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INTRODUCTION

There is an increasing demand to facilitate the use of marine 
environment by planning onshore infrastructures, offshore 
platforms, high speed vessels, etc., which are all along with 
high costs in design as well as in construction. Computational 
Fluid Dynamics (CFD) shortens the way to meet many design 
requirements in hydrodynamics. Here, a unified algorithm is 
developed and examined to tackle hydrodynamic problems 
including fluid-structure interaction with characteristics 
indicated in Tab. 1. 

However, one encounters three major difficulties to 
make decision about them in a numerical algorithm to solve 
such problems. They are presented in the first row of Tab. 2. 
Available approaches and selected methods based on covered 
hydrodynamics problems specifications (Tab. 1) are also 
summarized in second and third row of this Table.

Governing equations are reviewed in section 2. They 
have to be revised according to requirements in simulation 
of two-phase flow using FV discretisation in moving meshes. 
Section 3 is dedicated to discretisation. Solution of the 
Navier-Stokes equations is discussed in section 4. Section 
5 is devoted to overlapping mesh motion modeling strategy. 
A general algorithm to concisely show the relation between 
different parts of developed fluid-structure interaction solver 
is presented in section 6. The present procedure is coded and 
verified in section 7 by applying it to some flows for which 
either numerical solution or experimental data are available. 
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ABSTRACT

A Finite Volume (FV) algorithm is presented to investigate two-dimensional hydrodynamic problems 
including viscous free surface flow interaction with free rigid bodies in the case of large and/or relative 
motions. Two-phase flow with complex deformations at the interface is simulated using a fractional step-
volume of fluid algorithm while it is also capable of representing a high quality wave tank, according to 
implemented temporal discretisation. Rigid body motions are also captured using two overset meshes. 
Flow variables are transferred using a simple fully implicit non-conservative interpolation scheme 
which maintains the second-order accuracy of implemented spatial discretisation. A code is developed 
and an appropriate set of problems are investigated. Results show a good potential to develop a virtual 

hydrodynamics laboratory.
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Tab. 1. Scope of encountered problems including fluid-structure interaction 
in the context of an interfacial flow

Fluid and Flow Structure and Motion

without surface tension 2D

with homogenous property 
distribution fixed/free(3-DoF)

without suspended particles floating/submerged

Incompressible large amplitude motions

Viscous Rigid

Rotational with relative motions

Newtonian with auxiliary equipments
(propeller, rudder, mooring 

line, ...)steady/unsteady

Laminar with geometrical complexity

one/two-phase

with large interface 
deformations

Potentials of the algorithm are demonstrated where complex 
interfacial flow, relative and/or large amplitude motions as well 
as wave generation and propagation are of interest.
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GOVERNING EQUATIONS

According to characteristics of the encountered two-phase 
flow field, see Tab. 1, and implemented motion modeling 
strategy, the following set of equations in the Arbitrary 
Lagrangian-Eulerian (ALE) Cartesian form are used:

(1)

(2)

(3)

where:
ρeff = αρ1 + (1 – α)ρ2 and νeff = αν1 + (1 – α)ν2 are density and 
dynamic viscosity of an effective phase as a combination of 
phases volume fraction α. It is obvious that α is calculated in 
each Control Volume (CV) by solving a transport equation. 
Volume fraction of zero in a CV indicates the presence of one 
fluid and the unity indicates the other fluid; urel = u – um is the 
fluid velocity vector u relative to the mesh velocity vector um 
and n represents a unit vector normal to a CV face. ui is the 
velocity component in the i Cartesian direction, P stands for 
the pressure, ni is the i Cartesian direction component of n and 
gi indicates the gravity component in this direction. 

Movements of a free rigid body are also included in this 
study. They are calculated based on loads acting on the body, 
by solving the linear and angular momentum equations. Such 
loads can be raised from effects of flow field, body weight and 
probably external components. Rigid body motion equations 
are treated in a Global Coordinate System (GCS); a non-
rotating, non-accelerating Newtonian reference system. 

