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ABSTRACT

Ship collision-avoidance trajectory planning aims at searching for a theoretical safe-critical trajectory in accordance 
with COLREGs and good seamanship. In this paper, a novel optimal trajectory planning based on hybrid genetic 
algorithm is presented for ship collision avoidance in the open sea. The proposed formulation is established based 
on the theory of the Multiple Genetic Algorithm (MPGA) and Nonlinear Programming, which not only overcomes 
the inherent deficiency of the Genetic Algorithm (GA) for premature convergence, but also guarantees the practicality 
and consistency of the optimal trajectory. Meanwhile, the encounter type as well as the obligation of collision avoidance 
is determined according to COLREGs, which is then considered as the restricted condition for the operation of population 
initialization. Finally, this trajectory planning model is evaluated with a set of test cases simulating various traffic 
scenarios to demonstrate the feasibility and superiority of the optimal trajectory. 
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INTRODUCTION

Currently, the navigation of ships is mainly depending 
on the navigators’ experience and techniques coupled with 
traditional practice of good seamanship. With the growing 
overload, safety issues associated with human errors 
contribute to about 75 percent of maritime accidents and 
lead to significant human, monetary and environmental 
loss [12]. Therefore, unmanned surface vehicles have been 
gaining attention in the past decade. For example, in 2005, 
e-navigation was an initiative started by IMO to increase the 
safety of navigation by using modern technology. In 2012, 
the European Union invested in the MUNIN (Maritime 
Unmanned Navigation through Intelligence in Networks) 
project to develop an autonomous dry bulk carrier [3]. In 2015, 
the Finnish Funding Agency approved the academic research 
project - Advanced Autonomous Waterborne Applications 

(AAWA). In 2016, Rolls-Royce published the white paper to 
announce their plan for the construction of autonomous 
ship [9].

One of the key points for the autonomous ship formulation 
is to construct the Decision Support System. And the main 
challenges are to find the optimum approaches in the aspects 
of the situational awareness and the trajectory planning. 
Currently, the technologies, in particular navigational 
instruments such as Automatic Identification System (AIS), 
Automatic Radar Plotting Aid (ARPA) and Electronic Chart 
Display and Information System (ECDIS) etc., have supplied 
a revolutionary platform for the former, thus the selecting of 
an appropriate algorithm for determining the safe trajectory 
becomes an urgent matter. In fact, the development of ship’s 
trajectory planning will be a gradual and iterative process 
subject to extensive testing and simulation. It is remarkable 
that the evasive manoeuvres in the optimal trajectory should 
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be based on an interpretation of common practice, which 
performs the process of collision avoidance with fewer course 
deviations. 

On topic of ship’s trajectory planning, a number of studies 
have been performed and reviewed [18, 26]. For example, 
the existing approaches cover the Sequential Gradient 
Restoration Algorithm [14], Recursive Algorithm [5], Fuzzy 
Set Theory [6-7], Knowledge-based System [11], the Interval 
Programming [2], the Maze Routing Algorithm [21], the Fast 
Marching Method [13], Cooperative Path Planning Algorithm 
[29], Distributed Decision Support Formulation [35], the 
Artificial Potential Field [34], the Fuzzy Logic based method 
[15-16], Genetic Algorithm [8, 31, 32], Evolutionary Algorithm 
[17, 22, 23, 24, 25, 28], the Ant Colony Algorithm [10, 30], 
the Danger Immune Algorithm [33]. Based on the methods, 
the approaches assume that ship’s trajectory planning can be 
categorized into two general groups, namely the deterministic 
and heuristic ones [26]. The deterministic approaches follow 
a set of rigorously defined steps to converge to the feasible 
solutions characterized by low computational time, but 
they might be incapable of solving complex situations. The 
heuristic approaches possess the ability to deal with complex 
environment, and it only searches inside a subspace of the 
search space for an optimal solution that satisfies the design 
requirements. However, the optimal evasive manoeuvre 
usually involves multiple course alterations which is not 
complaint with the common practice. In addition, the 
consistency of the heuristic approaches’ outputs cannot be 
guaranteed, which hinders its adoption for application.

