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ABSTRACT

In this paper, we propose a distributed system for point cloud processing and transferring them via computer network 
regarding to effectiveness-related requirements. We discuss the comparison of point cloud filters focusing on their usage 
for streaming optimization. For the filtering step of the stream pipeline processing we evaluate four filters: Voxel Grid, 
Radial Outliner Remover, Statistical Outlier Removal and Pass Through. For each of the filters we perform a series of 
tests for evaluating the impact on the point cloud size and transmitting frequency (analysed for various fps ratio). We 
present results of the optimization process used for point cloud consolidation in a distributed environment. We describe 
the processing of the point clouds before and after the transmission. Pre- and post-processing allow the user to send the 
cloud via network without any delays. The proposed pre-processing compression of the cloud and the post-processing 
reconstruction of it are focused on assuring that the end-user application obtains the cloud with a given precision.

Keywords: point cloud processing, distributed system, parallel processing, depth image filtering

INTRODUCTION

Underwater (UW) imagery presents several challenging 
problems for automated remote target recognition. One 
of them is the development of real-time data processing 
methods. We can divide these methods into two groups. The 
first of them includes methods running in a local execution 
environment (located on an autonomous device/object/
vehicle) and the second group include techniques that operate 
in a remote processing centre on locally acquired data (so 
called client-server model). In both cases, the researchers 
focus on providing real-time services for underwater facilities 
products and delivering an efficient and high-performance 
parallel computation platform.

Nowadays LIDAR sensors in autonomous inspection of UW 
activities are becoming increasingly popular.  This technique 
often supports acoustic signals analysis which is still a dominant 
technique in the UW solutions. The combination of both 
methods is called a multi-modal approach. It assures better 
measurement precision, reduction in risks,  economic benefits 
and superior data products compared to conventional means.

An example of such a solution is an underwater camera 
system with a laser line source to measure seafloor features at a 
millimetre scale [1]. The quality of underwater photography is 
limited by the visibility of the water column. In real underwater 
environments there are always floating particles that scatter 

the light. As a result, photographic images taken under such 
conditions tend to be blurred. Consequently, series of image 
filters and transformation need to be applied in order to achieve 
better quality. Measurements show, that the error rate of this 
solution is less than 1.5 mm when the target is scanned from 
a distance of 1 m. One of the disadvantages of the described 
method is low computation efficiency (ca. 5 fps). System 
performance decreases if we apply additional image filters.

Another example is the DP2TM 3D LiDAR built-in the 
Marlin Autonomous Underwater Vehicle for detection and 
localization of structural changes vs. reference model [8]. This 
device has better parameters than the solution mentioned 
above (performance of 3D imaging ca.10 fps, higher resolution 
> 0.040 Mpx, and different range > 3Km). It can also operate 
in degraded visual environments and requires dual scans for 
100% data validation. This solution was deployed in water 
depths of 50 - 3,000 meters with measurements distances 
varying from 6 - 90 meters.

3D LiDAR can not only distinguish between shapes and 
objects, but detects moving objects as well. This means that 
it is possible to acquire data of moving seafloor hydrothermal 
plumes or oil spills. 10fps real-time detection enables even 
measurement of the space between a number of objects and 
their speed. Another characteristic of the 3D measurement is 
the ability to see data in a 3D environment, from a head-on 
perspective, the bird’s eye view or any other.  
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In [11] authors present a methodology that utilizes visual 
cues in multi-modal optical and sonar images, namely, the 
occluding contours of various scene objects that can be 
detected and matched more robustly than point features. 
Unfortunately, the use of this method in AUV is possible in 
very limited range due to computing power.

Data obtained from LIDARs can be stored using data 
structures referred to as Point Clouds, which allows storing 
points along with additional information. It can also store 
colour or size, depending on the implementation of the 
structure. The points stored in the Point Clouds can be very 
often considered as not connected voxels (three-dimensional 
pixels) and they can be used for objects visualization.  

