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ABSTRACT

The study presents the evaluation and comparative analysis of engine shaft line performance in maritime transport ships 
of the same type. During its operation, a technical system performs functions for which it was designed. It goes through 
different states. Dynamic state changes of a rotational system can be identified by means of its vibration measurement. 
For this purpose, a research was carried out which involved recording vibrations of the analysed rotational systems. 
The recordings were used for calculating selected characteristics in the time-domain, where one of the most unique is 
the value of the normalized mutual correlation function. On the basis of the concentration values, the characteristics 
which unambiguously determine the ability state were selected for further studies. Then an identification method for 
rotational system non-coaxiality was proposed. The method involves using fuzzy clustering. According to this method 
the values of input signal characteristics were used to formulate fuzzy clusters of system ability and inability states. The 
method can be used for identifying the current state of the system. The study presents the results of the application of 
this method in engine turbine shaft lines of minesweepers, with the rotational system selected as an example. It needs 
to be noted that the efficiency of identifying the operating state of the system with this method is higher than with other 
methods described in the literature by authors who deal with this issue. The research results have a significant impact 
on the evaluation of mechanical properties of the studied objects and directly affect operational states of mechanical 
systems, including those installed in minesweepers, thus determining their reliability.
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INTRODUCTION

Rotating machinery is widely used in energy transformation 
and power transmission industries. Malfunctioning of the 
rotational system is most commonly caused by the impact of 
external forces, fatigue corrosion, aging, and poor working 
conditions. This leads to unexpected downtime and economic 
losses. Therefore, monitoring the technical state of a machine 
system is becoming an important issue of the engineering and 
academic research. The vibration signal analysis based fault 
detection and rotor system diagnosis is one of the principal 
maintenance tools [17]. From the point of system operation 
damageability, reliability, and safety, vibrations are the primary 
diagnostic symptoms [25, 26, 47, 48, 59].

Vibrations and noise generated by rotational subsystems 
occur, practically, in all mechanical systems of transport means 
including ships. Vibrations can be generated by shafts, axes 
and fans, depending on the type of transport means or device.

According to literature, it is possible to carry out the 
research on the basis of correlation analysis, and to identify 
early symptoms of rotational system dynamic changes, 
especially its misalignment, through measurement of its 
vibrations [8, 10-12, 16]. The Fourier transformation [1, 20] 
and the wavelet transformation [37, 38] have been widely 
applied in recognizing fault feature frequencies of machinery 
equipment. Wavelet packet decomposition is utilized to 
analyse acoustic emission of signals and thus to identify 
the failure of a tribological system [2]. It is also applied to 
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provide temporal-frequency information and capture the 
energy features [5], and to denoise non-stationary signals 
[49]. Although the wavelet analysis is widely used in vibration 
signal processing, there are certain problems concerning its 
application, such as difficulties in finding the best threshold 
and selecting the proper wavelet basis. 

Vibration signals of the rotating machinery can have 
nonlinear and non-stationary characteristics when the 
mechanical transmission system fails to operate properly. 
Empirical mode decomposition (EMD) has been proved to 
be the proper method for dealing with nonlinear and non-
stationary signals. In this method, any complex information 
can be adaptively decomposed into a number of individual, 
mono-component signals described by intrinsic mode 
functions. However, EMD has some problems, such as endpoint 
effect or modal aliasing. To cope with EMD disadvantages 
its some extensions have been developed. One of them is 
ensemble EMD (EEMD) [44]. Ensemble empirical mode 
decomposition has many advantages and has been applied 
in many scientific fields [50, 52]. Another extension of EMD 
is variational mode decomposition (VMD). Through adaptive 
quasi-orthogonal signal decomposition, VMD decomposes 
the multi-component signal into several single-component 
signals, thus solving the problem of mode aliasing of EMD. 
Simultaneously, VMD makes use of Wiener filtering and has 
good noise robustness [23].

The EMD method and its extensions are often used in 
hybrid solutions, where these methods are combined with 
other types of signal processing. Here, the HHT method 
can be considered as an example. This is an adaptive time-
frequency signal processing method which was applied in the 
past to water wave analysis, EEG signal feature extraction, 
and vibration signal processing [40]. In [34], a method 
of extracting shock energy-associated features from the 
background of intense noise interference is proposed. The 
energy weighting method starts with raw vibration signal 
decomposition using EEMD and time-frequency mapping 
by Hilbert transformation. Subsequently, the time-frequency 
map is considered as a set of time series of energy values for 
each particular frequency and each signal, and is analysed to 
check if impulsive energy exists. Finally, each binary spectrum 
is converted into weights of particular energy compounds 
to total weight of energy, and a characteristic frequency 
corresponding to a specific fault is revealed.

