
POLISH MARITIME RESEARCH, No 2/2016 91

POLISH MARITIME RESEARCH 2 (90) 2016 Vol. 23; pp. 91-98
10.1515/pomr-2016-0025

DEPTH IMAGES FILTERING IN DISTRIBUTED STREAMING

Tomasz Dziubich, Assoc. Prof.
Julian Szymański, Assoc. Prof.
Adam Brzeski, M. Sc.
Jan Cychnerski, M. Sc.
Waldemar Korłub, M. Sc.
Gdańsk University of Technology, Poland

ABSTRACT

In this paper, we propose a distributed system for point cloud processing and transferring them via computer network
regarding to effectiveness-related requirements. We discuss the comparison of point cloud filters focusing on their usage
for streaming optimization. For the filtering step of the stream pipeline processing we evaluate four filters: Voxel Grid,
Radial Outliner Remover, Statistical Outlier Removal and Pass Through. For each of the filters we perform a series of
tests for evaluating the impact on the point cloud size and transmitting frequency (analysed for various fps ratio). We
present results of the optimization process used for point cloud consolidation in a distributed environment. We describe
the processing of the point clouds before and after the transmission. Pre- and post-processing allow the user to send the
cloud via network without any delays. The proposed pre-processing compression of the cloud and the post-processing
reconstruction of it are focused on assuring that the end-user application obtains the cloud with a given precision.

Keywords: point cloud processing, distributed system, parallel processing, depth image filtering

INTRODUCTION

Underwater (UW) imagery presents several challenging
problems for automated remote target recognition. One
of them is the development of real-time data processing
methods. We can divide these methods into two groups. The
first of them includes methods running in a local execution
environment (located on an autonomous device/object/
vehicle) and the second group include techniques that operate
in a remote processing centre on locally acquired data (so
called client-server model). In both cases, the researchers
focus on providing real-time services for underwater facilities
products and delivering an efficient and high-performance
parallel computation platform.

Nowadays LIDAR sensors in autonomous inspection of UW
activities are becoming increasingly popular. This technique
often supports acoustic signals analysis which is still a dominant
technique in the UW solutions. The combination of both
methods is called a multi-modal approach. It assures better
measurement precision, reduction in risks, economic benefits
and superior data products compared to conventional means.

An example of such a solution is an underwater camera
system with a laser line source to measure seafloor features at a
millimetre scale [1]. The quality of underwater photography is
limited by the visibility of the water column. In real underwater
environments there are always floating particles that scatter

the light. As a result, photographic images taken under such
conditions tend to be blurred. Consequently, series of image
filters and transformation need to be applied in order to achieve
better quality. Measurements show, that the error rate of this
solution is less than 1.5 mm when the target is scanned from
a distance of 1 m. One of the disadvantages of the described
method is low computation efficiency (ca. 5 fps). System
performance decreases if we apply additional image filters.

Another example is the DP2TM 3D LiDAR built-in the
Marlin Autonomous Underwater Vehicle for detection and
localization of structural changes vs. reference model [8]. This
device has better parameters than the solution mentioned
above (performance of 3D imaging ca.10 fps, higher resolution
> 0.040 Mpx, and different range > 3Km). It can also operate
in degraded visual environments and requires dual scans for
100% data validation. This solution was deployed in water
depths of 50 - 3,000 meters with measurements distances
varying from 6 - 90 meters.

3D LiDAR can not only distinguish between shapes and
objects, but detects moving objects as well. This means that
it is possible to acquire data of moving seafloor hydrothermal
plumes or oil spills. 10fps real-time detection enables even
measurement of the space between a number of objects and
their speed. Another characteristic of the 3D measurement is
the ability to see data in a 3D environment, from a head-on
perspective, the bird’s eye view or any other.

POLISH MARITIME RESEARCH, No 2/201692

In [11] authors present a methodology that utilizes visual
cues in multi-modal optical and sonar images, namely, the
occluding contours of various scene objects that can be
detected and matched more robustly than point features.
Unfortunately, the use of this method in AUV is possible in
very limited range due to computing power.

