A review on the dosimetrical and radiobiological prediction of radiation-induced hypothyroidism in radiation therapy of head-and-neck cancer, breast cancer, and Hodgkin’s lymphoma survivors

Aysan MOHAMMAD NAMDAR1,2, Mohammad MOHAMMADZADEH3, Murat OKUTAN4, Asghar MESBAHI5.6,a
1Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran.
3Radiation Oncology Department, Imam Reza Hospital, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran.
4Istanbul University, Oncology Institute, Department of Medical Physics, Istanbul, Turkey.
5Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
6Molecular Medicine Research Center, Institute of Biomedicine, Tabriz University of Medical Sciences, Tabriz, Iran.

aE-mail address: amesbahi2010@gmail.com

(Received 12 May 2018; revised 13 June, 15 August and 1 September 2018; accepted 5 September 2018)

Abstract

A review on the radiobiological modeling of radiation-induced hypothyroidism after radiation therapy of head-and-neck cancers, breast cancer, and Hodgkin’s lymphoma is presented. The current review is based on data relating to dose-volume constraints and normal tissue complication probability (NTCP) as a function of either radiobiological or (pre)treatment-clinical parameters. Also, these data were explored in order to provide more helpful criteria for radiobiological optimization of treatment plans involving thyroid gland as a critical normal organ.

Key words: radiation therapy; hypothyroidism; head-and-neck cancer; breast cancer; Hodgkin’s lymphoma; NTCP modelling; QUANTEC.

Introduction

Radiation therapy plays a vital role in the treatment of many cancers in conjunction with chemotherapy and surgery [1-3]. Although the aim of radiation therapy is to eradicate the tumor while sparing adjacent normal tissues as far as possible, radiation-induced complications after radiation therapy of neck region, including chronic xerostomia, osteoradionecrosis, trismus and soft tissue fibrosis can be expected. On the other hand, the importance of treatment planning in radiation therapy has been increased steadily with invention of new technologies which provide more accurate and conformal radiation dose to the tumor site and saving critical normal organs [4-7]. Estimation of tumor control probability (TCP) and normal tissue complication probability (NTCP) using radiobiological models can be a complementary tool for evaluation and optimization of treatment plans.

In radiation therapy of head-and-neck and upper thorax region, thyroid gland could be a critical organ irradiated partially or completely with high energy photon beams. In other words, this gland can be located inside the therapeutic beam due to its proximity to the gross tumor volume (GTV) in irradiation of supraclavicular lymph nodes for breast cancer (BC), cervical region for head-and-neck cancers (HNCs) and Hodgkin’s lymphoma (HL) (Figure 1). HNCs comprise cancers found in paranasal sinuses, nasal cavity, oral cavity, tongue, salivary glands, larynx, and pharynx (i.e. nasopharynx, oropharynx, and hypopharynx). In addition to surgery as a treatment for most of the advanced HNCs, the main treatment technique is sole radiation therapy or radiation therapy combined with chemotherapy either as concurrent or adjuvant treatment. BC is considered as the second most common cancer and the fifth most common cause of cancer-related mortalities among women. While BC rates are higher among women in more developed regions, global rates are increasing in nearly every area of the world [8,9]. Postoperative radiation therapy to the supraclavicular region is prescribed for BC patients who have lymph node metastasis [10]. Classical HL is predominantly a nodal-based disease identified by the presence of Reed–Sternberg cells residing in a mixture of non-neoplastic reactive cells. HL may scarcely express its first manifestation in the form of a disorder in extra-nodal site, such as the gastrointestinal tract, nasopharyngeal region, central nervous system, kidney or other sites [11].