Rusu and Cousins [10] have called point cloud a high 
quality representation of the world. Generally, this statement 
referred to clouds obtained from LIDAR scanners, but it can 
be used to describe any point cloud received from a depth 
sensor, which is able to acquire data of the observed world. 
Obviously, the scale of the represented view of the world 
may differ. One of listed in [10] cloud advantages is the fact, 
that space robots will “see” the world in 3D in the future. 
Theoretically, it is already possible with PCL. In [3, 14] authors 
managed to represent an entire city using a single point cloud. 
For example, an aerial scan with a spatial resolution of 7 cm 
of the city of Munich, roughly containing 200.000 individual 
buildings and being spread over about 300 km2. In this case 
the total raw data size consists of 61*109 points (approx. 
180 TB) [14]. In the case of point-cloud shape detection for 
city-modelling, the large dataset needs to be processed in 
parallel. It can be assumed, that each building consists of only 
6 individual faces with a total surface area of approximately 
1000 m2, resulting in about 32000 points per primitive shape. 
One of the problems of the merging process for providing the 
point cloud data (PCD) is to assure high performance of the 
system, especially in parallel and distributed environments.

To process huge amount of data we need to ensure high 
computing power with a stable level of energy consumption. 
We can achieve this aim using a pipeline model in a parallel 
computer system. In real-time 3D data acquisition systems 
with motion detection and recognition feature an efficient 
processing pipeline has to be tailored to used hardware. 
Currently, using a multi-core and many-core computer 
architectures as NVidia CUDA and Intel Xeon Phi real-time 
data processing is most common. However software for these 
architecture has to be very sophisticated.

In this paper we propose a distributed pipeline used for 
point cloud processing and transferring them using computer 
network that fulfil requirements related to their effectiveness.

PCD DATA FLOW

Point cloud processing pipeline can be divided into the 
following steps shown in Fig. 1:

• Cloud acquisition (depth image obtaining, point 
cloud building).

• Pre-processing (filtering – cutting off, reducing the 
noise and the point cloud size, compression).

• Network transmission.

After that, the second node also has to process the frame. 
The second part of the pipeline is the same as on the first 
(input) machine, but the acquisition is different:

• Depth image obtaining – getting a depth image from 
local sensor and from remote sensor via network,

• Point cloud building – depth image to point cloud 
conversion (optional).

Fig. 1. Dataflow in parallel point clouds processing

Existing systems often focus on a part of the actual problem, 
instead of all of the sub-problems related to the processing. 
In this paper we divide those problems into several parts. 
These groups can be considered as potential stages mapped 
from processing pipeline: the cloud is grabbed and then pre-
processed – filtered so that only interesting points can be 
found in the cloud. Then, such cloud should be optionally 
compressed, if the first stage is insufficient. Next the cloud 
is sent via network.

The last stage – the reconstruction is the opposite stage to 
the filtering and compression. The networking stage should 
be transparent for the end user, the cloud should be visually 
(almost) identical with the data received from the sensor 
(it does not apply to e.g. background subtraction filters). 
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Hence, if during pre-processing any significant or necessary 
points were removed, reconstruction is required. Otherwise, 
this step may be skipped.

Generally, filtering is needed almost in all applications 
that employ depth cameras. In our experiments we used the 
Kinect sensor as a depth camera. The error of information 
provided by Kinect increases with an object distance from the 
sensor. What is more, the factor of this growth is square [13].

For some projects the accuracy of depth image data may be 
crucial. For the expected solution described in this paper the 
accuracy is not so important, since it can be assumed, that the 
end-user (e.g. application that gets point clouds provided by the 
system) may use their own filters in order to increase accuracy. 
A comparison of depth sensors were provided e.g. in [4].

Thumbunpeng et al. [12] were trying to use depth camera 
to measure the proportion between burn area of human body 
and the body surface. They wanted to provide an alternative 
method for eye estimation, since the quality of the estimation 
highly influences the treatment efficiency (patients need to 
get the proper doses of water depending on calculated area). 
They decided to use spatial filters in order to reduce camera 
error and distortions, and proved, that the proposed solution 
increases the quality of cloud surface significantly.