Data obtained from LIDARs can be stored using data
structures referred to as Point Clouds, which allows storing
points along with additional information. It can also store
colour or size, depending on the implementation of the
structure. The points stored in the Point Clouds can be very
often considered as not connected voxels (three-dimensional
pixels) and they can be used for objects visualization.

Rusu and Cousins [10] have called point cloud a high
quality representation of the world. Generally, this statement
referred to clouds obtained from LIDAR scanners, but it can
be used to describe any point cloud received from a depth
sensor, which is able to acquire data of the observed world.
Obviously, the scale of the represented view of the world
may differ. One of listed in [10] cloud advantages is the fact,
that space robots will “see” the world in 3D in the future.
Theoretically, it is already possible with PCL. In [3, 14] authors
managed to represent an entire city using a single point cloud.
For example, an aerial scan with a spatial resolution of 7 cm
of the city of Munich, roughly containing 200.000 individual
buildings and being spread over about 300 km2. In this case
the total raw data size consists of 61*109 points (approx.
180 TB) [14]. In the case of point-cloud shape detection for
city-modelling, the large dataset needs to be processed in
parallel. It can be assumed, that each building consists of only
6 individual faces with a total surface area of approximately
1000 m2, resulting in about 32000 points per primitive shape.
One of the problems of the merging process for providing the
point cloud data (PCD) is to assure high performance of the
system, especially in parallel and distributed environments.

To process huge amount of data we need to ensure high
computing power with a stable level of energy consumption.
We can achieve this aim using a pipeline model in a parallel
computer system. In real-time 3D data acquisition systems
with motion detection and recognition feature an efficient
processing pipeline has to be tailored to used hardware.
Currently, using a multi-core and many-core computer
architectures as NVidia CUDA and Intel Xeon Phi real-time
data processing is most common. However software for these
architecture has to be very sophisticated.

In this paper we propose a distributed pipeline used for
point cloud processing and transferring them using computer
network that fulfil requirements related to their effectiveness.

PCD DATA FLOW

Point cloud processing pipeline can be divided into the
following steps shown in Fig. 1:

• Cloud acquisition (depth image obtaining, point
cloud building).

• Pre-processing (filtering – cutting off, reducing the
noise and the point cloud size, compression).

• Network transmission.

After that, the second node also has to process the frame.
The second part of the pipeline is the same as on the first
(input) machine, but the acquisition is different:

• Depth image obtaining – getting a depth image from
local sensor and from remote sensor via network,

• Point cloud building – depth image to point cloud
conversion (optional).

Fig. 1. Dataflow in parallel point clouds processing

Existing systems often focus on a part of the actual problem,
instead of all of the sub-problems related to the processing.
In this paper we divide those problems into several parts.
These groups can be considered as potential stages mapped
from processing pipeline: the cloud is grabbed and then pre-
processed – filtered so that only interesting points can be
found in the cloud. Then, such cloud should be optionally
compressed, if the first stage is insufficient. Next the cloud
is sent via network.

The last stage – the reconstruction is the opposite stage to
the filtering and compression. The networking stage should
be transparent for the end user, the cloud should be visually
(almost) identical with the data received from the sensor
(it does not apply to e.g. background subtraction filters).

POLISH MARITIME RESEARCH, No 2/2016 93

Hence, if during pre-processing any significant or necessary
points were removed, reconstruction is required. Otherwise,
this step may be skipped.

Generally, filtering is needed almost in all applications
that employ depth cameras. In our experiments we used the
Kinect sensor as a depth camera. The error of information
provided by Kinect increases with an object distance from the
sensor. What is more, the factor of this growth is square [13].

For some projects the accuracy of depth image data may be
crucial. For the expected solution described in this paper the
accuracy is not so important, since it can be assumed, that the
end-user (e.g. application that gets point clouds provided by the
system) may use their own filters in order to increase accuracy.
A comparison of depth sensors were provided e.g. in [4].

Thumbunpeng et al. [12] were trying to use depth camera
to measure the proportion between burn area of human body
and the body surface. They wanted to provide an alternative
method for eye estimation, since the quality of the estimation
highly influences the treatment efficiency (patients need to
get the proper doses of water depending on calculated area).
They decided to use spatial filters in order to reduce camera
error and distortions, and proved, that the proposed solution
increases the quality of cloud surface significantly.