For monitoring the condition of a rotor system when the 
vibration signals produce an impulsive signature, the Spectral 
Kurtosis (SK) method is used. [39, 46]. With this method, it is 
possible to extract a part of the signal with the highest level 
of impulsiveness. The SK method has been already applied 
successfully by many researchers in monitoring the condition 
of rotating machinery and fault diagnosing [45]. In [51], a new 
method combining the advantages of EEMD and SK for rotor 
bearing system multi-fault diagnosis is proposed.

As far as the rotor system multi-fault diagnosis is concerned, 
the faulty signal is often intermixed with vibrations or noise 
emitted by other sources [22, 56]. A similar situation occurs 
in diagnosing the rotor system operation under transient 

conditions, when the vibration signal is affected by the speed 
change and the transmission path [21]. If the traditional Fast 
Fourier Transform is adopted, it will lead to frequency aliasing. 
Order Tracking (OT) is the most direct and effective method to 
deal with the fault diagnosis under variable conditions [4, 6]. 
Non-stationary signals are converted into stationary signals by 
equal angle resampling. There are two types of OT: Hardware 
Order Tracking (HOT) and Computed Order Tracking (COT). 
The HOT performs equal angle sampling of the vibration 
signal with the analogue device [57]. The hardware devices are 
expensive and complex, which limits the range of application of 
this method. In the COT, the vibration signal and the key phase 
signal of the machine are collected synchronously in the equal 
time interval sampling mode. Then, the equal angle sampling 
sequence in the angle domain is obtained by the interpolation 
algorithm. COT has been applied to feature extraction and 
fault diagnosis of internal combustion engines [55]. In [14], 
a hybrid method based on order tracking, EEMD, and 1.5 
dimension spectrum is proposed for extracting the rolling 
bearing fault feature, under variable conditions. 

However, the feature frequency cannot always be detected 
due to difficulties in obtaining the value of rotating frequency 
or the values of operational parameters of mechanical 
parts, which limits its implementation. In such a  case, 
the classification-based fault diagnosis is used as another 
method of vibration analysis to avoid calculation of fault 
feature frequencies. The classification methods which are 
frequently used in the field of fault diagnosis include linear 
discriminant analysis (LDA) [13], artificial neural network 
(ANN) [36], support vector machine (SVM) [58], and sparse 
representation based classification (SRC) [7].

LDA, as a basic Fisher discriminant classifier, pursues 
a low degree of coupling between classes and a high degree 
of polymerization within a class. ANN provides nonlinear 
mapping between symptoms and faults. SVM is a machine 
learning method based on the statistical learning theory, 
and produces a  favourable generalization performance. 
The basic principle of SRC is to sparse code a test sample 
over a dictionary and then to perform the classification 
based on the reconstruction error. SRC and its variants 
have been widely applied in face recognition, EEG signal 
classification, and music genre classification, or to reduce 
the dimension of original vibration signals. In [53], on the 
basis of SRC, a classification method for machinery vibration 
signals, named Transform Domain Sparse Representation-
based Classification (TDSRC), is proposed. In TDSRC, the 
dictionary for sparse representation is not constructed with 
raw samples, but with their transformation coefficients. 

The authors also focused on vibration signal time-domain 
analysis. In works [10, 11, 18, 27], the best characteristics of 
vibration signals in terms of reliability state identification 
were selected. Subsequently, they were used to formulate the 
functional space in which the ability state and inability state 
clusters of signals were specified. Thanks to the proposed 
methods implementation, it was possible to correctly identify 
the ability state in 65% and the inability state in 94%. Despite 
pretty high efficiency of the inability state identification, the 
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study was performed in order to increase the ability state 
identification. As a result, a fuzzy classification of vibration 
signals in the time-domain was proposed. A  detailed 
description of the method in presented in Chapter 4. In 
order to facilitate understanding of the idea and to present 
its genesis, a short description of the performed operational 
tests (Chapter 2) and the elements of former works (Chapter 3) 
are also enclosed. The results of the method application in the 
considered naval vessels are discussed in Chapter 5. The paper 
is summed up by some conclusions formulated in Chapter 6.