Primary hypothyroidism is a known late side effect which stems from irradiation of the thyroid gland during radiation therapy of different neoplasms like HL, HNCs, and BC leading to reduction in hormonal production of thyroid gland [12-14]. Diagnosis of primary hypothyroidism is interpreted as clinical or subclinical hypothyroidism, depending on laboratory results.
of the patient serum sample and symptoms like depression, chronic fatigue, weight gain, hoarseness, skin dryness, hair loss, forgetfulness, muscle weakness, increased sensitivity to cold, slower heart rate, hypercholesterolemia, and accelerated atherosclerosis [12,15]. Clinical hypothyroidism (CHT) is characterized by an elevated level of thyroid-stimulating hormone (TSH) and low level of free thyroxin (FT4). On the other hand, subclinical hypothyroidism (SHT) is characterized by a normal level of FT4 and high level of TSH. In SHT, symptoms like hypercholesterolemia and accelerated atherosclerosis may be manifested too [12,15,16]. Central hypothyroidism is another toxicity that happens after radiation therapy of cranial and spinal malignancies, HNCs, and lymphomas which attenuates the release or stimulation of related hormones from brain’s hypothalamus or pituitary gland [17]. Moreover, other toxicities like hyperthyroidism, benign adenoma, Graves’ disease and thyroid cancer have been reported in the literature [12,15,18]. However, it should be reminded here that central hypothyroidism was not considered in this review. According to studies, primary hypothyroidism following radiation therapy occurs at a median interval of 1.4-1.8 years. However, it has been reported even 3 months or 20 years with a peak of incidence within the first 1 to 3 years after radiation therapy [15,19-21]. Generally, the incidence of hypothyroidism is in the range of 3% to 92%, but it mostly varies from 20% to 50% after radiation therapy of HNCs and HL [12,15-19]. However, the incidence of hypothyroidism following irradiation to the supraclavicular region in patients with BC has been remained unclear [14,22-24]. Radiation-induced thyroid malfunction and manifestation of its symptoms can be neglected and attributed to other diseases in cancer survivors due to clinical sophistication in interpreting observed radiation complications especially in the pediatric ones.

Hence, by considering increased risk of morbidty and mortality associated with inappropriate or lack of treatment of hypothyroidism, such as cardiac disease, congenital birth defects, and myxedema, it is crucial to diagnose and treat this disease timely in cancer survivors and most notably, regard its risk when planning radiation treatment techniques in cancer patients.

This review covers the papers from 2010 to the end of 2017 indexed in PubMed and Scopus database which focused on NTCP modeling of primary hypothyroidism induced by ionizing radiation in patients who received 3-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for BC, HNCs and HL. The papers discussing possible risk factors concerning radiation-induced hypothyroidism (RHT) are also included. Any papers included in this study other than the mentioned publication date are also used to provide primary knowledge about the subject.

Radiation-induced pathophysiology of thyroid gland

The most harmful effect of ionizing radiations is their ability to induce biochemical changes in cells’ genetic integrity which may then cause malignancy or produce other functional damages in irradiated tissues and organs. Generally, chronic damage of ionizing radiation can be detected by the rate of mitotic divisions occurring in the irradiated tissues, by the amount of damage to vascular tissues, and by the duration of the observation period. In radiation therapy, radiation dose levels of several grays may lead to ‘cell death’ event which occurs later, usually as the cell re-enters mitosis cycle [25]. The endocrine tissues, except for ovaries, are defined as typical radio-resistant tissues in which mitosis does not happen.
frequently, i.e. they usually manifest minimal damage after therapeutic radiation dose levels. According to initial experimental and clinical studies, thyroid gland has been demonstrated as relatively resistant organ to external beam irradiation [25]. From radiobiological point of view, thyroid gland is a typical organ with a parallel arrangement of its functional subunits (FSUs) [26,27]. The pathophysiology of iatrogenic diseases of this gland is influenced by multiple mechanisms and it is supposed to be associated with destruction of vessels. However, the mechanisms of this complication are mostly unknown [28,29]. Concisely, function of epithelial follicle cells is inhibited and endothelium is modified in stages by radiation. This process leads to necrosis of cells, disturbance of follicles, degeneration and thrombosis of vessels, acute and chronic inflammation (thyroiditis), and partial new formation of epithelial cells [28,29]. Additionally, echogenicity changes of thyroid gland and blood vessels have been displayed by diagnostic ultrasound during radiation therapy and ensuing development of acute thyroiditis pertains to vessel changes [30]. Morphological changes of great importance include atrophy, chronic thyroiditis with spread of lymphocytes, fibrosis of vessels, imbalanced and focal hyperplasia of follicular cells [15,31,32].