In literature, some authors also design dedicated filtering
and compression algorithms. E.g. in [2], authors proposed
Enhanced Vector Quantization (EVQ) algorithm, an
enhanced version of standard EQ algorithm. EVQ reduces
disadvantages of similar approaches and is easy to use,
requiring only to set the compression level. The goal of this
work was to create an appropriate model for building a mesh.

In [9] authors focus on point cloud filtering as a pre-
processing stage in robotics learning. They decided to use
Growing Neural Gas network, and to prove that this method
can be more effective than e.g. Voxel Grid filter.

Wenming et al. proposed their own algorithm for point
cloud processing [15], dedicated for cloud de-noising. As in
many algorithms, they proposed to divide the cloud into
a grid and then de-noise it using neighbourhood distance
calculations. As they report this algorithm is very simple
and easy to implement. In comparison to bilateral mesh
de-noising algorithm, the proposed one seems to be much
more promising.

In [5] authors propose an algorithm for filtering LiDAR
point clouds. Their main goal was to remove any objects
like buildings, leaving territory malformations intact.
Interestingly, the algorithm works also on mountainous
territories – all buildings are removed while the territory
remains intact. That would allow to create e.g. physical maps.
Despite this algorithm was invented for LiDAR point clouds
to filter territory surfaces, that would be used also in other
fields – e.g. in de-noising of general surfaces of observed
objects, but this idea would require further research.

In [7] a different approach to surface de-noising has been
shown. Since the goal of a large number of algorithms is
to make surfaces smooth, the authors attempt to preserve
features of the cloud. This may be important for creating
e.g. point clouds of some historical objects with carved
details, like inscriptions. In order to achieve this, they create

smooth surfaces using standard algorithms, additionally
preserving extra data like high vectors – distance between
old and smoothed position. Then, vectors of neighbouring
points are compared and new positions are calculated. Despite
some limitations of the algorithm, the authors achieved the
expected result. Nevertheless, this approach may not be
relevant in the presented work, since probably the smallest
details will be lost in order to perform optimization.

FILTERS IN POINT CLOUD PROCESSING

There exists a wide range of filters. The most popular are
listed below:

• Pass Through – enables cutting off point cloud parts,
• Voxel Grid – allows to replace a set points with

a mean point,
• Points projecting – allows to project points onto e.g.

plane,
• Indices extracting – uses segmentation algorithm

to extract inliers,
• Conditional removal – removes points which does

not meet given conditions,
• Statistical Outlier Removal – deletes outliers,
• Radius Outlier Removal – deletes outliers,
• Spatial filter – performs a cloud smoothing,
• Growing Neural Gas network (GNG) – allows to

down sample the cloud (similarly to Voxel Grid),
• Enhanced Vector Quantization (EVQ) – allows to

down sample the cloud.
Technically, the filters that do not perform down sampling

or removing points should be rejected, since they do not
resolve the problem addressed in the paper. Moreover, filters
should be widely available and allow to process clouds in
real-time. The first condition makes indices extracting and
spatial filters not useful. GNG and EVQ algorithms seem
to be promising, but they are not widely available, since
they are novel procedures. It makes them hard to use and to
implement in an optimized version. What is more, the results
they produce are very similar to Voxel Grid filter. Considering
the fact that they may need some kind of initialization [5]
(which depreciates their use in changing environment) and
that the better results may influence the computational time
[9], only Voxel Grid algorithm will be considered from this
group. Another group of filters are Outlier Removal filters.
They can increase the quality of the cloud reducing their
size, so they have to be taken into consideration. What’s
more, they are well known and easy to use, so they set up
good baseline for evaluation. They do not require any kind
of initialization (but may need one additional iteration for
calculating e.g. some mean values). The last group enables
removal points under given conditions, and here Conditional
Removal filter seems be very promising. However, Conditional
Removal is a general concept and typically it is based on
a Pass Through filter (which may be considered a special case
of Conditional Removal). Thus we select from this group the
Pass Through filter for testing. Some of the filters are not
useful for optimization purposes, while alternative ones have
other disadvantages.