In recent years, EA and GA have received great concern by 
scholars in the field of trajectory planning. They are both the 
subset of evolutionary computation and are mainly different 
in the evolutionary manners. In fact, EA is a next generation 
of GA. These techniques, based on the important principle 
of ‘survival of the fittest’, model some natural phenomena of 
genetic and phenotypic inheritance and Darwinian strife for 
survival. It is remarkable that GA is easy to combine with 
other algorithms to improve its optimal ability. However, the 
previous work based on GA mainly employed the Standard 
Genetic Algorithm (SGA) to search for a satisfactory trajectory 
for ship collision avoidance. Before the optimization, it needs 
to debug the parameters’ values for different genetic operators 
by experiment. 

In the light of the above given comments, this paper 
modifies the algorithm by combining the Multiple Genetic 
Algorithm (MPGA) and the Nonlinear Programming 
methodology. The idea of the MPGA is that several 
populations with different combinations of parameters’ value 
for genetic operators evolve simultaneously. Meanwhile, these 
populations are related to each other by the establishment 
of Immigrant Operator and Elite-individual Operator, which 
guarantee the information exchange and the cooperative 
work among populations. As a result, the MPGA solves the 
problem of parameters’ setting and is beneficial for improving 
the ability of local optimization. In order to further enhance 
the ability of local optimization and ensure the practicality 
and consistency of the optimal trajectory, the Nonlinear 

Programming methodology is incorporated into the MPGA 
at  the specific generation. Additionally, the proposed 
algorithm adopts a real number encoding method which 
is convenient for handling constraint conditions. All the 
simulations are based on the assumption that the own ship 
is the only manoeuvring party, and target ships keep their 
heading and speed.

This article is composed of seven sections. Section 1 briefly 
introduces the motivation behind the study. Section 2 explains 
the division of the encounter situation. Section 3 provides 
an overview of the SGA and MPGA. Section 4 illustrates the 
local optimal algorithm - Nonlinear Programming. Section 5 
describes this trajectory planning model-the hybrid genetic 
algorithm. Section 6 outlines the test cases used to discuss the 
feasibility and superiority of this trajectory planning model. 
This study is then summarized in section 7. 

JUDGMENT OF THE ENCOUNTER 
SITUATION

In fact, only when the encounter type and the obligation 
of  collision avoidance are classified, the calculation 
of trajectory planning for collision avoidance in marine 
traffic can be conducted. Each target ship is categorized into 
a particular encounter type based on its position, heading as 
well as its relative bearing with respect to the heading of the 
own ship (OS). 

The coordinate system XOY is established as shown in 
Fig. 1. Let’s assume the coordinate, speed and heading of the 
OS are (XO,YO), VO and φO, and the corresponding information 
of the target ship (TS) are (XT,YT), VT and φT, respectively. 
Therefore, the related parameters are calculated as follows.

The speed components of the OS and TS along the X and 
Y coordinate axes are determined by Eq. (1).

The relative speed VR of the TS with respect to the OS is 
determined by Eq. (2)-(4).
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Fig. 1. The space-fixed coordinate system XY
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The relative distance RT between the OS and the TS is 
calculated as:

2 2
T T O T O( ) ( )R X X Y Y= − + − (5)

The true bearing between each other are shown below.
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The relative bearing of the TS with respect to the OS is 
displayed below.

T O 360Tθ α ϕ= − ±  (8)

The Distance at the Closest Point of Approach between 
the ships is determined as:

T R TDCPA= cos( )R ϕ α π× − − (9)

As a result, the encounter situation can be deduced by the 
ship motion parameters, the orientation division of the TS 
as well as the identification indicators for specific encounter 
types. For example, first calculate the corresponding 
parameters in Fig. 1 and determine the region which the TS 
situates in by the parameter θT shown in Fig. 2. In fact, the 
orientation division of the TS is categorized into six sections 
(P1, P2, P3, P4, P5, P6) which is based on an interpretation 

of the COLREGs, navigation habits and good seamanship. 
The corresponding values of the bearing lines taken clockwise 
are [π/8,π/2,5π/8,11π/8,3π/2,15π/8] , respectively, which are 
mainly based on the provision of light’s arc of horizon defined 
in COLREGs, except that the region of P1 is a little larger than 
the visibility of the masthead light defined in Annex I 9(a) 
of the COLREGs. This is because the encounter situation is 
classified from the point of view of coordination collision 
avoidance as well as the reduction of uncertainties between 
head-on and other situations [27]. And, the descriptions 
of every possible encounter type is listed in Tab 1.
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Fig. 2. Orientation division of the TS (the OS is situated at the centre)

Tab. 1. Abbreviations and brief descriptions of the encounter types

Abbreviations Description

HO Head-on encounter when OS and TS give way 
simultaneously

OT1 OS is overtaken by TS when TS gives way
OT2 TS is overtaken by OS when OS gives way
CR1 Crossing encounter when TS gives way
CR2 Crossing encounter when OS gives way
SF Safe encounter

Then, the heading of the TS, φT, is roughly divided to judge 
the possible encounter type. As the target ship can be situated 
in different regions with respect to the OS, the categorizing 
parts are different as shown in Fig. 2. 