Risk factors affecting thyroid gland

Risk factors affecting the function of thyroid gland can be categorized into two groups of patient-based and treatment-based. Potential patient-based risk factors affecting the development of hypothyroidism include younger age, gender [12,33,34], genetic proneness [35] and such typical environmental factors as iodine intake and cigarette smoking [36-38].

In treatment-based factors, higher radiation volume or bilateral neck irradiation [20,39], addition of chemotherapy or neck surgery [12,33,34], mantle field irradiation, radiotherapy of spine from C2–T2, Waldeyer’s tonsillar ring and neck, irradiation of brain stem, radiotherapy of supravclavicular and nasopharyngeal regions augments the risk of hypothyroidism [12,19,20,34,40,41]. Likewise, higher radiation dose to thyroid gland further increases the risk of hypothyroidism [17,42,43].

Determination of a clear dose-volume threshold value for thyroid gland

Thyroid gland is located below the larynx on each side and anterior to the trachea. It is one of the largest of the endocrine glands, normally weighing 15 to 20 grams in adults. In treatment planning for radiation therapy, the volume of thyroid gland can be readily defined and contoured by radiation oncologist using images acquired from different imaging modalities including computed tomography (CT) and magnetic resonance (MR) imaging. A typical representative contour of thyroid gland and the related cumulative DVHs (Dose-volume Histograms) are shown in Figure 2.
in 8%, 13%, and 35% of patients, respectively [51]. However, the main aim of that study was a direction to a clinical need according to information and technology up to that time. For example, external beam radiation therapy with conventional fractionation used to be the only treatment modality and DVHs were not in routine clinical use at that time.

Considering 3D-CRT for HNCs, Akgun et al. retrospectively evaluated radiation dose-volume factors for a median follow-up of 47 months in 106 patients with HNCs (fraction size of 1.8 or 2 Gy and a total median dose of 60 Gy; range, 36–70 Gy). They emphasized V30 as a possible useful tool for evaluating the risk of RHT during an individual patient’s treatment planning [44]. Also, in a retrospective study by Fujiwara et al., dose-volume threshold was determined for developing thyroid dysfunctions in 116 patients with HNCs (fraction sizes 2 Gy) after a median follow-up of two years. In this study, a mean thyroid dose of 30 Gy was reported as a useful threshold for predicting the development of RHT [47].

There are several studies about IMRT of HNCs and HL which evaluated the threshold dose for RHT. For example, Cella et al. retrospectively studied dose-volume constraints in 53 patients with HL (median tumor dose, 32 Gy; range, 30–36 Gy) after sequential chemoradiotherapy during a median follow-up period of 32 months. In their study, V30 of thyroid gland predicted the risk of developing RHT which can be regarded as a useful dose constraint during HL treatment planning [45]. Chyan et al. followed 123 patients with oropharyngeal cancer (OPC) (fraction sizes 2.12 Gy) during a median follow-up of 4.6 years to define dosimetric predictors for development of RHT. The volume fraction of thyroid gland receiving over 45 Gy (V45) was estimated to increase the risk of developing RHT significantly [46].

Sachdev et al. examined dosimetric and clinical parameters after a median follow-up period of 50 months in 75 patients with head-and-neck squamous cell cancer (HNSCC). The parameter of V50 was the marker that highly predicted the risk of developing RHT [48].