DISCRETISATION

Here, discretisation of all differential governing equations 
is reviewed. More details can be found in a recent paper of the 
authors (Jahanbakhsh et al., 2007).

Momentum Conservation Equations

On the l.h.s of Eq.(2), the simplest approximation for the 
spatial discretisation of the first term (unsteady term) is to 
replace it by the product of the value of the integrand at the CV 

center and the volume of the CV. Convection term (the second 
term) is also discretised using Gamma interpolation (Jasak, 
1996). Besides, on the r.h.s. of Eq.(2), using the common Linear 
Interpolations (LI) to discretise pressure term (the first term) 
results in oscillations in the velocity field in the case of two-
phase flow. Such oscillations lead the solution to a divergence, 
especially when there are two phases with a high density ratio 
e.g. water and air. Here, a Piecewise LI (PLI) is implemented, 
recently introduced by the authors (Jahanbakhsh et al., 2007). 
The second term (diffusion term) is treated by over-relaxed 
interpolation (Jasak, 1996). Finally, the last term (gravity term) 
is discretised as the unsteady term. 

Temporal discretisation of the momentum conservation 
equations is in direct relation to the way that the pressure and 
the velocity fields are coupled. So, it is discussed together with 
implemented fractional step method in the next section.

Volume Fraction Transport Equation

Spatial discretisation of the unsteady term is done similar 
to that of the momentum conservation equations. About its 
temporal discretisation, although the first-order Euler implicit 
interpolation is the obvious choice but it has been shown in 
the numerical results that such a temporal discretisation is not 
a good option when wave generation and propagation are the 
case. In contrast, the second-order three-time-levels temporal 
discretisation proposes a minimum level of diffusion in such 
problems. The Compressive Interface Capturing Scheme for 
Arbitrary Meshes (CICSAM) (Ubbink and Issa, 1999) is used 
for spatial discretisation of the convection term as well as 
Crank-Nicholson interpolation for its temporal discretisation 
according to an investigation conducted by the authors (Panahi 
et al., 2005).

COUPLING OF THE PRESSURE 
AND THE VELOCITY FIELDS

To compute the pressure and the velocity fields, the 
fractional step method of Kim and Choi (Kim and Choi, 2000) 
is implemented. Here, Crank-Nicholson scheme is used for the 
temporal discretisation of the convection term in contrast to 
Adams-bashforth scheme used in the original method. In addition, 
convection term is linearized using Picard iteration method 
instead of the Newton’s method in (Kim and Choi, 2000). Such an 
algorithm can be found as a flowchart in (Panahi et al., 2006a). 

OVERLAPPING MESH

As mentioned earlier, to simulate fluid-structure interaction 
including moving bodies, a motion modeling strategy is 

Tab. 2. Encountered problems, available approaches and implemented methods

Case Available approaches Implemented approach
Coupling of the pressure and the 

velocity fields
(Ferziger and peric, 2002)

Predictor-corrector
Artificial compressibility

Fractional step
Fractional step

Simulation of free surface 
(Ubbink and issa, 1999)

Surface tracking
Surface capturing Surface capturing

Capturing of rigid body motions in 
a domain

Body-attached/moving mesh (panahi et al., 2006A)
Deformable mesh (chentanez et al., 2006)

Re-mesh (tremel et al., 2007)
Sliding mesh (blades and marcum, 2007)
Overlapping mesh (carrica et al., 2007)

Cartesian mesh (mittal and iccarino, 2005)

Overlapping mesh
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necessary in addition to an interfacial flow solver. Here, an 
overlapping mesh system; a strategy among non-domain-
conforming motion modeling strategies; also known as overset 
or chimera mesh is implemented. Using such a strategy, the 
computational domain is covered by a number of boundary-
fitted overlapping meshes (mesh components), in general. Mesh 
components associated with moving structures move with 
them, as in the case of a body-attached mesh motion modeling 
strategy, while the other mesh components remain stationary. 
An overlapping mesh system is shown in Fig. 1 consisting of 
two mesh components.