POLISH MARITIME RESEARCH, No 2/201694

Our review allows us to select four most important, popular
and promising filters that have been chosen for evaluation,
namely: Pass Through, Voxel Grid, Statistical and Radial
Outlier Removal.

Voxel, which is a group of cube units distributed in the
centre of the orthogonal grid, can be understood as the
extension of two-dimensional pixel into three-dimensional
space. The point cloud data generated by a computer vision
method is usually density-uneven. It samples by the voxel grid
method and creates 3D voxel grid for the input point cloud
data, with centroid of all the points in voxel to approximate
the other points, all of which can not only reduce the point
cloud data, but also maintain the shape characteristics of
point cloud and more accurate approximation of the surface.
All points in the voxel are expressed with a centroid, then:

where S is the total number of discrete points in voxel V,
x, y, z are dimensions of voxel (referred to as leaf).

The PassThrough filter removes points that lie outside
a given range for the specified user-given dimension. For
example, if all points laying farther than 3 m away have to be
discarded, the filter would have to be run on the Z coordinate
with a range of [0; 3 m]. This filter can be useful to discard
unneeded objects from the cloud, but a different reference
frame may have to be adapted if the default one (relative to
the sensor) is inappropriate. For example, filtering on the Y
value to remove all points not laying on a given surface will
yield unwanted results if the camera is at an odd angle. So
we define visibility range as R =<0; zmax>, where zmax is the
maximal depth of voxel from the camera plan.

Outliers are single points that are spread through the
cloud. They are the product of the sensor’s inaccuracy, which
inappropriately registers measurements from empty space.
Outliers are considered undesired noise, because they may
introduce calculation errors, e.g. in normal estimation. Hence,
removing the points from the cloud will not only make the
computations faster, but also more precise. The radius-based
outlier removal is the simplest method of this type. First,
search radius r must be specified as well as the minimum
number of neighbours K that a point should have to avoid
being labelled as outlier. The algorithm will then iterate
through all of the points (which can be extremely slow in if
the cloud is big) and perform the check: if less than that the
given number of the points are found within the radius, the
point is removed.

The statistical outlier removal process is a more advanced
method. First, for every point the mean distance to its K
neighbours is computed. Then, assuming that the result is
a Gaussian distribution with a mean μ and a standard deviation
σ, all points with mean distances falling out of the global mean
plus deviation are removed. It preforms statistical analysis
of the distances between neighbouring points, and trims all
which are not considered “normal” (which is a parameter of

the algorithm). In further part of paper we assign symbol
K to the number of neighbours to analyse for each point and
m to the standard deviation multiplier.

TESTS

The test system was implemented in a way that the results
could be kept as accurate as possible, relative, and insensitive
to environment changes.

The application takes as input the data from Kinect
cameras (up to 8) - RGB video stream with a monochrome
depth video stream [6]. The stream specification is as follows:

• each point is represented on 9 bytes, 6 which describe
coordinates in 3D space and 3 represent RGB colour. Every
frame contains 640x480 points (the VGA normal resolution),
resulting in 2 764 800 bytes of data. Multiplied by 30 frames
per second, the result is 82 944 000 bytes/sec, which is equal
to 79.1 megabytes per second,

• frame output of the camera is 640x480 (VGA),
• frame output can be imposed, in our research 30

frames per second was assumed.

Fig. 2. The schematic of the test environment

The output of the application is a merged point cloud. It
is released only after the input from every camera was fully
delivered to the final node.

The tests were run for different numbers of cameras (2-8),
for one point cloud resolution (see Fig. 2). We were able to
observe the delay that was caused both by cloud processing
and sending it to next node. The limitation of the system is
implied by the largest number of cameras that can be handled
by the network. It allows to choose the best configuration for
a concrete system, and to decide which configuration is most
scalable. The perfect configuration would enable adding as
many cameras as possible, without any visible impact on
the system delay. Since it is not possible to provide such
configuration, we aim at finding the best possible solution.