OPERATIONAL TESTS OF MINE 
DETECTING SHIPS 

The study deals with selected types of ships, specifically 
with their propulsion systems. These ships are used by the 
Navy and their main task is to detect marine mines Fig. 1.

Vibrations of the main engine shaft were recorded at 
6 measuring points of the considered propeller systems. 
These points were located on: main engine bed plate, power 
consumer facing engine shaft end, hydrokinetic coupling, 
bearings at reversing reduction gear input and output, and 
thrust bearing, as shown in Fig. 2.

Each system is characterized by: nominal rotational speed 
equal to 1550 rpm, nominal power of 736kW, hydro-kinetic 
coupling with nominal slide 2% and skid control range 2-98%, 
reversing reduction gear with coefficient 3.5:1, and thrust 
bearing (equipped with three ball bearings).

The vibration accelerations were recorded in four vessels: 
on two drive shaft lines in three vessels and on one shaft line 
in the remaining one. Six measurement points were situated 
on each shaft line. A sample vibration acceleration time-
history recorded during the measurement is shown in Fig. 3.

The operational tests were performed during normal ship 
operation when the wind did not exceed 2°B, as otherwise, 
waves hitting the ship body would affect excessively the 
recorded vibrations. The temperature in the powerhouse 
compartment was nearly 40°C. As already mentioned, the 
main engine shaft vibrations were measured at 6 points (for 
each drive shaft). 

Three identical speedometers were used (B&K 4514B) 
for this purpose. They were mounted on three mutually 
perpendicular axes. Since there was no possibility to use 
a threaded mutually perpendicular joint, converters were 
fixed with glue to the tested elements of the propulsion system.

After taking the measurements, the measurement paths 
were calibrated. All the recorded signals were synchronized 
by means of a four-channel gauge [3]. The vibration values 
were recorded within 3.2 kHz band, at the sampling frequency 
equal to 8192Hz.

Fig. 1. Mine detecting ship 207P

Fig. 3. Fragment of vibration acceleration time-history recorded 
during measurements

Fig. 4. Places on the resistance-carrier bearing where accelerometers 
were fixed, with marking of measurement directions

Fig. 2. Arrangement of measuring points on the analysed propulsion systems; 
1-engine bed plate; 2-power consumer facing engine shaft end; 

3-hydrokinetic coupling; 4-bearing at input of reversing reduction gear;
 5-bearing at output of the gear; 6-thrust bearing
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Vibrations were recorded in three mutually perpendicular 
directions for 4 rotational speeds: 850rpm, 1100rpm, 1300rpm, 
and 1500rpm. The recorded results were stored in csv files. 
Each file included the vibration values for a given shaft system, 
measuring point, and rotational speed [11,27]. After recording, 
the files were divided into groups in such a way that each file 
in one group included 1024 measured values. However, after 
a preliminary analysis of the obtained files it turned out that 
the last file in each group contained only 1011 measurements. 
These files were excluded from further analysis. In this way, 252 
files were obtained for shaft lines being in ability state, and 68 
files for shaft lines being in inability state for each measurement 
point-vibration axis-rotational speed (PAS) combination. Each 
file contained the same number of measurements.

VIBRATION SIGNAL TIME-DOMAIN 
ANALYSIS

The time-histories of the recorded vibrations were treated 
as discrete signals expressed in the time domain. For each 
signal (vsi), the following characteristics (CH(vsi)) were 
calculated [27, 41, 42]: integral, mean value, energy, average 
power (rms square), I order moment, II order moment, I order 
central moment, II order central moment, I order normalized 
moment, II order normalized moment, I order normalized 
central moment, II order normalized central moment, abscissa 
of the signal square gravity centre, the signal square variance, 
and the signal equivalent mean.

It was also established that the considered signals take 
non-zero values only within a finite interval, thus, they are 
impulse signals [59]. Having calculated the energy of signals 
according to Eq. (1), it was stated that these are impulse signals 
with limited energy [15]:

  (1)

where E is the energy of the signal time-history, vs is the signal 
value, and t0 and tk  are the times of interval beginning and 
end, respectively.

Thus, the signals can be considered as points of the 
L2(t0, tk) function space, where time t0 corresponds to the 
first measurement in the file and time tk to the last one. This 
space is a space of impulse signals with limited energy [42]. 
It is composed of a set of impulse signals with limited energy 
VS and the metrics expressed by Eq. (2).