Finally, the encounter type will be determined based on 
the combination of the mentioned TS’s relative bearing, 
the TS’s heading, together with the Distance at the Closest 
Point of Approach (DCPA). The details are listed in Tab. 2. 
As a matter of fact, the collision risk borrows the concept 
of ship domain by comparing the DCPA with the radius 
of the ship’s domain, and Ds is the radius of ship domain 
which is a statistical result in the open sea [19]. Usually, the 
applicable distance for a specific encounter is mainly affected 
by the visibility distance of lights measured by sight. By the 
application of modern navigational aids and the principles 
of good seamanship, the applicable distance is larger. 



POLISH MARITIME RESEARCH, No 3/2018 17

Tab. 2. The identification indicators for specific encounter type (DCPA<Ds)

HO CR1 CR2 OT1 OT2
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STRUCTURE OF THE GENETIC 
ALGORITHM

Genetic algorithm is a series of search algorithms 
and optimization technologies in terms of the principles 
of natural selection inspired by Darwin’s theory of evolution 
(the survival of the fittest). In GA-based approaches, 
the trajectories are represented as chromosomes and GA 
features a group of candidate solutions (chromosomes) on the 
response surface. Through genetic operations such as natural 
selection, recombination and mutation etc., the trajectories 
with better fitness are found.

STANDARD GENETIC ALGORITHM

The previous work using GA in the field of trajectory 
planning is mainly based on the Standard Genetic Algorithm 
(SGA), which was first presented by Goldberg in 1989 [4]. And 
the optimization procedure is mainly handled by three kinds 
of genetic operators (selection, crossover, mutation) within 
a single population. The flowchart is given in Fig. 3 together 
with some descriptions shown below. SGA can be defined by 
a formula with eight parameters:

0( , , , , , , , )c mSGA C P M E p p Tφ= (10)

Where C is the individual encoding method, P0 - the initial 
population, M – the population size, E – the fitness evaluation, 
Φ – the selection operator, pc – the crossover operator, pm – 
the mutation operator, and T – the termination condition.
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Fig. 3. The flowchart of SGA

MULTIPLE POPULATION GENETIC ALGORITHM

One of the important configurations in SGA is to determine 
the parameters’ values for genetic operators including the 
crossover rate pc and the mutation rate pm, which both have 
a great influence on GA’s performance. In fact, the previous 
study usually adopts experiments to determine the parameters 
for genetic operators when applying SGA for ship’s trajectory 
planning. As a result, it is necessary to dynamically adjust 
the values of genetic operators to ensure its optimal ability 
for different traffic scenarios. 

Based on the above analysis, the MPGA is adopted 
and its structure is presented in Fig. 4. The MPGA breaks 
through the simple population searching frame of SGA, 
and introduces multiple populations with different 
combinations of parameters’ values to evolve simultaneously. 
The communication within these populations are closely 
interwoven by the establishment of an Immigrant Operator, 
and the main idea is that the worst chromosome in any 
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population is replaced by the best chromosome in the 
adjacent population to achieve co-evolution. Besides, by 
the  establishment of an Elite-individual Operator, the 
individuals with higher fitness will be chosen to enter the elite 
population so that the superior individuals will not be lost 
and make it possible to find the global optimal solution. 
Furthermore, the elite population does not do selection, 
crossover or mutation operation for ensuring the integrity 
of the best individuals.
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operator

SGA

EliteInduvidual 
operator

Immigrant 
operator

EliteInduvidual 
operator

Immigrant 
operator

SGA

EliteInduvidual 
operator
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SGA …

Fig. 4. The flowchart of MPGA

NONLINEAR OPTIMIZATION METHOD

Nonlinear Programming is a mathematical programming 
method whose objective function is nonlinear or some of its 
constraints have nonlinear relationship. It is an important 
branch of operations research which has wide applications 
in the field of economics, engineering optimization, 
management science etc. [1]. As Nonlinear Programming 
has strong compatibility and robustness in the aspects 
of local optimization, this work integrates the Nonlinear 
Programming with MPGA to maintain a balance in the ability 
of global and local optimization. In fact, the software ‘Matlab’ 
provides the multivariable binding optimization function 
‘fmincon’, which attempts to find a constrained minimum 
of a scalar function of several variables starting at an initial 
estimate shown below. The basic thought is to search the 
optimal solution from initial feasible solution, which finds 
another better one by iteration method based on specific 
constraints until the optimal one is fond.