Fig. 1. Overlapping mesh motion modeling strategy including two mesh 
components; computational domain in two successive time steps tn and tn+1 

where the overset mesh follows the moving body while the background mesh 
remains stationary

The mesh components are not required to match in any 
especial way, but they have to overlap sufficiently to provide 
the means of coupling the solution on each of them. This 
method allows the mesh components to move relative to 
each other in an arbitrary fashion, making it prefect for use 
in applications with moving bodies. The mesh components 
are usually geometrically simple and allow for independent 
meshing of higher quality than would be possible in the case 
of a single mesh. 

Here, flow variables have to be interpolated between the 
overlapped meshes to exchange the information. The major 
drawback of this approach is however the difficulty to ensure 
conservation of the computed variables, which can be neglected 
in many cases (Togashi et al., 2001; Hadzic, 2005) as presented 
in this study.

The overlapping mesh computation was performed firstly 
in 1981 to facilitate mesh generation in the case of complex 
boundaries (Atta, 1981). It was later used to predict forced 
relative motions (Buning et al., 2000) and also aerodynamic 
problems (Chen et al., 2000). It is just recently used in marine 
applications due to difficulties with an interfacial flow (Carrica 
et al., 2007). 

The utilized overlapping mesh motion modeling strategy 
consists of three distinct steps which will be discussed in the 
following sub-sections.

Identification of CVs

When all mesh components necessary to appropriately 
cover the computational domain are generated, the next step 
is to identify the characteristic of all CVs according to their 
role in the solution process (Hadzic, 2005):
� discretisation cells which are used to discretise the 

governing equations
� interpolation cells which receive the solution from the 

overlap mesh component by interpolation
� inactive cells which are disregarded during the solution 

process

The main activity toward marking all cells in this step 
is called "hole cutting". It is generally implemented for the 
background mesh. For computations in the case of moving 
bodies, it is important that the hole cutting can be performed 
both automatically and rapidly, because identities of CVs have 
to be updated in each time step. For complex configurations, 
this may become difficult and more general algorithms may be 
n ecessary to accomplish an automatic hole cutting (Nakahashi 
et al., 2000; Meakin, 2001; Suhs et al., 2002). 

To explain the algorithm developed in this study, consider 
the overlapping mesh schematically shown in Fig. 2. It consists 
of two mesh components: a background mesh in the whole 

Fig. 2. Identification of CVs; (up): hole cutting procedure for two typical 
cell centers 1 and 2 in the background mesh, respectively inside and 

outside of the overset mesh, (down): hatched area of the left figure when the 
identification procedure is completed
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computational domain and an overset mesh around the body. 
The procedure to identify all cells in the background mesh 
is noticeably shown in Fig. 3. It must be mentioned that, the 
width of the overlap zone (δ0) depends on the mesh spacing 
in this area. It has to be large enough to provide sufficient 
overlap between the meshes as an essential element to have 
an appropriate inter-mesh coupling.

As aforementioned, hole cutting is just implemented to 
identify cells in the background mesh. About an overset mesh, 
type classification is very simple. During the first step and 
mesh generation process, outer boundary of the overset mesh 
is assigned a special boundary type (overset mesh boundary). 
Then, the CVs that lie along such a boundary are recognized 
as interpolation cells. Other CVs in the overset mesh are 
discretisation cells.

Fig. 3. An algorithm to identify CVs in the background mesh; grey squares 
present when a decision is made about the identity of a CV

Coupling of Mesh Components

Here, a non-conservative interpolation approach is employed 
to make a unique solution by transferring all flow variables. 
In other words, a variable at an interpolation cell of a mesh 
component; identified in the previous step for both background 
and overset meshes; is obtained by interpolation of the variable 

from the overlapped mesh. The later mesh is called the donor 
mesh. Therefore, an interpolation stencil must be constructed 
for each interpolation cell of the considered mesh from CVs of 
the corresponding coincident mesh (donor mesh). A CV whose 
center is closest to the center of the interpolation cell (host cell) 
is the base of an interpolation stencil. Any additional cells on 
the donor mesh contributing to the interpolation formula come 
from the immediate neighborhood of the host cell. That is, the 
main operation in this step is called “host searching”. 

