Microcoleus vaginatus* and *Tolypothrix tenuis* and numerous coccolid cyanobacteria: *Chroococcus turgidus, Gloeocapsa punctata, G. compacta, G. biformis, G. alpine, G. kuetzingiana*. The large quantity of *Gloeocapsa* species in cyanobacterial mats results from their high adaptation to extreme environmental conditions (Friedmann et al. 1988).

The surface of polygonal tundra and snowbed cyanobacteria-moss tundra (sites 31–34, 39–40) was covered by elastic, dirty-gray cyanobacterial crusts built of the aerophytic form of *Schizothrix cf. lacustris* and *Gloeocapsa punctata*. Among them the study also recorded brown thalli formed by *Scytonema crusta-
ceum, Tolypothrix tenuis, Microcoleus vaginatus and, sporadically, Dichothrix gypsophila (sacconema stage), Stigonema cf. mamillosum and Calothrix cf. parietana. Among the cyanobacterial crusts there were also large quantities of free-living, spherical olive-green colonies of Nostoc commune and N. cf. paludosum (sub-dominant). A distinctive feature of both tundra was the lack of green algae in the phycoflora structure (Table 2).

The initial stage of cyanobacteria-moss tundra (sites 26–28) was dominated by cyanobacterial crust formed of the aerophytic form of Schizothrix cf. lacustris with a high proportion of the heterocytous species Tolypothrix tenuis and Scytonema crustaceum, forming a brown-black filamentous thallus. Within the crust there were also numerous species of coccoid cyanobacteria (Gloeocapsa biformis, G. punctata, Chroococcus turgidus) and desmids (Cosmarium parvulum, C. pokornyam, C. subcostatum, Euastrum sp., Actinotaenium sp.). Among the crusts the study also revealed small, round leathery olive-green thalli of Nostoc spp. – N. commune (sub-dominant), N. cf. paludosum, N. cf. punctiforme and mosses: Antithelia juratzkana, Sanionia uncinata. The cyanobacterial mat tundra with the Saxifraga oppositifolia community and wet cyanobacterial mat tundra (sites 44–49) were characterized by the greatest variety of cyanobacteria, especially with respect to heterocytous and coccoid types (Table 2). Cyanobacterial mats (dominant) were formed of the subaerophytic form of Schizothrix cf. lacustris with Scytonema crustaceum, Tolypothrix tenuis and Microcoleus vaginatus, and occurred as elastic, resilient, nodular and gray mats. Within them there were also small colonies of Symplocastrum sp., Dichothrix gypsophila and, in large quantities, coccoid species: Gloeocapsa punctata, G. sanguinea, G. biformis. The distinctive feature of this tundra is the presence of macroscopic, spherical or spread, olive-green colonies of Nostoc commune (sub-dominant). Its thalli covered up to 50% of uncovered, moist soil in the analyzed habitats. In polar regions N. commune may occur in a water environment in association with mosses, but, above all, it is an obligatory taxon for surface habitats (Howard-Williams et al. 1986; Fumanti et al. 1995; Hirai et al. 2004, Fukunda et al. 2008, Komárek J. and Elster 2008; Komárek O. and Komárek J. 2010). On surfaces covered with a thin layer of water it may reach macroscopic sizes, which was the case in the studied habitat (Cavacini 2001).

Oligotrophic flow water and flooded moss tundra (sites 25, 37–38) is covered with cyanobacterial mats (dominant) formed mostly of the planktonic form of Schizothrix cf. lacustris, Gloeocapsa kuetzingiana and G. punctata, Symplocastrum sp., Scytonema crustaceum and Microcoleus vaginatus. In the mats the study recorded many coccoid species, such as G. biformis, Aphanothece clathrata, A. caldariorum, A. microscopica, the aerotope form of Woronichinia sp., the granular form of Gloeothecae sp. and the dark mucilaginous form of Aphanocapsa sp. Among the cyanobacterial mats there was also the long cell form of Nostoc commune (sub-dominant) in the form of vast, lobular, olive thalli (Table 2).
The wide stream flowing through the oligotrophic moss tundra under the influence of sea spray (site 50) was the habitat least rich in species of all analyzed tundra types. Distinctive habitat conditions shaped under sea sprays caused the dominance of *Lyngbya aestuarii*. It is a species with a large spectrum of occurrence in salty environments (Silva et al. 1996; Galil et al. 2011; Kothari et al. 2013). It was accompanied by *Geitlerinema acutissimum* (sub-dominant), *Leptolyngbya valderiana*, small cells of *Woronichinia* sp. and small amounts of *Nostoc commune*. There was also a surprising abundance of Desmidiaceae species: *Cosmarium botrytis, C. costatum, C. holmiense, C. speciosum, C. undulatum* (Table 2).

Flow water cyanobacterial mat tundra (sites 51–52) was characterized by the dominance of *Nostoc commune* forming widespread lobular thalli covering up to 50% of the tundra surface. It is accompanied by *Schizothrix cf. calcicola* as subdominant, forming mats white on the surface and green at the bottom. On the surface of the mats there were numerous nodular brown and orange thalli of *Dichothrix gypsophila sensu lato*. The distinctive species for this tundra was the brown sheath form of *Tolypothrix* sp., not recorded in any of the previous habitats. It formed long, dark olive and black filaments on the *Schizothrix calcicola* mats (Table 2). The flora in the phycoflora in this tundra was distinctively different as a result of calcium in the soil, which is confirmed by the presence of *Schizothrix cf. calcicola* and *D. gypsophila*, profusely encrusted with calcium carbonate (Komárek J. and Anagnostidis 2005) and *Paludella squarrosa*, the dominant species in the moss rich community, which favors such surfaces (Dierssen 2001).

Conclusions

The research conducted in the area of Hornsund fjord allowed us to characterize the phycoflora occurring on ecologically different tundra. The Cosine Theta analysis arranged the studied habitats in order based on the similarity of cyanobacteria and green algae composition. The obtained groups of habitats are characterized by a unique set of dominating species and by species distinguishing them from other tundra.

The tundra under the influence of bird colonies were characterized by the dominance of nitrophilous species, *Prasiola crispa* and *Phormidium autumnale*, whose proportion varied depending on the level of trophy and the humidity of the habitats. The study also recorded a greater variety of green algae in those tundra.

In tundra located outside bird influence the dominant role belonged to cyanobacteria forming their own associations, which, in certain areas, covered 100% of the ground surface. They are characterized by high diversity in heterocytous spe-
cies, which had not been previously recorded in highly trophic tundra. These species had a high proportional abundance in their habitats.

The results of categorization of the habitats by their cyanobacteria and green algae communities are consistent with the types of tundra distinctive for vascular vegetation and mosses, and, at the same time, these results are related to the humidity and trophy of the studied habitats.

The conducted research showed that cyanobacterial and algal communities have a significant role in forming tundra communities in the area and that they need to be taken into account in the characterization of said tundra.

References

Received 22 February 2015
Accepted 12 June 2015