Kim and Yeo evaluated dosimetric advantages of VMAT compared to conventional radiation therapy for incidence of RHT in 15 patients with early stage squamous cell carcinoma of the larynx (fraction sizes 2.25 Gy). For thyroid gland, the dosimetric parameters of treatment plans including Dmean, V30 and V50 were compared. Consequently, they found that these parameters were significantly lower in VMAT than in conventional RT. Regarding the NTCP model developed for prediction of RHT by Boomsma et al. [52], Kim and Yeo indicated that the VMAT yielded remarkably better dose volume parameters for the thyroid gland. In conclusion, one of the dosimetric advantages of VMAT was lower probability of RHT following RT in patients with early stage glottic cancer [53].

Dose-volume predictors for hypothyroidism in treatment of BC

Akyurk et al. prospectively investigated thyroid disorders in 28 patients with BC at a median follow-up of 25 months. In this study, V20, V30, V40 and Dmean of thyroid ≥ 36 Gy were found to influence significantly on development of RHT, whereas Vmean of thyroid was not associated with development of RHT. Additionally, the incidence of RHT was reported 21% in their patient population [22].

Kikawa et al. prospectively surveyed the influence of radiation on thyroid in 42 patients with BC whose supraclavicular region was irradiated. In this survey, after a median follow-up of 30 months, patients with thyroid volume less than 8 cm³ were observed with a higher prevalence of RHT. Thus, lower volumes of thyroid gland were identified as a predictive factor of both CHT and SHT. In this cohort, the prevalence of RHT in Japanese patients was relatively low compared with similar previous reports [23].

Other studies from 2010 to 2017 with respect to possible factors and the risk of RHT are listed in Table 1.

NTCP modeling for radiation-induced hypothyroidism

In the most general sense, the dose-response relationship for tumors and normal tissues are described by a variety of mathematical functions demonstrated by sigmoidal curves. Among the radiobiological models, three major ones including Probit, Logistic, and Poisson have been widely used in the literature (Figure 3). As illustrated in Figure 3, there is a sigmoid dose-response relationship for these models. The differences basically originate from the mathematical algorithm and considered parameters of models.

![Figure 3](image_url)

Figure 3. The three statistical functions frequently used in NTCP models to demonstrate the shape of the dose-response curve for hypothyroidism endpoint. The data were derived from head-and-neck and breast cancer patients (unpublished data), the radiobiological parameters of D50= 44 Gy and γ50= 1.49 were considered.
Table 1. Selected studies based on dose-volumetric data for development of RHT after treatment of HNC, BC and HL (continued on the next page).