In the present study a neighbor-to-neighbor searching 
algorithm (Löhner, 1995), suitable for unstructured meshes, is 
employed to accomplish the task. The method is schematically 
shown in Fig. 4. Starting from a given CV (starting CV), one 
jumps to the neighboring CV that lies in the direction of the 
target cell center. This procedure is repeated until the CV which 
contains the target cell (interpolation cell) center is reached. 
Selection of the next starting CV among the neighbor CVs of the 
current starting one is based on pj · nj; pj is a vector connecting 
the midpoint of each face into the target cell center, nj is an 
outward normal vector on the face of the present starting CV 
and j is the face counter. The face whose normal encloses the 
smallest angle with vector pj is selected and the neighboring CV 
that shares this face with the present starting CV is chosen as 
the new starting CV in the donor mesh. If the dot products are 
negative for all faces of a CV, the target cell center lies inside 
that CV, i.e. the host cell is found.

Fig. 4. Donor searching to find host cells in donor mesh for all interpolation 
cells of considered mesh; (up): a route to find the host cell for a given 

interpolation cell, (down): making a decision to continue the way toward 
finding a host cell in the donor mesh for a given cell center, based on pj · nj 

at face centers
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This searching algorithm is very efficient, since the 
searching path is one-dimensional even on a 3D mesh made 
of arbitrary polyhedral CVs. While body movements are small 
within a time step, the new host cell for each interpolation cell 
usually lies in the immediate neighborhood of the previous one. 
This reduces the searching time in each time step.

In this study, construction of an interpolation formula 
consists of four neighbor CVs in addition to the host cell for 
all flow variables, see Fig. 5. According to this figure, a fully 
implicit algebraic equation for an interpolation cell is created 
as below for variable φ which is velocity components (u and 
w), pressure (P) and also volume fraction (α):

(4)

where:  is calculated by:

(5)

φf is approximated at the face center of the host cell using LI 
except in the case of pressure, where Pf is approximated using 
PLI (Jahanbakhsh et al., 2007).

Fig. 5. An interpolation cell in the overset mesh and its interpolation stencil 
in the related overlap mesh consisting of a host cell and four neighbor CVs

Solution of Discrete Equations

There are two main ways to solve discrete equations on an 
overlapping mesh system:
� go back and forth between mesh components (Drakakis et 

al., 2001)
� solve all mesh components simultaneously (Hadzic, 

2005)

Using the former approach, information exchanging between 
meshes has a lag by an outer iteration and more iterations as 
well as stronger under-relaxation may be required to achieve 
a converged solution. In addition, to obtain a consistent pressure 
field in the entire domain, the reference pressure on each mesh 
component needs to be corrected in such a way that the pressure 
levels on all meshes are compatible with each other.

Having all this in mind, the later approach is implemented 
in this study. Here, a global matrix has to be constructed 
including all cells of available meshes. The procedure includes 
preparing the equations in all meshes and then, renumbering 
the overset mesh by a simple shift as the total number of cells 
in the background mesh to assemble a global matrix.

Assume A and B as the background and the overset meshes, 
respectively. Equation for a discretisation cell (D) of A mesh 
is: 

(6)

Equation for an interpolation cell (I) of A mesh Eq.(4) 
is also rearranged to represent a form similar to that of 
a discretisation cell based on its interpolation stencil on B 
mesh: 

(7)

It is obvious that interpolation cells play an implicit rule in 
the solution procedure. Equation for an inactive cell (IA) of A 
mesh is prepared as well:

(8)

where: 
aIA – A = 1 and  is the last known value of the inactive cell.

After constructing analogous equations for B mesh, it is 
time to assemble the global matrix for variable φ using new 
continuous cell numbering.

SOLUTION ALGORITHM

The above mentioned method to solve hydrodynamics 
problems consists of many components. Fig. 6 clearly shows 
the general relation between these elements. Using the solution 
algorithm, one can solve a wide variety of problems but, a most 
common case consists of rigid bodies with up to 3-DoF motions 
in the context of an interfacial flow. The route to simulate such 
a problem is presented in Fig. 6 by bold lines.