In literature, some authors also design dedicated filtering 
and compression algorithms. E.g. in [2], authors proposed 
Enhanced Vector Quantization (EVQ) algorithm, an 
enhanced version of standard EQ algorithm. EVQ reduces 
disadvantages of similar approaches and is easy to use, 
requiring only to set the compression level. The goal of this 
work was to create an appropriate model for building a mesh.

In [9] authors focus on point cloud filtering as a pre-
processing stage in robotics learning. They decided to use 
Growing Neural Gas network, and to prove that this method 
can be more effective than e.g. Voxel Grid filter.

Wenming et al. proposed their own algorithm for point 
cloud processing [15], dedicated for cloud de-noising. As in 
many algorithms, they proposed to divide the cloud into 
a grid and then de-noise it using neighbourhood distance 
calculations. As they report this algorithm is very simple 
and easy to implement. In comparison to bilateral mesh 
de-noising algorithm, the proposed one seems to be much 
more promising.

In [5] authors propose an algorithm for filtering LiDAR 
point clouds. Their main goal was to remove any objects 
like buildings, leaving territory malformations intact. 
Interestingly, the algorithm works also on mountainous 
territories – all buildings are removed while the territory 
remains intact. That would allow to create e.g. physical maps. 
Despite this algorithm was invented for LiDAR point clouds 
to filter territory surfaces, that would be used also in other 
fields – e.g. in de-noising of general surfaces of observed 
objects, but this idea would require further research.

In [7] a different approach to surface de-noising has been 
shown. Since the goal of a large number of algorithms is 
to make surfaces smooth, the authors attempt to preserve 
features of the cloud. This may be important for creating 
e.g. point clouds of some historical objects with carved 
details, like inscriptions. In order to achieve this, they create 

smooth surfaces using standard algorithms, additionally 
preserving extra data like high vectors – distance between 
old and smoothed position. Then, vectors of neighbouring 
points are compared and new positions are calculated. Despite 
some limitations of the algorithm, the authors achieved the 
expected result. Nevertheless, this approach may not be 
relevant in the presented work, since probably the smallest 
details will be lost in order to perform optimization.

FILTERS IN POINT CLOUD PROCESSING

There exists a wide range of filters. The most popular are 
listed below:

• Pass Through – enables cutting off point cloud parts,
• Voxel Grid – allows to replace a set points with 

a mean point,
• Points projecting – allows to project points onto e.g. 

plane,
• Indices extracting – uses segmentation algorithm 

to extract inliers,
• Conditional removal – removes points which does 

not meet given conditions,
• Statistical Outlier Removal – deletes outliers,
• Radius Outlier Removal – deletes outliers,
• Spatial filter – performs a cloud smoothing,
• Growing Neural Gas network (GNG) – allows to 

down sample the cloud (similarly to Voxel Grid),
• Enhanced Vector Quantization (EVQ) – allows to 

down sample the cloud.
Technically, the filters that do not perform down sampling 

or removing points should be rejected, since they do not 
resolve the problem addressed in the paper. Moreover, filters 
should be widely available and allow to process clouds in 
real-time. The first condition makes indices extracting and 
spatial filters not useful. GNG and EVQ algorithms seem 
to be promising, but they are not widely available, since 
they are novel procedures. It makes them hard to use and to 
implement in an optimized version. What is more, the results 
they produce are very similar to Voxel Grid filter. Considering 
the fact that they may need some kind of initialization [5] 
(which depreciates their use in changing environment) and 
that the better results may influence the computational time 
[9], only Voxel Grid algorithm will be considered from this 
group. Another group of filters are Outlier Removal filters. 
They can increase the quality of the cloud reducing their 
size, so they have to be taken into consideration. What’s 
more, they are well known and easy to use, so they set up 
good baseline for evaluation. They do not require any kind 
of initialization (but may need one additional iteration for 
calculating e.g. some mean values). The last group enables 
removal points under given conditions, and here Conditional 
Removal filter seems be very promising. However, Conditional 
Removal is a general concept and typically it is based on 
a Pass Through filter (which may be considered a special case 
of Conditional Removal). Thus we select from this group the 
Pass Through filter for testing. Some of the filters are not 
useful for optimization purposes, while alternative ones have 
other disadvantages. 
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Our review allows us to select four most important, popular 
and promising filters that have been chosen for evaluation, 
namely: Pass Through, Voxel Grid, Statistical and Radial 
Outlier Removal.