  (2)

where

is the functional such that , 
max(tk) is the maximum time of the interval end, vsi is the 
time-history of i-th signal i = 1,2,... , lvs, vsj is the time-
history of j-th signal j = 1,2,... , lvs, lvs is the number of signal 
time-histories,

is the distance between the time-histories of i-th signal j-th 
signal, and VS is the set of signal time-histories.

Extension of the space with scalar addition, multiplication, 
and norm Eq. (3), constitutes the normalized linear Hilbert 
space [9]:

  (3)

where  is the norm of L2 space.
The time-histories of vibration values are real signals. For 

such signals, the adjugated signal is equal to the primary 
signal. Thus, the normalized function of mutual correlation of 
the recorded vibration time-histories can be expressed as [10]

  (4)

Above, the measure of signal similarity defines the distance 
in L2 space between the time-histories depending on their 
relative shift along the time axis. The aim of the analysis of the 
recorded time-histories is to define a measure of their distance 
in space L2. However, this measure should increase along 
with an increase in the distance of signals. For this reason, 
expression (5) was accepted as a measure of the distance [33].

  (5)

Fig. 5. Device used for measurements in B&K 3560-B-120
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where δ(vsi, vsj) is the distance between signals vsi and vsj in 
space L2, and  is the normalized mutual correlation 
function.

Randomly selecting one signal from each PAS subgroup 
to be the reference signal, the normalized mutual correlation 
function was calculated according to Eqs. (4, 5) as an additional 
characteristic of the recorded vibration time-histories. 

According to the theory presented in [10], the characteristics 
were analysed in terms of concentration and unambiguity, 
using the following formulas:

  (6)

where CHCON is the concentrated characteristic, σCH(PAS) is the 
standard deviation of the characteristic CH, and  is the 
mean value of the characteristic CH calculated from PAS group 
of signals.

  (7)

where CHUE is the unambiguous characteristic, CHCON is the 
concentrated characteristic, σCH(PAS) is the standard deviation 
of the characteristic CH calculated from PAS group of signals, 

 is the mean value of the characteristic CH calculated 
from PAS group of signals, PASIA is the PAS group of signals 
recorded on rotational systems being in inability state, and 
PASA is the PAS group of signals recorded on rotational 
systems being in ability state.

The deviation from the mean value in Eq. (6) was equal 
to 0.15. This value was obtained as a result of the studies 
conducted by the authors and described in detail in [10] and 
[27]. For this value, the highest efficiency of inability state 
identification was achieved.

The further analysis includes characteristics which meet 
the concentration and unambiguity condition to a relatively 
high degree. These were: signal energy, average power of 
signal, abscissa of the signal square gravity centre, signal 
square variance, and normalized mutual signal correlation 
function. In the case of the normalized mutual signal 
correlation function, an additional description should be 
made. Table 1 presents the results of the concentration 

analysis for the considered characteristic. It was established 
that the distance of signals, determined according to the 
value of the normalized mutual correlation function of the 
recorded vibration time-histories, meets the requirements of 
concentrated characteristics in more than 90% of the analysed 
cases. Therefore, despite the fact that the unambiguity 
condition is not fulfilled, this characteristic is also taken 
into further considerations.

FUZZY CLASSIFICATION 
OF VIBRATION SIGNALS

The selected characteristics determine a five-dimensional 
space, where each signal is expressed as a  point and its 
coordinates are the values of the characteristics [26, 47, 48]. 
Detailed theoretical considerations about space formulation 
and industrial applications of the proposed approach can be 
found in the literature [28-32]. Although only concentrated 
and unambiguous characteristics were used as dimensions of 
the space of signals recorded during the industrial research, 
they form a cloud of points in space. In the cloud, regions of 
points related to the ability and inability states can be observed. 
In order to eliminate the problems arising from irregular and 
discontinuous distribution of the measured points in the 
space, elements of the theory of fuzzy sets are widely used 
[33, 35, 54]. Moreover, it was noticed that identification of 
regions is a similar issue to image recognition, where the fuzzy 
clustering implementation brings very good results [19, 24]. 
Therefore, the regions were considered fuzzy clusters and 
identified according to the fuzzy c-means (FCM) method [35].

Having analysed the signals, it was found that the 
dimension ranges of the formulated space varied significantly. 
Therefore, prior to identification of clusters, the maximum 
and minimum values were calculated for each dimension 
and on this basis the values of coordinates of each signal 
were normalized according to Eq. (8):

  (8)

where VS is the set of vibration signals, max(CH(VS)) and 
min(CH(VS)) are the maximum and minimum values of 
the characteristic CH of VS, respectively, vsi is the vibration 
signal No. i, and CH(vsi) is the value of the characteristic CH 
of the vibration signal vsi.