Here, an internal loop between the solution of Navier-
Stokes and rigid body motion equations has a vital role in the 
procedure. This provides a strongly coupled solution in the 
domain in addition to compensation of data lack for fresh cells. 
These are cells which were inactive in the previous time step 
and become interpolation/discretisation cells in the present 
time step. Subsequently, they have no information while they 
are needed in the temporal discretisation. 

NUMERICAL RESULTS

Actually, the present study is based on previous researches 
in the field of numerical hydrodynamics. A code was developed 
by implementing a body-attached/moving mesh motion 
simulation strategy and verified in 2D and 3D problems (Panahi 
et al., 2006b, Jahanbakhsh et al., 2008). Now, another strategy 
is under investigation.

Cylinder in a Steady Unsymmetrical Current

In this section, the steady laminar flow around a circular 
cylinder asymmetrically placed in a channel is considered, 
see Fig. 7. The parabolic velocity profile corresponding to 
a fully developed laminar flow in a channel is prescribed at 
the inlet:

(9)

where: 
U, D and H = 4.1D are mean velocity, cylinder diameter and 
channel height, respectively. 

The velocity gradient is equal to zero at the outlet and 
its magnitude is equal to zero at the cylinder surface as well 
as channel walls. The pressure gradient is also equal to zero 
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at all boundaries. The flow domain dimensions and the fluid 
properties used in the computation are as follows: D = 0.1 m, 
U = 0.2 m/s, ρ = 1 kg/m3 and μ = 0.001 kg/m3. The Reynolds 
number based on the mean inlet velocity and the cylinder 
diameter is Re = ρ U/μ = 20. The flow is slightly asymmetric 
since the cylinder center is not on the horizontal symmetry 
plane of the channel. Due to asymmetry, different flow rates 
and different pressures appear above and below the cylinder, 
resulting in a small lift force.

For the analysis of spatial discretization errors, the 
computation has been performed on three systematically refined 
meshes, using δ0 of 0.062, 0.034 and 0.018 m, respectively. 
The first level overset mesh has 32 uniformly distributed 
CVs around the cylinder and 10 CVs in the radial direction. 
However, finer meshes are obtained by doubling the number 

of cells in each direction. The thickness of the cell next to the 
wall, in the direction normal to the cylinder surface is 0.03, 
0.00142 and 0.00069 in three levels of mesh refinement. 
In addition, the first level background mesh has 20 CVs in 
z direction and 46 CVs in x direction. The mesh is stretched in 
z direction to get better resolution near the channel walls. In the 
x direction, the mesh is uniform in front of the cylinder and up 
to 2D behind the cylinder. Thereafter, the mesh is coarsened 
towards the outlet boundary. Cell identity using aforementioned 
overlapping zone width, is shown in Fig. 8. It is so important to 
tune δ0 as no interpolation cell of the overset mesh is included 
in the interpolation stencil constructed for an interpolation cell 
of the background mesh and vice versa.

Here, drag coefficient is CD = Fx/½ρU2D and lift coefficient 
is CL = Fz/½ρU2D; where: Fx and Fz are the total forces on the 

Fig. 6. The solution procedure used to develop a numerical hydrodynamics laboratory

Fig. 7. Geometry and computational characteristics for laminar flow around a cylinder in a channel
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cylinder in x and z directions. They are obtained to investigate 
the accuracy of the method and summarized in Tab. 3 in addition 
to a benchmark (Shäfer and Turek, 1996). All results are very 
close to each other and they are in a very good agreement 
with the benchmark data. The difference between solutions 
on consecutive meshes is reducing by about a factor of four, 
which is in accordance with expectations of a second-order 
discretisation. This is good news while interpolation cells are 
also included in the solution. In other words, the interpolation 
scheme has no negative effect on the total accuracy of 
the solution and the accuracy of spatial discretisation is 
maintained.