Obviously, the tests results should not depend on the
changes in the input frames, assuming that all of them are
similar. For that reason, for each test tens of thousands of

POLISH MARITIME RESEARCH, No 2/2016 95

point clouds were sent. For each point on the x-axis (see charts
below) there were sent up to three thousands of point clouds.

The test results are given as percentages – we assume,
that 100% of frequency is an ideal frequency, equal to the
frequency of capturing data from the sensor (30 Hz). The 100%
of point cloud size is the size of unfiltered cloud. Because of
the possible occurrence of changes in the environment (and
consequently the relative results inaccuracy), the unfiltered
clouds are sent during the test along the filtered ones. For each
single test (for each single x-axis point) the same number of
filtered and unfiltered cloud sequences were sent. Between
these sequences also delay periods were introduced in order to
avoid possible overlays. Finally, for each single test arithmetic
means were computed. Tests were performed for each of
the algorithms described above. All filters were tested in
terms of changes of the point cloud size and the transmitting
frequency.

All presented charts are two-dimensional, where the axes
represent respectively:

• Changes of the considered parameter of filter – this can
be understood as test range of different values of attributes,

• Values – point cloud size, differential growth or frequency.
The measures are described in more detail below.

For each of the filters two charts are presented:
1. Mean size – size of the cloud, which should be reduced

by the filter. Note, that the cloud cannot be too small, because
it would became useless for the user. On the other hand, if
the cloud is too big, then the filter is not helpful at all, and
superfluously wastes resources.

2. Frequency – the rate of the cloud processing on the
server. By default, the cloud is captured 30 times per second.
If the filtering is too slow, the frequency is smaller than 30
frames per second, and this should be avoided, i.e. if frequency
is no longer effective, then the last effective point was probably
the most effective configuration. This means, that probably
the best parameters were just passed, i.e. this is the smallest
cloud which can be effectively achieved using this filter.
Although, if the system had no requirement of real-time
operation, then this issue would not be as important as in
the considered system.

RESULTS

VOXEL GRID FILTER

The Voxel Grid test was performed by changing the leaf
size. Generally, the leaf size is composed of three dimensional
variables (X, Y and Z). All of them were manipulated in the
same way and the same time. Manipulating the components
independently is probably useful only in specific applications.
Generally, the Voxel Grid “boxes” shape is a cube, ensuring
that the point dispersion is balanced. Note, that changing
the box size for each dimension simultaneously causes rapid
change of cube volume. Pre-processing using filters allows to

modify the image: extract particular features and hide others.
To give general impression about capabilities of the filtering
in Fig. 3 we present the effect of pre-processing using a Voxel
Grid applied for a three single frames.

Fig 3. Effect of pre-processing using a vortex grid on a single frame (leaf= 0.01)

The results shown in the Fig. 4a show, that there is a rapid
change of point cloud size in the first test, but the size very
quickly reaches to 0 value. This means, obviously, that the
filter is very effective, but sending nearly empty point cloud
is useless. When observing point cloud size changes, only the
first values of the leaf size should be considered as useful. The
frequency chart (Fig. 4b) shows, that the frames per second
factor is very stable (with some fluctuations). Fortunately,
the frequency is stable at 100% and changes to about 80%
when the size of leaf is close to 0.50. 80% is not an acceptable
value in terms of real-time system requirements, but for
some systems it would be considered as acceptable too, even
for real-time in specific cases. The last chart shows, that as
 a results of very high frequency rates, only the first chart
(size) should be considered in the majority of cases, as it
has higher impact on the effects of the working system.
 The differential changes are not very useful for this test,
because the size of the cloud very rapidly reaches values close
to zero.

Fig. 4. (a) Changes of the point cloud size and (b) frequency of cloud
transmitting

POLISH MARITIME RESEARCH, No 2/201696

PASS THROUGH FILTER

The Pass Through filter is very characteristic because of
its irregularity and difficulties in estimation of usability.
This is because the efficiency of the filter strictly depends on
the shape of the cloud. What is more, it is possible, that the
filter can remove some important point concentration when
used improperly. Generally, the charts may help to properly
rate the filter, but its configuration (attribute choice) should
depend also on the visual observation.