<table>
<thead>
<tr>
<th>Study</th>
<th>No of patients surveyed</th>
<th>Cancer site</th>
<th>Surgery involved</th>
<th>Radiation therapy technique</th>
<th>Endpoint</th>
<th>Thyroid dose determined (Gy)</th>
<th>Dose per fraction (Gy)/total dose (Gy)</th>
<th>Incidence risk of HT</th>
<th>Risk factors of HT</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaz et al.* (2010)[69]</td>
<td>144</td>
<td>HN</td>
<td>No</td>
<td>IMRT</td>
<td>Biochem. HT</td>
<td>Yes</td>
<td>2.1</td>
<td>1-year: 23% 3-years: 53%</td>
<td>Age, V₇</td>
<td>NA</td>
</tr>
<tr>
<td>Wu et al.* (2010)[70]</td>
<td>408</td>
<td>NPC</td>
<td>No</td>
<td>-</td>
<td>SHT, overt HT</td>
<td>No</td>
<td>-</td>
<td>5-years: 15.7% SHT, 9% overt HT, 10-years: 19% overt HT</td>
<td>Age<30, 3D-CRT (overt HT), gender, low T-stage, 3D-CRT (SHT)</td>
<td>NA</td>
</tr>
<tr>
<td>Lin et al.* (2011)[71]</td>
<td>45</td>
<td>NPC</td>
<td>No</td>
<td>-</td>
<td>Biochem. HT</td>
<td>Yes</td>
<td>-</td>
<td>Crude: 27% after 18 months</td>
<td>RT mean dose</td>
<td>NA</td>
</tr>
<tr>
<td>Srikanthia et al.* (2011)[72]</td>
<td>45</td>
<td>43 HN, 2 NPC</td>
<td>n=2</td>
<td>Cobalt 60 teletherapy</td>
<td>Clinical HT, SHT</td>
<td>Yes</td>
<td>1.8-2</td>
<td>Crude: 42.2% (31.1% clinical HT) after 9 months</td>
<td>Elder age, D₇ <40 Gy</td>
<td>NA</td>
</tr>
<tr>
<td>Siala et al.* (2011)[73]</td>
<td>239</td>
<td>NPC</td>
<td>No</td>
<td>3D-CRT</td>
<td>Biochem. HT, clinical HT & central HT</td>
<td>No</td>
<td>2 (3D-CRT), 1.6 (Hyperfractionated regimen)</td>
<td>24% (73% biochemical HT, 19% clinical HT), 8% central HT</td>
<td>Gender (univariate)</td>
<td>NA</td>
</tr>
<tr>
<td>Vogelius et al.* (2011)[68]</td>
<td>Published studies based on OR for HT studies reporting data on HT after RT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A dose-response relation with a 50% risk at TD=45Gy</td>
<td>Gender, race, neck surgery, surgery involving thyroid</td>
<td>NA</td>
</tr>
<tr>
<td>Johansen et al.* (2011)[60]</td>
<td>32</td>
<td>BC</td>
<td>MRM (12) BCS (4)</td>
<td>3D-CRT</td>
<td>Biochem. HT, overt HT</td>
<td>Yes</td>
<td>50 (13) 50+10 (3)</td>
<td>Not reported</td>
<td>V₇, V₅₀ V₃₀</td>
<td>NA</td>
</tr>
<tr>
<td>Boomsma et al.* (2011)[21]</td>
<td>57-390 based on 5 studies</td>
<td>HN</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23-53%</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>Cella et al.* (2012)[45]</td>
<td>53</td>
<td>LH</td>
<td>No</td>
<td>IMRT</td>
<td>Biochem. HT</td>
<td>Yes</td>
<td>Median total dose: 32 2-year: 43.5%, 5-years: 49.1%</td>
<td>V₅₀>62.5% V₅₀<62.5%</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Rønjom et al.* (2013)[58]</td>
<td>203</td>
<td>HNSCC</td>
<td>No</td>
<td>IMRT</td>
<td>Biochem. HT</td>
<td>Yes</td>
<td>2</td>
<td>V₇ & D₅₀₀</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Lo Galbo et al.* (2013)[32]</td>
<td>137</td>
<td>HN</td>
<td>n=40</td>
<td>-</td>
<td>SHT, overt HT</td>
<td>No</td>
<td>-</td>
<td>Crude: 47.4% (27.7% SHT, 19.7% overt HT)</td>
<td>Neck dissection, laryngectomy, hemithyroidectomy & elder age</td>
<td>NA</td>
</tr>
<tr>
<td>Lin et al.* (2013)[74]</td>
<td>65</td>
<td>NPC</td>
<td>No</td>
<td>-</td>
<td>Biochem. HT, overt, SHT & central HT</td>
<td>Yes</td>
<td>-</td>
<td>18-months incidence: 23%</td>
<td>D₅₀₀>50 Gy to thyroid and pituitary gland and thyroid gland only</td>
<td>NA</td>
</tr>
<tr>
<td>Lin et al.* (2014)[75]</td>
<td>50</td>
<td>NPC</td>
<td>No</td>
<td>-</td>
<td>Biochem. HT, overt, SHT & central HT</td>
<td>No</td>
<td>-</td>
<td>1-year: 22%</td>
<td>No report</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations:
- MRM: Modified radical mastectomy;
- BCS: Breast conserving surgery (lumpectomy);
- SHT: Subclinical hypothyroidism;
- Biochem. HT: Biochemical hypothyroidism;
- Vₓ: The volume of the thyroid gland receive doses ≥x Gy;
- VSₓ: The volume of the thyroid gland spared from doses ≥x Gy;
- VT: Thyroid gland volume;
- DT: Thyroid gland dose;
- OR: Odds ratio;
- ENI: Elective node irradiation;
- NA: Not applicable;
- #: Meta-analysis study;
- *: Prospective methodology;
+: Retrospective methodology;
- #: Systematic review.
Table 1 (cont’d). Selected studies based on dose-volumetric data for development of RHT after treatment of HNC, BC and HL.