A more detailed view of the flow field at the first 13D of 
the channel length is given in Fig. 9 which shows the pressure 
and also u velocity distribution in the channel in the case of 
the fine mesh. The overset mesh boundary is also shown in this 
figure. Although two different meshes are used in the overlap 
zone, there is almost no difference between the contours on 
two mesh components. Slight difference that appears near 
the overset mesh boundary is due to the lack of the flow 

information at the boundary points during the postprocessing 
(presentation of results). Smooth representation of the flow 
field in the overlap zone confirms that the interpolation scheme 
introduced in this study provides a correct coupling between 
the mesh components and leads to a unique solution over the 
whole domain.

Wedge-Type Wave Generator

Here, a plunger wavemaker (Tanizawa and Clément, 2000) 
is simulated to validate the method in the case of a forced body 
motion, see Fig. 10. The wedge has a sinusoidal vertical motion 
of  where the overset mesh also follows its 
motion. While, the background mesh remains stationary during 
the wave generation. 

No-slip and zero-gradient boundary conditions are applied 
for velocity and pressure at all boundaries, respectively. Besides, 
in order to minimize the reflection of the flow from the right 
wall of the wave tank, a damping zone is considered through 
the last 16d of its length (Park and Miyata, 2001), see Fig. 10. 
Width of the overlap zone is set to δ0 = 0.25 m and the time step 
is 0.002 s. Snapshots of the free surface are illustrated after the 
beginning of wavemaker harmonic motion in Fig. 11. 

Besides, Fig. 12 shows comparisons of the results with 
numerical reference data from the ISOPE Workshop (Tanizawa 
and Clément, 2000). The importance of temporal discretisation 
scheme is also shown in Fig. 13 by comparison of two 
generated waves. It is obvious that using the three-time-levels 
temporal discretisation scheme for the unsteady term of the 
volume fraction transport equation has a vital role to minimize 
the numerical diffusion in the wave tank in comparison to 
that of Euler implicit. Besides, another deficiency when using 
Euler implicit discretisation is a numerical increasing of the 
wave period. It must be also reported that, using the three-
time-levels temporal discretisation for the unsteady term of 
the momentum conservation equation has not significant 
effects in this case.

Fig. 8. Overlapping meshes used for the computation of the flow around a cylinder in a channel at first 4D of the channel length; 
a) rough mesh of 1240 CVs, b) medium mesh of 4960 CVs; c) fine mesh of 19840 CVs; White CVs: discretisation cells, red CVs: 

interpolation cells and grey CVs: inactive cells of the background mesh

Tab. 3. Drag coefficient CD and lift coefficient CL as a function of mesh fineness

Current Numerical Simulation Benchmark
(Schäfer and Turek, 1996)

Error in Comparison
to the Fine Mesh

Mesh Number of CVs CD CL CD CL CD CL

rough 1240 5.40077 0.01183
5.5800 0.0107 0.19% 0.18%medium 4960 5.53412 0.01161

fine 19840 5.56939 0.01072

Fig. 9. Pressure field (up) and u velocity field (down) at first 13D of the 
channel length obtained by an overlapping mesh system of 19840 CVs; 

circle shows boundary of the overset mesh around the cylinder; continuity 
of contours across the overset mesh boundary obviously shows the 

performance of implemented interpolation scheme for both pressure and 
velocity
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Fig. 10. Plunger wavemaker; schematic view of the computational domain including an overset mesh of 16000 CVs 
with a vertical sinusoidal motion and a stationary background mesh of 75000 CVs; a=1

Fig. 11. Snapshots of the free surface after the beginning 
of plunger vertical oscillations in the first 50m of the tank

Cylinder Free Falling

To evaluate the method in the case of a free body motion, 
water entry of a neutrally-buoyant circular cylinder is studied, 
see Fig. 14. The cylinder is released from a position just above 
the still water level. It intersects the water surface with the 
downward velocity of 4 m/s. Here, no-slip boundary condition 
at cylinder wall, zero value at down boundary and zero-gradient 
at other boundaries are applied on velocity. Also, zero-gradient 