The test was performed in such a way, that the range of
filtered area changes in one dimension. However, in practise,
it would be worth performing it for each axis independently.
The range was changed bilaterally. The changes of the size
(Fig. 5a) are irregular, as expected, but the size never grows.
The zero value at the end is also expected, because the range
of the filter was configured to finally filter out the entire cloud.
Looking at the chart, the size reduction is useful for range
attribute value lower than 5. However, as it was mentioned
before, it is important to make sure, that significant points
were not deleted, because the filter may give different results
for different clouds (i.e. acquired in different environments).

8
7,

7
7,

4
7,

1
6,

8
6,

5
6,

2
5,

9
5,

6
5,

3 5
4,

7
4,

4
4,

1
3,

8
3,

5
3,

2
2,

9
2,

6
2,

3 2
1,

7
1,

4
1,

1
0,

8
0,

5
0,

2

0

20

40

60

80

100

120

Range

M
ea

n
si

ze
 [%

]

8
7,

7
7,

4
7,

1
6,

8
6,

5
6,

2
5,

9
5,

6
5,

3 5
4,

7
4,

4
4,

1
3,

8
3,

5
3,

2
2,

9
2,

6
2,

3 2
1,

7
1,

4
1,

1
0,

8
0,

5
0,

2

95

96

97

98

99

100

101

Range

Fr
eq

ue
nc

y [
%

]

Fig. 5. (a) Changes of the point cloud size and (b) frequency of cloud
transmitting

The frequency chart (Fig. 5b) shows, that Pass Through
filter works very fast for any values of the range attribute.
Again, this means, that the filter should be rated using size
changes only, including the differential chart.

FILTERING WITH STATISTICAL OUTLIER REMOVAL

For Statistical Outlier Removal filter we performed two
different tests because there are two different factors of the
filter (K and m - number of neighbours and multiplier

a)

b)

quantity). It turned out, that the number of neighbours was
not very significant, so we skipped them. The multiplier tests
were performed using number 10 for the neighbours.

0,
01

0,
07

0,
13

0,
19

0,
25

0,
31

0,
37

0,
43

0,
49

0,
55

0,
61

0,
67

0,
73

0,
79

0,
85

0,
91

0,
97

1,
03

1,
09

1,
15

1,
21

1,
27

1,
33

1,
39

1,
45

1,
51

1,
57

1,
63

1,
69

0
10
20
30
40
50
60
70
80
90

100

Mul�plier

M
ea

n
si

ze
 [%

]

0,
01

0,
07

0,
13

0,
19

0,
25

0,
31

0,
37

0,
43

0,
49

0,
55

0,
61

0,
67

0,
73

0,
79

0,
85

0,
91

0,
97

1,
03

1,
09

1,
15

1,
21

1,
27

1,
33

1,
39

1,
45

1,
51

1,
57

1,
63

1,
69

6

6,5

7

7,5

8

8,5

9

9,5

10

Mul�plier
Fr

eq
ue

nc
y [

%
]

Fig. 6. (a) Size of cloud filtered (b) frequency of cloud transmitting using
Statistical Outlier Removal filter (K=10)

The point cloud size (Fig. 6a) dropped along with the
value of the multiplier. High values of the multiplier result
in the higher number of points accepted by the filter. Because
the minimal size of the cloud for this filter corresponds to
most cases, the tests for smaller values were not necessary.
Changing the multiplier is mostly useful for small values,
as no significant change was observed for high values.
Unfortunately, the frequency chart (Fig. 6b) shows, that the
filter does not apply for real-time systems. What is more,
the frequency seems to be the biggest for larger values of
the multiplier.

Fig. 7. (a) Size of the cloud filtered (b) frequency of cloud transmitting using
Statistical Outlier Removal filter (m=0.10)

a)

b)

POLISH MARITIME RESEARCH, No 2/2016 97

The size chart (Fig. 7) might indicate, that additional
tests for bigger number of neighbours should be performed,
but the frequency chart shows, that the frequency of cloud
transmitting would be too low. The filter definitely does not
meet the requirements, As the performed tests exclude the
filter from real-time use. However, the filter may still be useful
for some calculations that can be performed after the process
of grabbing the clouds, e.g. if all clouds are stored at the server,
then such filter could be used to reduce the size of clouds,
discarding the useless points.