Voxel, which is a group of cube units distributed in the 
centre of the orthogonal grid, can be understood as the 
extension of two-dimensional pixel into three-dimensional 
space. The point cloud data generated by a computer vision 
method is usually density-uneven. It samples by the voxel grid 
method and creates 3D voxel grid for the input point cloud 
data, with centroid of all the points in voxel to approximate 
the other points, all of which can not only reduce the point 
cloud data, but also maintain the shape characteristics of 
point cloud and more accurate approximation of the surface. 
All points in the voxel are expressed with a centroid, then:

where S is the total number of discrete points in voxel V, 
x, y, z are dimensions of voxel (referred to as leaf).

The PassThrough filter removes points that lie outside 
a given range for the specified user-given dimension. For 
example, if all points laying farther than 3 m away have to be 
discarded, the filter would have to be run on the Z coordinate 
with a range of [0; 3 m]. This filter can be useful to discard 
unneeded objects from the cloud, but a different reference 
frame may have to be adapted if the default one (relative to 
the sensor) is inappropriate. For example, filtering on the Y 
value to remove all points not laying on a given surface will 
yield unwanted results if the camera is at an odd angle. So 
we define visibility range as R =<0; zmax>, where zmax is the 
maximal depth of voxel from the camera plan.

Outliers are single points that are spread through the 
cloud. They are the product of the sensor’s inaccuracy, which 
inappropriately registers measurements from empty space. 
Outliers are considered undesired noise, because they may 
introduce calculation errors, e.g. in normal estimation. Hence, 
removing the points from the cloud will not only make the 
computations faster, but also more precise. The radius-based 
outlier removal is the simplest method of this type. First, 
search radius r must be specified as well as the minimum 
number of neighbours K that a point should have to avoid 
being labelled as outlier. The algorithm will then iterate 
through all of the points (which can be extremely slow in if 
the cloud is big) and perform the check: if less than that the 
given number of the points are found within the radius, the 
point is removed.

The statistical outlier removal process is a more advanced 
method. First, for every point the mean distance to its K 
neighbours is computed. Then, assuming that the result is 
a Gaussian distribution with a mean μ and a standard deviation 
σ, all points with mean distances falling out of the global mean 
plus deviation are removed. It preforms statistical analysis 
of the distances between neighbouring points, and trims all 
which are not considered “normal” (which is a parameter of 

the algorithm). In further part of paper we assign symbol 
K to the number of neighbours to analyse for each point and 
m to the standard deviation multiplier.

TESTS

The test system was implemented in a way that the results 
could be kept as accurate as possible, relative, and insensitive 
to environment changes.

The application takes as input the data from Kinect 
cameras (up to 8) - RGB video stream with a monochrome 
depth video stream [6]. The stream specification is as follows:

• each point is represented on 9 bytes, 6 which describe 
coordinates in 3D space and 3 represent RGB colour. Every 
frame contains 640x480 points (the VGA normal resolution), 
resulting in 2 764 800 bytes of data. Multiplied by 30 frames 
per second, the result is 82 944 000 bytes/sec, which is equal 
to 79.1 megabytes per second,

• frame output of the camera is 640x480 (VGA),
• frame output can be imposed, in our research 30 

frames per second was assumed.

Fig. 2. The schematic of the test environment

The output of the application is a merged point cloud. It 
is released only after the input from every camera was fully 
delivered to the final node.