Fig. 12. Comparison of wave profiles close to the wedge with wedge at its 
mean position moving up; results of a Boundary Element (BEM) and Finite 

Element Methods (FEM) are extracted from ISOPE workshop 
(Tanizawa and Clément, 2000)

Fig. 13. The importance of implementing the three-time-levels temporal 
scheme to discretise the unsteady term of the volume fraction transport 

equation in order to capture a high quality wave tank; 
wave propagation at t = 80 s
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condition is used for pressure at whole boundaries. Width of the 
overlap zone is set to δ0 = 0.02 m and time step is 0.0001 s. 

Fig. 14. Free falling cylinder; schematic view of the computational domain 
including an overset mesh of 6000 CVs which follows the cylinder and 

a stationary background mesh of 20000 CVs

Identity of cells is shown at a time step in Fig. 15. It is 
obvious that the cells in the background mesh are four times 
larger than those in the overset mesh in the overlap zone. This 
announces a low sensitivity to have a similar mesh quality 
in the overlap zone as is a common case when using an 
overlapping mesh system. It is actually an important capability 
which facilitates the use of a high quality mesh for a body 
irrespective of the quality of the background mesh. Besides, 
it has a high value in the case of a moving body and helps to 
reduce the number of cells in the background mesh, while 
a desired resolution can be implemented in the vicinity of 
a moving body.

Fig. 15. Overlapping mesh used to compute the free falling problem in 
the vicinity of the overlap zone; cells of the background mesh are four 
times larger than those in the overset mesh in this region; white CVs: 

discretisation cells, red CVs: interpolation cells and grey CVs: 
inactive cells of the background mesh

After the cylinder impacts on the calm water surface, the 
velocity of cylinder is decreased significantly due to the effects 
of hydrodynamic impact forces. As shown in Fig. 16 for three 
time instants, water sprays are thrown up at each side of the 
cylinder and travel straight upward until they become unstable. 
As mentioned earlier, using overlapping mesh motion strategy, 
a problem is solved on more than one mesh. Such a solved flow 
field in a time step is typically shown in Fig. 17. It is obvious 
that the data transfer procedure is perfectly constructed. Also, 
the overset mesh boundary is placed in presence of large 
changes in the flow field. Fig. 18 also shows the time history of 
vertical displacement of the cylinder. The instantaneous vertical 
positions of the cylinder are compared with experimental data of 
(Greenhow and Lin, 1983) and numerical simulation of (Xing-
Kaeding, 2004; Panahi et al., 2006a). It shows a reasonably good 
agreement with experimental data in comparison to two numerical 
studies using a single body-attached mesh. It is probably due to 
a better quality of the mesh in the vicinity of the cylinder and also 
minimizing the errors due to CVs motions. Overlapping mesh 
system divides the domain simplifying the procedure to generate 
a set of high quality meshes. Consequently, it includes much less 
moving CVs than in the case of a moving mesh motion modeling 
strategy where the whole computational domain moves.

Fig. 16. Free surface deformation in cylinder water-entry problem; 
(left): numerical simulation using the overlapping mesh system, (right): 

experimental data (Greenhow and Lin, 1983)

Fig. 17. Problem is solved in two mesh components using the overlapping 
mesh system; free surface deformation in the case of cylinder water-entry 
is presented at t = 0.2 s in the stationary background mesh (left) and the 

moving overset mesh (right)
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Fig. 18. Time history of the cylinder water-entry just after the impact

CONCLUSION

As a complementary tool to marine laboratory tests, CFD 
proposes the ability to study a wide variety of hydrodynamic 
problems using an integrated method. Here, an algorithm 
among such possibilities is developed based on FV overlapping 
mesh system to deal with two-phase flow interaction with 
a structure. Selected test cases are good problems to assess 
different aspects of the proposed method. It can be simply 
developed to solve more complete problems especially to 
record hydrodynamics behavior of more than one structure in 
a numerical wave tank. Besides, the algorithm can be easily 
extended to 3D problems.
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