Due to normalization of coordinates, each dimension in the 
space has the same impact on the clustering process. In the first 
step of identification, the signals were divided into two groups. 
The first group consisted of 17792 signals recorded on systems 
being in ability state and 2854 signals recorded on systems being 
in inability state. This group, referred to as the learning set, was 
used in the cluster identification process. The second group 
consisted of 5670 signals collected on rotational systems being 
in ability state and 1386 signals on systems being in inability 
state. This group, called the testing set, was used to examine the 
quality of the misalignment identification method. 

Tab. 1. Results of concentration analysis of the normalized 
mutual signal correlation function

Measurement  
point 01 02 03 04 05 06

PAS groups – ability 
state 12 12 12 8 12 12

Concentrated PAS 
groups – ability state 10 11 12 8 10 10

PAS groups – inability 
state 12 12 12 8 12 12

Concentrated PAS 
groups – inability state 10 11 12 8 10 10

Concentrated PAS 
groups – total 83% 92% 100% 100% 83% 83%
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Next, the FCM method was performed using the learning 
set. This method requires three starting parameters to be 
set: the number of clusters (cno), the procedure termination 
condition parameter (ε), and the cluster fuzzifier (q), which 
is the parameter that controls how fuzzy the clusters will 
be. The higher it is, the fuzzier the clusters will be in the 
end. A large q results in smaller membership values, and 
hence, fuzzier clusters. In the limit q = 1, the memberships 
converge to 0 or 1, which implies a crisp partitioning. In the 
beginning, initial random values of the membership matrix 
were generated. This matrix defines the membership degree 
of each signal to a given cluster. Then, central points of the 
clusters are calculated according to Eq. (9):

  (9)

where cj,k is the k-th dimension of cluster No. j, lvs is the number 
of signals vs, µi,j is the membership degree of i-th signal to 
cluster No. j, CHk(vsi) is the value of k-th characteristic of 
the vibration signal vsi, and vsi is the vibration signal No. i.

Subsequently, the membership matrix values are recalculated 
according to formula Eq. (10):

  (10)

where µi,js is the membership degree of i-th signal to cluster 
No. js, cno is the number of clusters, chno is the number of 
dimensions, q is the coefficient which defines the fuzziness of 
the cluster membership function, cj,k is the k-th dimension of 
cluster No. j, CHk(vsi) is the value of k-th characteristic of the 
vibration signal vsi, and vsi is the i-th vibration signal.

Calculations were performed until the termination 
condition, described by formula (11), was fulfilled:

  (11)

where µi,j is the membership degree of i-th signal to cluster No. 
j, cno is the number of clusters, lvs is the number of signals vs, 
t is the iteration number, and ε is the procedure termination 
condition parameter.

The termination condition parameter ε can have a value 
between 0 and 1. In the case of very complicated issues 
(coloured image processing) the used values range within 
0.01–0.03. However, applications of higher values can be found 
in the literature as well [43]. Therefore, in order to decrease the 
calculation time, 10% of the maximal value of the termination 
condition parameter was used in the conducted research. 

Identification of clusters was performed a few times during 
the tests, with the use of different values of cluster numbers 
and different fuzziness coefficients of the membership 
function, in order to define the noise of signals and their 
spatial arrangement. The identification process parameters 
were accepted only when the cardinality of the weakest 
detected cluster was not lower than 30% of the cardinality 
of the strongest one:

  (12)

where cj is the cluster No. j, Cident is the set of the identified clusters, 
card(cj) is the cardinality of cluster No. j, max(card(Cident)) is the 
maximum value of the cardinality among the clusters from set 
Cident, lvs is the number of signals vs, and µi,j is the membership 
degree of i-th signal to cluster No. j.

The values of starting parameters in the identification 
procedure are given in Table 2. They were used in the process 
of cluster determination in the learning set of signals. The 
cardinality values and coordinates of the obtained clusters 
are presented in Table 3.