The tests were run for different numbers of cameras (2-8), 
for one point cloud resolution (see Fig. 2). We were able to 
observe the delay that was caused both by cloud processing 
and sending it to next node. The limitation of the system is 
implied by the largest number of cameras that can be handled 
by the network. It allows to choose the best configuration for 
a concrete system, and to decide which configuration is most 
scalable. The perfect configuration would enable adding as 
many cameras as possible, without any visible impact on 
the system delay. Since it is not possible to provide such 
configuration, we aim at finding the best possible solution.

Obviously, the tests results should not depend on the 
changes in the input frames, assuming that all of them are 
similar. For that reason, for each test tens of thousands of 
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point clouds were sent. For each point on the x-axis (see charts 
below) there were sent up to three thousands of point clouds.

The test results are given as percentages – we assume, 
that 100% of frequency is an ideal frequency, equal to the 
frequency of capturing data from the sensor (30 Hz). The 100% 
of point cloud size is the size of unfiltered cloud. Because of 
the possible occurrence of changes in the environment (and 
consequently the relative results inaccuracy), the unfiltered 
clouds are sent during the test along the filtered ones. For each 
single test (for each single x-axis point) the same number of 
filtered and unfiltered cloud sequences were sent. Between 
these sequences also delay periods were introduced in order to 
avoid possible overlays. Finally, for each single test arithmetic 
means were computed. Tests were performed for each of 
the algorithms described above. All filters were tested in 
terms of changes of the point cloud size and the transmitting 
frequency.

All presented charts are two-dimensional, where the axes 
represent respectively:

• Changes of the considered parameter of filter – this can 
be understood as test range of different values of attributes,

• Values – point cloud size, differential growth or frequency. 
The measures are described in more detail below.

For each of the filters two charts are presented:
1. Mean size – size of the cloud, which should be reduced 

by the filter. Note, that the cloud cannot be too small, because 
it would became useless for the user. On the other hand, if 
the cloud is too big, then the filter is not helpful at all, and 
superfluously wastes resources.

2. Frequency – the rate of the cloud processing on the 
server. By default, the cloud is captured 30 times per second. 
If the filtering is too slow, the frequency is smaller than 30 
frames per second, and this should be avoided, i.e. if frequency 
is no longer effective, then the last effective point was probably 
the most effective configuration. This means, that probably 
the best parameters were just passed, i.e. this is the smallest 
cloud which can be effectively achieved using this filter. 
Although, if the system had no requirement of real-time 
operation, then this issue would not be as important as in 
the considered system.

RESULTS

VOXEL GRID FILTER

The Voxel Grid test was performed by changing the leaf 
size. Generally, the leaf size is composed of three dimensional 
variables (X, Y and Z). All of them were manipulated in the 
same way and the same time. Manipulating the components 
independently is probably useful only in specific applications. 
Generally, the Voxel Grid “boxes” shape is a cube, ensuring 
that the point dispersion is balanced. Note, that changing 
the box size for each dimension simultaneously causes rapid 
change of cube volume. Pre-processing using filters allows to 

modify the image: extract particular features and hide others. 
To give general impression about capabilities of the filtering 
in Fig. 3 we present the effect of pre-processing using a Voxel 
Grid applied for a three single frames.

Fig 3. Effect of pre-processing using a vortex grid on a single frame (leaf= 0.01)

The results shown in the Fig. 4a show, that there is a rapid 
change of point cloud size in the first test, but the size very 
quickly reaches to 0 value. This means, obviously, that the 
filter is very effective, but sending nearly empty point cloud 
is useless. When observing point cloud size changes, only the 
first values of the leaf size should be considered as useful. The 
frequency chart (Fig. 4b) shows, that the frames per second 
factor is very stable (with some fluctuations). Fortunately, 
the frequency is stable at 100% and changes to about 80% 
when the size of leaf is close to 0.50. 80% is not an acceptable 
value in terms of real-time system requirements, but for 
some systems it would be considered as acceptable too, even 
for real-time in specific cases. The last chart shows, that as 
 a results of very high frequency rates, only the first chart 
(size) should be considered in the majority of cases, as it 
has higher impact on the effects of the working system. 
 The differential changes are not very useful for this test, 
because the size of the cloud very rapidly reaches values close 
to zero.