( nonlcon ops)0[x, fval] = fmincon f(x),x ,A,b,Aeq,beq,lb,ub, (11)

min ( )
( ) 0
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eq eq
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 ≤
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Where x is the solution returned as a real vector or array, 
and ‘fval’ is the objective function value at solution. As for 

the input parameters, f(x) is the objective function, xo is the 
initial point for x. Linear constraint matrices A and Aeq, and 
their corresponding vectors b and beq, can be sparse or dense. 
The boundary of x is lb to ub. And ‘nonlcon’ contains the 
nonlinear equality constraints ceq(x)=0 and the nonlinear 
inequality constraints c(x)≤0, which the objective function 
attempts to satisfy. Finally, ‘ops’ is the optimization options, 
there are four different optimal algorithms including ‘Interior-
point algorithm’, ‘Active-set algorithm’, ‘Sqp algorithm’ 
and ‘Turst-region-reflective algorithm’. It is remarkable that 
‘Interior-point algorithm’ handles large, sparse problems, 
as well as small dense problems; ‘Sqp’ one satisfies bounds 
at all iterations and the algorithm can recover from NaN 
or Inf results; ‘Active-set’ one can take large steps, which 
adds speed; Trust-region-reflective’ one requires to provide 
a gradient, and allows for only bounds or linear equality 
constraints, but not both.

MODELLING OF HYBRID GENETIC 
ALGORITHM IN SHIP’S TRAJECTORY 

PLANNING
In this paper, a novel hybrid genetic algorithm is proposed 

for ship’s trajectory planning. First, the encounter type is 
determined according to Section 2. Based on the result, 
a heuristic method is constructed for the population 
initialization. Then, by the establishment of the Immigrant 
Operator and Elite-individual Operator, several populations 
with different combinations of the parameters’ value for 
genetic operators evolve simultaneously (MPGA). Meanwhile, 
the adoption of Nonlinear Programming helps enhance the 
ability of GA in local optimization, and guarantee the optimal 
solutions satisfy the requirement of practicality with fewer 
course deviations as well as the consistency. This technique 
is illustratedin Fig. 5.
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Fig. 5. The flowchart of hybrid genetic algorithm 
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THE ENCODING TECHNIQUE

The encoding technique, the length of code and search 
space have an influential effect on the optimal speed of the 
algorithm. As a consequence, the paper adopts the real 
number encoding method on the basis of previous research, 
which decreases the dimension of solution space and sets the 
stage for handling constraint conditions in the Nonlinear 
Programming. Each chromosome of the population 
constructed by a series of genes represents an intact trajectory 
shown in Fig. 6, and each gene represents the heading 
variation angle between the initial heading and the heading 
at this turning point.

φ1 φ2 φ3 …… φn

Fig. 6. The heading variation angle at different turning points

POPULATION INITIALIZATION

Compared with random population initialization in 
the SGA for ship’s trajectory planning, this paper adopts 
a heuristic method to generate initial populations. The 
idea is to set up constraints in the function of population 
initialization in accordance with the encounter type and good 
seamanship. First, to determine the obligation of collision 
avoidance between ships so that the direction of course 
changing is decided. If φ1>0, the obligated ship turns right, 
otherwise, the obligated ship turns left. Then, considering the 
intention of evasive manoeuvre should be obvious according 
to COLREGs, the value of first gene should exceed 15° [20]. 
And the deviation of adjacent genes should be less than π/3. 
It’s remarkable that the original gene does not do genetic 
operation in order to satisfy the above-mentioned constraints. 
In fact, this heuristic method lowers the computational cost in 
the optimal process. The constraints are calculated as follows:

1

1 1 1

/12 6
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FITNESS FUNCTION MODEL

The fitness evaluation of a chromosome measures the cost 
of a trajectory, which mainly accommodates three different 
optimal goals: 1) the safety requirements; 2) less distance 
traveled; 3) the restoration of navigational state. Therefore, 
we have selected a linear combination of these factors.
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Where R1, R2, R3 are two-dimensional coordinate arrays 
that record the original trajectory of the OS, the trajectory 
of the TS and the optimal trajectory of the OS. De is the 
destination deviation between the optimal trajectory and 
the original trajectory of the OS. Dt is the minimum distance 
during the movement between the OS and TS. T is the time 
step. The weighting coefficients of α and β indicate the risk of 
collision and the deviation between the optimal trajectory and 
the original trajectory of the OS. And γ is the penalty factor.