IDENTIFICATION OF RELIABILITY 
STATES OF SHIPS

Finally, one cluster was identified for each PAS subgroup 
from the test set of signals, according to the FCM method. 
The identification procedure was identical to that described in 
the previous section by Eqs. (9-11). To fulfil the requirement 
that the identification process should be independent from 
the data under consideration, the termination condition 

Tab. 3. Cardinality and coordinates of the identified clusters

Tab. 2. Parameters of the cluster identification process

Cardinality Coordinates

Signals collected 
on system in 
ability state

8084.79 0.068;0.067;0.479;0.451;0.934

9707.2 0.025;0.024;0.481;0.457;0.956

Signals collected 
on rotational 

systems in 
inability state

1026.88 0.176;0.175;0.484;0.459;0.979

1827.12 0.078;0.077;0.482;0.458;0.983

Signals 
collected  

on systems:

Number  
of clusters  

cno

Fuzziness 
coefficient  

of the cluster 
membership 
function q

Procedure 
termination 

condition 
parameter ε

in ability 
state 2 3 0.1

in inability 
state 2 2 0.1
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parameter ε and the cluster fuzzifiers q were equal to the 
values given in Table 2. The number of clusters cno for each 
PAS subgroup was set equal to one. 

Next, the obtained clusters were analysed. The distance 
from the clusters identified for the set of signals collected 
on rotational systems being in ability state and the distance 
from the clusters identified for the set of signals collected on 
rotational systems being in inability state were calculated 
according to Eqs. (13,14).

  (13)

where ctstls is the cluster identified for the test set No. ls, das is 
the distance from clusters identified for signals collected 
on rotational systems in ability state, cano is the number of 
clusters identified for signals collected on rotational systems 
in ability state, chno is the number of dimensions, caj,k is the 
k-th dimension of the ability state cluster No. j, and ctstj,k is 
the k-th dimension of the test cluster No. j.

  (14)

where ctstls is the cluster identified for the test set No. ls, 
dins is the distance from clusters identified for signals collected 
on rotational systems in inability state, cinno is the number of 
clusters identified for signals collected on rotational systems 
in inability state, chno is the number of dimensions, cinj,k is 
the k-th dimension of the inability state cluster No. j, and 
ctstj,k is the k-th dimension of the test cluster No. j.

If the distance between the test cluster and the ability state 
clusters was larger than that between the test cluster and 
the inability state clusters, then the signals of the analysed 
test cluster were interpreted as signals of a rotational system 
being in inability state:

  (15)

where ctstls is the cluster identified for the test set No. ls, 
and dins and das  are the distances from clusters identified for 
signals collected on rotational systems in inability or ability 
state, respectively.

Otherwise, they were interpreted as signals of the 
rotational system being in ability state. Table 4 collates 
the results of the testing set analysis. The presented results 
indicate that the efficiency of the analysed method is higher 
for signals collected from rotational systems being in ability 
state rather than for those which are in inability state. 
Comparing the efficiency of the proposed method with 
earlier works by the authors [10, 11, 18, 27], it can be observed 
that the efficiency of ability state identification is slightly 
lower but still relatively high (higher than 90%), whereas 
the efficiency of inability state identification is significantly 
higher. The overall efficiency of identification of rotational 
system non-coaxiality is higher than 82%.

CONCLUSIONS

On the basis of the carried out tests it can be concluded that 
the distance of signals determined according to the normalized 
mutual correlation function and the recorded time-histories 
can be considered as a feature which unambiguously identifies 
the reliability state of a drive shaft line. The identification 
of rotational system non-coaxiality with the use of fuzzy 
clustering makes it possible to formulate a conclusion that 
the application of signal energy, signal mean power, abscissa 
of the signal square gravity centre, signal square variance, 
and normalized mutual signal correlation function for this 
purpose is justified, which has been proved by using the 
analysed method. Its efficiency is 80% for signals collected 
from rotational systems being in ability state, and 91% for 
systems being in inability state.

The novelty of the presented work involves developing 
a new vibration signal measurement method belonging to 
a relatively small group of methods which do not require 
fault feature frequency calculations. The method is a new 
approach to the considered issue, where the implementation 
of artificial intelligence techniques in the form of elements 
of the theory of fuzzy sets brings pretty high efficiency of 
ability state identification.

The proposed method can become a universal tool to be 
used for analysing propeller system vibrations. Nevertheless, 
further research in this area is planned. One of its directions 
will be analysing the influence of the cluster membership 
function shape on the efficiency of ability state identification.

Finally, it needs to be highlighted that mechanical 
properties of the propulsion system of a given vessel largely 
affect its operational state and, subsequently, the ability to 
perform reliable, timely, safe and efficient operational tasks. 
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