Fig. 4. (a) Changes of the point cloud size and (b) frequency of cloud 
transmitting
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PASS THROUGH FILTER

The Pass Through filter is very characteristic because of 
its irregularity and difficulties in estimation of usability. 
This is because the efficiency of the filter strictly depends on 
the shape of the cloud. What is more, it is possible, that the 
filter can remove some important point concentration when 
used improperly. Generally, the charts may help to properly 
rate the filter, but its configuration (attribute choice) should 
depend also on the visual observation.

The test was performed in such a way, that the range of 
filtered area changes in one dimension. However, in practise, 
it would be worth performing it for each axis independently. 
The range was changed bilaterally. The changes of the size 
(Fig. 5a) are irregular, as expected, but the size never grows. 
The zero value at the end is also expected, because the range 
of the filter was configured to finally filter out the entire cloud. 
Looking at the chart, the size reduction is useful for range 
attribute value lower than 5. However, as it was mentioned 
before, it is important to make sure, that significant points 
were not deleted, because the filter may give different results 
for different clouds (i.e. acquired in different environments).
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Fig. 5. (a) Changes of the point cloud size  and (b) frequency of cloud 
transmitting

The frequency chart (Fig. 5b) shows, that Pass Through 
filter works very fast for any values of the range attribute. 
Again, this means, that the filter should be rated using size 
changes only, including the differential chart.

FILTERING WITH STATISTICAL OUTLIER REMOVAL

For Statistical Outlier Removal filter we performed two 
different tests because there are two different factors of the 
filter (K and m -  number of neighbours and multiplier 

a)

b)

quantity). It turned out, that the number of neighbours was 
not very significant, so we skipped them. The multiplier tests 
were performed using number 10 for the neighbours.
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Fig. 6. (a) Size of cloud filtered (b) frequency of cloud transmitting using 
Statistical Outlier Removal filter (K=10)

The point cloud size (Fig. 6a) dropped along with the 
value of the multiplier. High values of the multiplier result 
in the higher number of points accepted by the filter. Because 
the minimal size of the cloud for this filter corresponds to 
most cases, the tests for smaller values were not necessary. 
Changing the multiplier is mostly useful for small values, 
as no significant change was observed for high values. 
Unfortunately, the frequency chart (Fig. 6b) shows, that the 
filter does not apply for real-time systems. What is more, 
the frequency seems to be the biggest for larger values of 
the multiplier.

Fig. 7. (a) Size of the cloud filtered  (b) frequency of cloud transmitting using 
Statistical Outlier Removal filter (m=0.10)

a)

b)
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The size chart (Fig. 7) might indicate, that additional 
tests for bigger number of neighbours should be performed, 
but the frequency chart shows, that the frequency of cloud 
transmitting would be too low. The filter definitely does not 
meet the requirements, As the performed tests exclude the 
filter from real-time use. However, the filter may still be useful 
for some calculations that can be performed after the process 
of grabbing the clouds, e.g. if all clouds are stored at the server, 
then such filter could be used to reduce the size of clouds, 
discarding the useless points.

FILTERING WITH RADIAL OUTLIER REMOVAL

The Radius Outlier Removal test, similarly to Statistical 
Outlier Removal, was performed for two factors separately: 
neighbours K and radius r (instead of multiplier for Statistical 
Outlier Removal). Note, that the neighbours test was 
performed twice because the results were different for two 
different values of radius (r=0.1 and 0.05). The radius test was 
performed using the number of neighbours K=25.