GENETIC OPERATION

Selection operator: this paper adopts roulette wheel 
selection for real number encoding method.

1

i
i N

j
j

Fp
F

=

=

∑
 (17)

Where iF is the fitness value of chromosome i and N is 
the total number of chromosomes for each population.

Crossover operator: this paper applies one-point crossover 
for real number encoding shown as follows:

(1 )kj kj lja a b a b= − + (18)

(1 )lj lj kja a b a b= − + (19)

Where akj is the value of j’-th gene in the chromosome k; 
alj – the value of j’-th gene in the chromosome l; b - a random 
number between 0 and 1.

Mutation operator: this paper adopts Gauss mutation 
operator which generates a random number conforming 
to normal distribution to replace the value of specific gene. 

(0.5*( ( ,1) ( , 2)),

( ( , 2) ( ,1)) / 6)
ija normrnd bound i bound i
bound i bound i
= +

−
(20)

Where bound (i, 1) is the lower limit of i’-th gene and bound 
(i, 2) is the upper limit of i’-th gene; the order of ‘normrnd’ 
in the Matlab generates random numbers from the normal 
distribution with mean parameter and standard deviation.
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NONLINEAR OPTIMIZATION

The application of Nonlinear Programming is used to 
further tap the potential in the ability of local optimization 
and improve the superiority of the final solution. It is 
applied every 50 generations and the detailed constraints 
are described as follows:

1 2 n+ + 0
[ 30 ,30 ]
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e
s t
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c x D D
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(21)

SIMULATION AND ANALYSIS

Several typical traffic scenarios are adopted for simulation. 
The encounter type and the obligation are determined based 
on Fig. 2 and corresponding indicators given in Tab. 2. 
The simulation results are primarily intended to evaluate 
the optimal solutions in the aspects of the consistency and 
practicality. It is noticeable that the set of test cases are mainly 
based on target ships approaching the OS from a range 
of directions. And Tab. 3 shows the initial configuration of 
the traffic scenarios for all test cases. 
Tab. 3. Ship encounter information for different traffic scenarios

Parameters Head-on Crossing Overtaking Multi-ship
Position 

of OS(km) (0,0) (0,0) (0,0) (0,0)

Speed of OS(m/s) 7.5 7.5 11 7.5
Course of OS(°) 45 45 45 45

Position 
of TS(km) (10,10) (14,6) (3,3) (10,10)/(14,6)

Speed of TS(m/s) 5 7.5 5 5/7.5

Course of TS(°) 225 270 45 225
270

Let’s assume that the own ship’s speed is constant. And 
the OS only relies on changing its course to perform the 
process of collision avoidance, which is complaint with 
Rule 8 of the COLREGs for action to avoid a close-quarter 
situation. After a comprehensive consideration of the traffic 
scenarios for collision avoidance, the relevant parameters 
of the algorithm is set as follows: a population size of 3, 
a group size of 100, the termination condition is 100, and 
the parameters α and β are equal to 0.6 and 0.4, respectively. 
In order to contrast the performance of the optimal trajectory, 
the simulation tests respectively performed by the hybrid 
genetic algorithm and SGA, adopt the same number 
of chromosomes. The hybrid genetic algorithm is ran five 
times in every traffic scenario. The optimal solutions for 
different test cases are respectively recorded in Tab. 4-7, which 
remain unchanged for the same input data. The corresponding 
curves of course variation, optimal trajectory and distance 

variation are shown in Fig. 7-9 (head-on), Fig.  10-12 
(crossing), Fig. 13-15 (overtaking) and Fig. 16-18 (multi-
target), accordingly. The evolutionary process is described 
in Fig. 19. In the trajectory curves, black line and black dash 
dot line respectively represent the optimal trajectory of the OS 
obtained by using the proposed algorithm and SGA, blue line 
indicates the trajectory of the TS, red dotted line indicates the 
original trajectory of the OS. The information about DCPA 
and the corresponding time (TCPA) are clearly marked in 
the distance variation curves between OS and TS.

