RELIABILITY OF A NEW LOWER-EXTREMITY MOTOR COORDINATION TEST

KATARZYNA ANTOSIAK-CYRAK¹, GRZEGORZ WICZYŃSKI³, KAROLINA PODCIECHOWSKA², ELŻBIETA ROSTKOWSKA⁴

The Eugeniusz Piasecki University School of Physical Education in Poznań, Faculty of Physical Education, Sport and Rehabilitation, Department of Swimming and Water Rescue⁴, Poznań University of Technology, Faculty of Electrical Engineering, Department of Metrology and Optoelectronics³, The University of Computer Sciences and Skills in Łódź, Faculty of Pedagogy and Health Promotion, Department of Human Motoricity⁴

Mailing address: Katarzyna Antosiak-Cyrak, Faculty of Physical Education, Sport and Rehabilitation, Department of Swimming and Water Rescue, 10c Droga Dębińska Street, 61-555 Poznań, tel.: + 48 61 8355425, fax: + 48 61 8355099, e-mail: kcyrac@poczta.fm

Abstract

Introduction. Motor coordination is a basic motor ability necessary for daily life, which also allows athletes to win a sports rivalry and patients to assess their recovery progress after therapy and rehabilitation. The aim of the present study was to assess the reliability of a new lower-extremity rate of movements test and testing apparatus.

Material and methods. The study sample consisted of 92 students aged 19.21 ± 3.55 years, with body height of 171.2 ± 15.11 cm and body mass of 66.01 ± 12.32 kg. The study used a test-retest method.

Results. The correlation between the test and the retest was $r = 0.79$ (p < 0.001) for the right leg, and $r = 0.78$ (p < 0.001) for the left leg. In both cases a positive linear correlation was observed ($r > 0$).

Conclusions. The results of the study showed that the new rate of movements electronic testing apparatus was highly valid and reliable. Its technical possibilities eliminate errors that might have occurred earlier during manual counting of the performed cycles of movements.

Key words: testing methodology, data interpretation, motor coordination, test reliability
Each test using new research equipment should be subject to reliability assessment. The test results should be checked to determine the dynamic asymmetry of the legs to determine differences between the performance of the left and the right legs as an effect of versatile training as well as to establish the size of differences between the dominant and non-dominant legs for sport injury prevention [5-12].

- In motor rehabilitation the Foot Tapping Test (FTT) is used to assess the motor fitness of patients with cervical compressive myelopathy [13, 14]; to determine the effects of pharmacological therapy in patients with Parkinson’s [15]; with apraxia [16-18]. The LEMOCOT test is used in rehabilitation of the elderly with lower-extremity impairments [19] and for assessment of recovery speed after surgeries [20].

The aim of the present paper was to determine the reliability of a new tool testing the rate of movements of the lower extremities.

Material and methods

The testing procedure was officially approved by the Bioethical Committee of the Poznan University of Medical Sciences. The study sample consisted of students of the Tourism and Recreation and Physiotherapy majors. Professional athletes were excluded from the study. The students attended their obligatory, curricular, swimming classes (once a week) and did not participate in any other sport classes. The sample consisted of 92 students (aged 19.21 ± 3.55 years, with body height of 171.2 ± 15.11 cm and body mass of 66.01 ± 12.32 kg.

The usability of authors’ own new apparatus for measuring the motor coordination of the legs was assessed [21]. The subject performed a rate of movements test, which can be applied in all conditions during physical education classes or sport training sessions. The comparison between the test results of the left legs and the right legs allowed the assessment of the lateralization degree of the legs. The present study made also use of authors’ own optoelectronic measuring apparatus for administration and control of tests, registration of movements, and precise recording of test results displayed simultaneously on the computer screen (fig. 1 and 2).

Performing movements with the maximal frequency depends on the efficiency of nerve centers controlling antagonistic muscle groups responsible for quick transitions from motor activation to inhibition and vice versa. The movement rate is measured by recording the maximal number of movements performed by a given muscle group in a specified time. This skill is to a large extent grounded in the functions of the central nervous system, and it is hardly receptive to training. It is manifested in soccer players by their abilities to perform quick feints and shots.

Figure 1. Block diagram of the testing apparatus – the power source, data control system, connect to a PC, the platform picking stimuli caused by the foot of subjects

Figure 2. Screenshot

The rate of movements test (fig. 3) consists of shifting one’s foot over a 15-cm-high bar within 20 sec. The subject sits on a chair with his arms along the torso and hands resting on the chair. The bar is placed along the symmetry axis of the chair. A movement cycle consists of moving the foot over the bar, touching the ground and returning the foot to its original position. During the test the other foot is positioned outside the detection area. The test lasts 20 seconds. The time measurement commences by lifting the foot, and stops after the test is completed. Only fully completed cycles made with each foot are counted. The subject must touch both halves of the detection area alternately. The result is given to the nearest half-cycle in counting time (number of cycles/execution time). The more full cycles are performed, the better the test result.