<table>
<thead>
<tr>
<th>Study</th>
<th>No of patients surveyed</th>
<th>Cancer site</th>
<th>Surgery involved</th>
<th>Radiation therapy technique</th>
<th>Endpoint</th>
<th>Thyroid dose determined (Gy)</th>
<th>Dose per fraction (Gy)/total dose (Gy)</th>
<th>Incidence risk of HT</th>
<th>Risk factors of HT</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murthy et al.* (2014)[76]</td>
<td>89</td>
<td>HN</td>
<td>No</td>
<td>3D-CRT, IMRT</td>
<td>Biochem. HT, overt & SHT</td>
<td>Yes</td>
<td>2 (3D-CRT), 2.25 (IMRT)</td>
<td>Crude: 55% (16% overt, 39% SHT)</td>
<td>Younger age, primary site, node* & Dmin=100 & higher dose/fraction in IMRT cohort</td>
<td>NA</td>
</tr>
<tr>
<td>Akgun et al.* (2014)[44]</td>
<td>100</td>
<td>88 HN, 12HL</td>
<td>n=30</td>
<td>3D-CRT</td>
<td>Biochem. HT</td>
<td>Yes</td>
<td>2</td>
<td>Crude: 52% Vr, Dmax & VS (univariate)</td>
<td>V<sub>30</sub></td>
<td></td>
</tr>
<tr>
<td>Akyurek et al.* (2014)[24]</td>
<td>28</td>
<td>BC</td>
<td>MRM (19) BCS (9)</td>
<td>3D-CRT</td>
<td>Clinical HT, SHT</td>
<td>Yes</td>
<td>50+10 (19) 50 (9)</td>
<td>1-year: 14% 2-years:21% Dmax, V<sub>20</sub>, VS & V<sub>30</sub></td>
<td>Dmax<36 Gy</td>
<td></td>
</tr>
<tr>
<td>Kim et al.* (2014)[63]</td>
<td>114</td>
<td>85 HN, 29 NPC</td>
<td>n=33</td>
<td>3D-CRT (50), IMRT (64)</td>
<td>Biochem. HT</td>
<td>Yes</td>
<td>2 (3D-CRT), 2.25 (IMRT)</td>
<td>Crude: 46% V<sub>45</sub><65% V<sub>45</sub><50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chyan et al.* (2014)[46]</td>
<td>123</td>
<td>OPC</td>
<td>n=27</td>
<td>IMRT</td>
<td>Biochem. HT, overt & SHT</td>
<td>Yes</td>
<td>2.12</td>
<td>Crude: 61% (54% overt) V<sub>r</sub> (univariate)</td>
<td>V<sub>45</sub></td>
<td></td>
</tr>
<tr>
<td>Sachdev et al.* (2014)[48]</td>
<td>75</td>
<td>70 HN, 5 NPC</td>
<td>n=16</td>
<td>IMRT</td>
<td>Biochem. HT</td>
<td>Yes</td>
<td>Median total dose: 70</td>
<td>Crude: 33% V<sub>50</sub><60% V<sub>50</sub><<60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lauro et al.* (2014)[77]</td>
<td>22</td>
<td>Pediatric brain tumor</td>
<td>No</td>
<td>3D-CRT</td>
<td>Clinical HT, SHT</td>
<td>Yes</td>
<td>Total dose: 18-36</td>
<td>Crude: 59% Dmean of thyroid NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim & Yeo (2014)[53]</td>
<td>15</td>
<td>HN</td>
<td>No</td>
<td>VMAT</td>
<td>Primary HT</td>
<td>Yes</td>
<td>2.25</td>