HEAD-ON SITUATION

In this encounter situation, the TS comes towards the 
OS from the region P1, and the corresponding parameters 
meets the requirement for HO given in Tab. 1. Meanwhile, 
the ship domain will be violated with the approaching of the 
TS. As a consequence, this encounter type can be interpreted 
by Rule 14 of the COLREGs, which indicates that the ships 
should pass each other port to port. It is remarkable that 
the evasive manoeuvre is conducted from the perspective 
of the OS. And the action taken by the OS guarantees the 
safety though the TS does not take any action. The course 
variation, the optimal trajectory and distance variation are 
presented in Fig. 7-Fig. 9.
Tab.4. Optimal solutions in head-on situation

Sequence φ1(°) φ2(°) φ3(°) φ4(°) φ5(°)
Trajectory1 20 14 14 14 -10
Trajectory2 20 14 14 14 -10
Trajectory3 20 14 14 14 -10
Trajectory4 20 14 14 14 -10
Trajectory5 20 14 14 14 -10

Continuation of Tab. 4: Optimal solutions in head-on situation

Sequence φ6(°) φ7(°) φ8(°) φ9(°) φ10(°)

Trajectory1 -10 -10 -10 -10 -10
Trajectory2 -10 -10 -10 -10 -9
Trajectory3 -10 -10 -10 -10 -10
Trajectory4 -10 -10 -10 -10 -10
Trajectory5 -10 -10 -10 -10 -9
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Fig. 9. Distance variation curve in head-on situation

CROSSING SITUATION

In this encounter situation, the TS comes towards OS from 
region P2. Similarly, this encounter type allows to evaluate 
the collision risk interpreting Rule 15 of the COLREGs for 
a crossing situation. It is deemed practical to pass TS on its 
stern. The corresponding course variation, optimal trajectory 
and distance variation are shown in Fig. 10-Fig. 12.
Tab. 5. Optimal solutions in crossing situation

Sequence φ1(°) φ2(°) φ3(°) φ4(°) φ5(°)
Trajectory1 19 15 15 15 -10
Trajectory2 19 15 15 15 -10
Trajectory3 19 15 15 15 -10
Trajectory4 19 15 15 15 -10
Trajectory5 19 15 15 15 -10

Continuation of Tab. 5: Optimal solutions in crossing situation

Sequence φ6(°) φ7(°) φ8(°) φ9(°) φ10(°)
Trajectory1 -10 -10 -10 -10 -10
Trajectory2 -10 -10 -10 -10 -10
Trajectory3 -10 -10 -10 -10 -10
Trajectory4 -10 -10 -10 -10 -10
Trajectory5 -10 -10 -10 -10 -10
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 Fig. 10. The course variation of the optimal trajectory
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 Fig. 11. Optimal trajectory in crossing situation
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Fig. 12. Distance variation curve in crossing situation

OVERTAKING

In this situation, the OS overtakes the TS from the stern 
of the target when the TS is situated in region P1. The aim 
of this test is to evaluate the method’s interpretation of Rule 13 
of the COLREGs that the OS should give way to the overtaken 
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ship. Similarly to head-on and crossing simulation, the key 
variable curves are described in Fig. 13-Fig.15.
Tab. 6. Optimal solutions in overtaking situation

Sequence φ1(°) φ2(°) φ3(°) φ4(°) φ5(°)
Trajectory1 22 18 12 -7 -7
Trajectory2 22 18 12 -7 -7
Trajectory3 22 18 12 -7 -7
Trajectory4 22 18 12 -7 -7
Trajectory5 22 18 12 -7 -7

Continuation of Tab. 6: Optimal solutions in overtaking situation

Sequence φ6(°) φ7(°) φ8(°) φ9(°) φ10(°)

Trajectory1 -7 -7 -7 -7 -7
Trajectory2 -7 -7 -7 -7 -7
Trajectory3 -7 -7 -7 -7 -8
Trajectory4 -7 -7 -7 -7 -8
Trajectory5 -7 -7 -7 -7 -7
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 Fig. 13. The course variation of the optimal trajectory
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 Fig. 14. Optimal trajectory in overtaking situation
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Fig. 15. Distance variation curve in overtaking situation