Figure 3. Station for testing the rate of movement

Each test using new research equipment should be subject to reliability assessment. The test results should be checked
for their dependence on temporary, accidental, changes (un-desired) as well as for their stability and duration (desired). To determine the reliability of the apparatus the test-retest method was used for measurement of absolute stability [22]. The test content and procedure was the same, but it was performed twice. The period between the measurements was from 4 to 7 days.

All methods assessing test reliability have some flaws. In the case of the test-retest method it is its variability in time. Thus the times of measurement and procedures must be strictly adhered to. The coefficient of correlation indicates the strength of correlation between both measurements. The closer the coefficient is to 1, the stronger the correlation between the test and the re-test. The magnitude of effects was quantitatively assessed according to Cohen [23, 24] as follows: trivial (0-0.19), small (0.20-0.49), medium (0.50-0.79) and large (0.80 and greater). The statistical significance of the test, as the most informative indicator, was set at p < 0.05.

Statistical analysis was carried out using the Statistica version 10. The following statistical tests were used: Wilcoxon’s test and Spearman’s rank correlation coefficient (r_s).

Results

A slight improvement of results was noted for the right and the left leg. For the left legs the difference was only slightly significant (Wilcoxon’s test $Z = 2.4; p = 0.017$). For the right legs the difference was statistically non-significant ($Z = 1.8; p = 0.075$). For the right leg (fig. 4) the test-retest difference was 0.39 of a movement cycle, and for the left leg – 0.5 of a movement cycle (fig. 5). The coefficient of variability in both legs was between 9.03 and 11.46, which indicates a low variability of the test. In both test measurements the right leg attained better results: 27.4 cycles in the test and 27.8 cycles in the retest. The left leg attained 26.1 cycles in the test, and 26.5 in the retest. The percent difference, i.e. the left leg’s score as a percentage of the right leg’s score, between the test and the retest was not statistically significant (fig. 6).

Very similar results were attained in the test with the left leg (fig. 8). 55.4% of subject attained better results in their retest. The improvement ranged from 5.5 to 0.5 movement cycles. 7.6% subject attained the same results in the test and the retest, whereas 37% scored lower in the retest, from 0.5 to 2.5 cycles.

The correlation coefficient between the test and the retest for the right leg amounted to $r_s = 0.79$ ($p < 0.001$, fig. 9), and for the left leg to $r_s = 0.78$ ($p < 0.001$, fig. 10). In the case of both legs a positive linear correlation was attained ($r_s > 0$). Number of points in figures 9 and 10 is smaller than the number of subjects, because some values were in the same place.
A slight, statistically significant test-retest difference was noted for the right legs, which in test-retest validations were not infrequent. Brzeziński [25, 26] explains it by the factors of memory and learning. During the retest the subject already know the testing procedure, which may lead to an improvement in their test results. The obtained results also indicate that the learning factor affects the right legs earlier than the left legs.

The testing procedure had been designed very carefully, and all possible factors which could have affected the test results had been eliminated. However, this did not prevent the variability in the rate of movements. The high coefficient of correlation points to the usability of the test in motor coordination research. Similarly, Weber writes about the correlation as a tool to evaluate tests reliability and validity [29].

The results of this study met the requirements of these two trials (the Wilcoxon differences and the Spearman correlation) [19, 28]. The resulting relationship test-retest also met the requirements described by Cohen [23, 24]. The results can therefore be considered reliable.

Although one should always remember that, as pointed out by other authors who use the method of test-retest: constantly monitor the operation of measuring devices, and often calibrate it [27, 29].

There were no situations in which after performing a test and a retest a participant would have obtained completely different results. The experiment revealed an improvement in the results, which rather exposes the flaws in the test-retest method than in the usability of the new measurement tool.

Conclusions

The results showed that the new test proved medium valid by Cohen and reliable (0.78-0.79). This is the upper limit of reliability, according to Cohen (0.50-0.79). The technical possibilities of the apparatus eliminate errors that might have been generated during stopwatch measurements, i.e. by visual counting of the number of movement cycles. This accurate testing apparatus will allow preparation of standards for assessment of results of high movement rates test using a modified Fleishman’s test, which is our next research project.

It is therefore promoted the introduction of modern electronic devices working in tandem with the computer to research the various features of human motor skills. They provide the accuracy, reliability and relevance of the results and the ability to archive electronically. This tool provides a quick research process and ease of obtaining statistical results.

It has another advantage important from a psychological point of view; subjected to tests of motor skills are often young people, and applying of methods with the use of modern equipment will be encouraging them to participate in the study.

Acknowledgments

The research was accomplished within the framework of grant no. N N404 255740 (40 contest) – financed by the National Science Centre in Krakow.

Literature

5. Gabbard C. (1995). Lower-limb speed and foot preference...
in children. *Perceptual and motor skills* 81, 1115-1118.

Submitted: April 27, 2015
Accepted: December 10, 2015