Fig. 8. (a) Size of the cloud filtered  (b) frequency of cloud transmitting using 
Radial Outlier Removal filter (K=25)

In the radius test, the size (Fig. 8a) changes for only small 
radius values. For high radius values, more and more points 
are accepted so the cloud is actually not filtered. This means, 
that the filter is useful only for values of radius up to 0.07 
assuming, that the number of neighbours is 25. Note, that 
the result may be slightly different for different kinds of point 
cloud. For stable cloud size equal to 100% of the original 
(not filtered) cloud, the differential value is zero as well. The 
differential chart shows the points, where the size grows 
in a higher or lower degree. Interestingly, it can be used to 
find the point of inflection (the extreme of the differential). 
This information can be useful for the deep analysis of the 
filter efficiency. Similarly to Statistical Outlier Removal, the 
analysed filter is not appropriate for real-time systems. The 
frequency rate (Fig. 8b) is too small. Of course, it may be useful 

for some processing performed on the last node, which does 
not require real-time operation.

The tests of Radius Outlier Removal with changing 
neighbours number were performed twice, because of two 
different results for two similar radius values. Obviously, 
the higher value of neighbours’ condition, the smaller the 
point cloud (Fig. 9a). This is because a higher number of 
neighbours is required for a point in order to not be deleted. 
Interestingly however, the change of the size is not rapid. The 
further experiments were not performed (for higher numbers 
of neighbours), because of the frequency results (see Fig. 9b), 
and because of much more satisfactory results acquired in 
the tests performed with radius 0.05.

Fig. 9. (a) Size of the cloud filtered (b) frequency of cloud transmitting using 
Radial Outlier Removal filter (r=0.1 and 0,05)

Fig. 9b shows again, that the Outlier Removal filters are not 
useful for real-time systems. It shows that very small change 
of radius parameter (from 0.1 to 0.05) causes dynamic changes 
in frequency. For the same number of neighbours, the cloud 
size changes much faster and makes the filter much more 
useful. Interestingly, not only the size results were better, 
but also frequency.

SUMMARY AND FUTURE WORK

The paper compares four filters with various parameters 
choice. We performed time-consuming and precise tests to get 
the best and most accurate results. The results were averaged 
and collected in diversified, coherent and legible charts. Tests 
prove, that both Voxel Grid and Pass Through filters can be 
used mostly in any appropriate parameters configuration. 
Of course they should be used with caution, to be able to 
perform cloud reconstruction and not to lose important or 
relevant points, since all of them carry some information.

The Outlier Removal filters do not meet real-time 
requirements, so it is not recommended to use them in such 

a)

b)
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systems. However, they can be used in non-real-time systems. 
What is more, they can be possibly applied in real-time systems 
with less strict requirements. As optimization is a large area 
to investigate, the research can be continued in many ways. 
As mentioned in the beginning of the paper, there are many 
approaches for optimising point cloud transmission and 
consolidation. What is more, Point Cloud processing, even 
if performed in distributed environment, can be optimized 
in more than one way and does not have to be focused only 
on networking. Each of the steps of PCD data flow (described 
in Section 2) can be more or less optimized. This paper was 
mostly focused on the pre-processing strictly connected with 
networking. However, other parts were also partially covered. 
A sort of optimization was also tried from physical layer 
perspective. In General, all of these stages can be optimised. 
First of all, the main topic of the paper – optimization of pre-
processing can be performed in other ways. There are some 
other filters which can be tested instead of the presented ones. 
Moreover, there are also other ways of point cloud reduction 
(i.e. compression). Also networking can be optimised (e.g. 
the choice of the protocol). Additionally, post-processing is a 
good area to optimize. It is also worth to find a more real-time 
adjusted solution. Filters should be used with caution, in order 
to keep the possibility of performing cloud reconstruction 
or not to lose important or relevant points.

Voxel Grid and Pass Through filters turned to be applicable 
in any appropriate configuration. Outlier Removal do not 
meet real-time requirements, and are not recommended for 
use in such systems. They can be still used in non-real-time 
systems.
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