FILTERING WITH RADIAL OUTLIER REMOVAL

The Radius Outlier Removal test, similarly to Statistical
Outlier Removal, was performed for two factors separately:
neighbours K and radius r (instead of multiplier for Statistical
Outlier Removal). Note, that the neighbours test was
performed twice because the results were different for two
different values of radius (r=0.1 and 0.05). The radius test was
performed using the number of neighbours K=25.

Fig. 8. (a) Size of the cloud filtered (b) frequency of cloud transmitting using
Radial Outlier Removal filter (K=25)

In the radius test, the size (Fig. 8a) changes for only small
radius values. For high radius values, more and more points
are accepted so the cloud is actually not filtered. This means,
that the filter is useful only for values of radius up to 0.07
assuming, that the number of neighbours is 25. Note, that
the result may be slightly different for different kinds of point
cloud. For stable cloud size equal to 100% of the original
(not filtered) cloud, the differential value is zero as well. The
differential chart shows the points, where the size grows
in a higher or lower degree. Interestingly, it can be used to
find the point of inflection (the extreme of the differential).
This information can be useful for the deep analysis of the
filter efficiency. Similarly to Statistical Outlier Removal, the
analysed filter is not appropriate for real-time systems. The
frequency rate (Fig. 8b) is too small. Of course, it may be useful

for some processing performed on the last node, which does
not require real-time operation.

The tests of Radius Outlier Removal with changing
neighbours number were performed twice, because of two
different results for two similar radius values. Obviously,
the higher value of neighbours’ condition, the smaller the
point cloud (Fig. 9a). This is because a higher number of
neighbours is required for a point in order to not be deleted.
Interestingly however, the change of the size is not rapid. The
further experiments were not performed (for higher numbers
of neighbours), because of the frequency results (see Fig. 9b),
and because of much more satisfactory results acquired in
the tests performed with radius 0.05.

Fig. 9. (a) Size of the cloud filtered (b) frequency of cloud transmitting using
Radial Outlier Removal filter (r=0.1 and 0,05)

Fig. 9b shows again, that the Outlier Removal filters are not
useful for real-time systems. It shows that very small change
of radius parameter (from 0.1 to 0.05) causes dynamic changes
in frequency. For the same number of neighbours, the cloud
size changes much faster and makes the filter much more
useful. Interestingly, not only the size results were better,
but also frequency.

SUMMARY AND FUTURE WORK

The paper compares four filters with various parameters
choice. We performed time-consuming and precise tests to get
the best and most accurate results. The results were averaged
and collected in diversified, coherent and legible charts. Tests
prove, that both Voxel Grid and Pass Through filters can be
used mostly in any appropriate parameters configuration.
Of course they should be used with caution, to be able to
perform cloud reconstruction and not to lose important or
relevant points, since all of them carry some information.

The Outlier Removal filters do not meet real-time
requirements, so it is not recommended to use them in such

a)

b)

POLISH MARITIME RESEARCH, No 2/201698

systems. However, they can be used in non-real-time systems.
What is more, they can be possibly applied in real-time systems
with less strict requirements. As optimization is a large area
to investigate, the research can be continued in many ways.
As mentioned in the beginning of the paper, there are many
approaches for optimising point cloud transmission and
consolidation. What is more, Point Cloud processing, even
if performed in distributed environment, can be optimized
in more than one way and does not have to be focused only
on networking. Each of the steps of PCD data flow (described
in Section 2) can be more or less optimized. This paper was
mostly focused on the pre-processing strictly connected with
networking. However, other parts were also partially covered.
A sort of optimization was also tried from physical layer
perspective. In General, all of these stages can be optimised.
First of all, the main topic of the paper – optimization of pre-
processing can be performed in other ways. There are some
other filters which can be tested instead of the presented ones.
Moreover, there are also other ways of point cloud reduction
(i.e. compression). Also networking can be optimised (e.g.
the choice of the protocol). Additionally, post-processing is a
good area to optimize. It is also worth to find a more real-time
adjusted solution. Filters should be used with caution, in order
to keep the possibility of performing cloud reconstruction
or not to lose important or relevant points.