MULTI-SHIP ENCOUNTER SITUATION

In this situation, the OS is in a complex condition which 
faces the encounter types of head-on and crossing at the 
same time. As there is no risk between target ships shown 
in Fig. 13, the OS is the only manoeuvring party to perform 
evasive actions. Therefore, the overall output for the multi-
ship encounter situation is illustrated in Fig. 16 - Fig.18.
Tab. 7. Optimal solutions in multi-ship encounter situation

Sequence φ1(°) φ2(°) φ3(°) φ4(°) φ5(°)
Trajectory1 21 14 14 14 -10
Trajectory2 21 14 14 14 -10
Trajectory3 21 14 14 14 -10
Trajectory4 21 14 14 14 -10
Trajectory5 21 14 14 14 -10

Continuation of Tab. 7: Optimal solutions in multi-ship encounter situation

Sequence φ6(°) φ7(°) φ8(°) φ9(°) φ10(°)
Trajectory1 -10 -10 -10 -10 -10
Trajectory2 -10 -10 -10 -10 -10
Trajectory3 -10 -10 -10 -10 -10
Trajectory4 -10 -10 -10 -10 -10
Trajectory5 -10 -10 -10 -10 -10
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 Fig. 16. The course variation of the optimal trajectory
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Fig. 17. Optimal trajectory in multi-ship encounter situation
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Fig. 18 Distance variation curve in multi-ship encounter situation

EVOLUTIONARY PROCESS

In order to verify the superiority, we run the hybrid genetic 
algorithm and SGA with the same number of chromosomes 
to compare as to fitness value. The convergence process in 
different traffic scenarios is shown in Fig. 19.
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Fig. 19. The evolutionary process for calculation of fitness value

DISCUSSION

From the simulation results, some conclusions can be 
drawn. Firstly, the minimum distance between ships (DCPA) 
in different traffic scenarios exceeds the safety criterion-radius 
of ship domain (Ds), which meets the safety requirement in the 
fitness function model. Furthermore, the uniform variation 
in the relative distance as well as the closeness between DCPA 
and the radius of ship domain, reflected in the total length of 
optimal trajectory, is relatively short, which guarantees the 
distance requirement. Meanwhile, the optimal trajectories in 
different traffic scenarios contain intact evasive manoeuvres, 
including the action of collision avoidance and the restoration 
to the original trajectory. Additionally, the consistency of the 
evasive manoeuvres is mainly reflected in two aspects. One is 
that the obligation is certain as the encounter type is derived 
from COLREGs whether from the position of the OS or the 
TS, the other is that the optimal solutions presented in each 
Table (Tab. 4-7) are nearly the same, and the corresponding 
optimal trajectories and distance variation curves almost 
overlap. More importantly, it is clear in the course variation 
curves that the evasive manoeuvres simulated by the hybrid 
genetic algorithm is performed with fewer course deviations 
even when multiple ships are involved, compared with the 
manoeuvres by SGA. This makes the optimal solution 
more suitable for the common practice of navigators. As 
for the searching ability, the fitness values in Fig. 19 reflects 
the better convergence effect by the hybrid genetic algorithm. 
Meanwhile, there is an obvious leap in the 50th generation 
which reflects the influence of the Nonlinear Programming 
on the ability of local optimization. As a result, we may draw 
the conclusion that the output of the hybrid genetic algorithm 
is improved in the aspects of consistency and practicality than 
that of SGA, i.e. demonstrates the feasibility and superiority 
of the hybrid genetic algorithm.

CONCLUSION

A novel trajectory planning based on hybrid genetic 
algorithm has been presented. And several traffic scenarios 
have been set up for verifying the feasibility and superiority 
of this proposed algorithm. By comparing the results of 
the hybrid genetic algorithm and SGA in the aspect of the 
optimal trajectory, course variation, distance variation as 
well as the evolutionary process, we can conclude that the 
hybrid genetic algorithm this hybrid genetic algorithm greatly 
improves the searching ability and guarantees the optimal 
solution unchanged for the same input data. Moreover, the 
final solution with fewer course deviations is more suitable 
for the practical application.

However, this paper does not consider the influence of 
ship manoeuvrability as it only discuss the easy multi-ship 
encounter situation. Therefore, further research plan is aimed 
at solving the above mentioned issues and establishing the 
feedback mechanism for monitoring the ship’s operational 
state, which helps to form an intact decision support system. 
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Meanwhile, we should try to apply Pareto-based multi-
objective optimization method and other selection operators 
for improving the efficiency of the algorithm.
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