Voxel Grid and Pass Through filters turned to be applicable
in any appropriate configuration. Outlier Removal do not
meet real-time requirements, and are not recommended for
use in such systems. They can be still used in non-real-time
systems.

REFERENCE

1. W. Chau-Chang, C. Min-Shine: Nonmetric Camera
Calibration for Underwater Laser Scanning System. IEEE
Journal of Oceanic Engineering, vol. 05, 32(2), (2007),
383-399.

2. S. Ferrari, I Frosio, V. Piuri, N.A Borghese: Enhanced vector
quantization for data reduction and filtering. Proceedings
of 2nd International Symposium on 3D Data Processing,
Visualization and Transmission, 3DPVT, (2004), 470–477.

3. S. Gernhardt, X. Cong, M. Eineder, S. Hinz, R. Bamler:
Geometrical fusion of multitrack ps point clouds, IEEE
Geoscience and Remote Sensing Letters, vol. 9(1), (2012),
38–42.

4. H. Haggag, M. Hossny, D. Filippidis, D. Creighton, S.
Nahavandi, V. Puri: Measuring depth accuracy in rgbd
cameras. 7th International Conference on Signal Processing
and Communication Systems (ICSPCS), (2013), 1–7.

5. L. Hong Xie, Z. Zhao: A new method of cylinder
reconstruction based on unorganized point cloud, 18th
International Conference on Geoinformatics, (2010), 1–5.

6. P. Kiljański, Optimization of PCD consolidation process
in distributed system, Master Thesis, Gdansk University
of Technology, 2014

7. P. Li, H. Wang, Z. Liu: A morphological LIDAR point cloud
filtering method based on fake scan lines, International
Conference on Electronics, Communications and Control
(ICECC), (2011), 1228–1231.

8. D. McLeod, J. Jacobson, M. Hardy, C. Embry: Autonomous
inspection using an underwater 3D LiDAR. 2013 OCEANS
,San Diego, (2013), 1-8.

9. S. Orts-Escolano, V. Morell, J. Garcia-Rodriguez, M.
Cazorla: Point cloud data filtering and downsampling
using growing neural gas. International Joint Conference
on Neural Networks(IJCNN), (2013), 1–8.

10. R. Rusu, S. Cousins: 3D is here: Point cloud library
(PCL). Proc. of International Conference in Robotics and
Automation (ICRA), (2011), 1-4.

11. K. Santilli, K. Bemis, D. Silver, J. Dastur, P. Rona:
Generating realistic images from hydrothermal plume
data. Visualization, 2004. IEEE, (2004), 91-98

12. P. Thumbunpeng, M. Ruchanurucks, A Khongm: Surface
area calculation using Kinect’s filtered point cloud with
an application of burn care. International Conference on
Robotics and Biomimetics (ROBIO), (2013), 2166–2169.

13. Y. Wan, Z. Miao, Z. Tang: Reconstruction of dense point
cloud from uncalibrated widebaseline images. IEEE
International Conference on Acoustics Speech and Signal
Processing (ICASSP), (2010), 1230–1233.

14. Y. Wang, X. Xiang Zhu, R. Bamler, S. Gernhardt: Towards
terrasarx street view: Creating city point cloud from multi-
aspect data stacks. Proc. of Joint Urban Remote Sensing
Event (JURSE), (2013), 198–201.

15. H. Wenming, L. Yuanwang, W. Peizhi, W. Xiaojun:
Algorithm for 3d point cloud denoising. 3rd International
Conference on Genetic and Evolutionary Computing
WGEC ’09, (2009), 574–577

CONTACT WITH THE AUTHOR

Tomasz Dziubich

Gdańsk University of Technology
G. Narutowicza 11/12 street

80-233 Gdańsk
Poland,

e-mail: dziubich@eti.pg.gda.pl