<td>-</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Fujiwara et al.* (2015)[47]</td>
<td>101</td>
<td>93 HN, 8 NPC</td>
<td>n=22</td>
<td>3D-CRT</td>
<td>SHT</td>
<td>Yes</td>
<td>2</td>
<td>1-year: 21.1%, 2-years: 36.4%, 3-years: 48.3% Dmean< 30 Gy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al.* (2016)[79]</td>
<td>149</td>
<td>NPC</td>
<td>-</td>
<td>IMRT</td>
<td>Biochem. HT, clinical HT</td>
<td>Yes</td>
<td>-</td>
<td>Crude: 36.2% (14.1% Clinical HT) V<sub>r</sub>, V<sub>50</sub>, VS (multivariate) VS<sub>50</sub> & VS<sub>60</sub> Dmax & VS<sub>60</sub> & VS<sub>50</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonnmat et al.* (2017)[62]</td>
<td>102</td>
<td>NPC</td>
<td>No</td>
<td>IMRT</td>
<td>SHT, overt HT</td>
<td>Yes</td>
<td>1.8-2</td>
<td>2-years: 43.1% V<sub>40</sub><85% V<sub>30</sub><<85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunio et al.* (2017)[61]</td>
<td>40</td>
<td>BC</td>
<td>MRM: (15) BCS: (25)</td>
<td>3D-CRT</td>
<td>Clinical HT, SHT</td>
<td>Yes</td>
<td>2</td>
<td>Crude: 15% V<sub>r</sub>, V<sub>50</sub><50% V<sub>50</sub><50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kikawa et al.* (2017)[25]</td>
<td>42</td>
<td>BC</td>
<td>Not reported</td>
<td>3D-CRT</td>
<td>SHT, Clinical HT</td>
<td>No</td>
<td>2</td>
<td>5-years prevalence: Clinical HT: 14.3% SHT: 2.4% V<sub>r</sub> < 8cm³</td>
<td>V<sub>50</sub></td>
<td></td>
</tr>
<tr>
<td>Zhai et al.* (2017)[49]</td>
<td>135</td>
<td>NPC</td>
<td>n=3</td>
<td>IMRT</td>
<td>Primary HT</td>
<td>Yes</td>
<td>1.7-2.2</td>
<td>2-years: 29.6%, 3-years: 44% Younger age, Dmax for thyroid gland<45 Gy V<sub>45</sub><0.5 & V<sub>50</sub><0.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:
MRM: Modified radical mastectomy;
BCS: Breast conserving surgery (lumpectomy);
SHT: Subclinical hypothyroidism;
Biochem. HT: Biochemical hypothyroidism;
Vx: The volume of the thyroid gland receive doses ≥x Gy;
VSx: The volume of the thyroid gland spared from doses ≥x Gy;
VT: Thyroid gland volume;
DT: Thyroid gland dose;
OR: Odds ratio;
ENI: Elective node irradiation;
NA: Not applicable;
 #: Meta-analysis study;
*: Prospective methodology;
**: Retrospective methodology;
 #: Systematic review.
Table 2. Studies based on treatment-clinical and radiobiological NTCP modeling

<table>
<thead>
<tr>
<th>Study</th>
<th>No of patients surveyed</th>
<th>Radiation therapy technique</th>
<th>Cancer site</th>
<th>Endpoint</th>
<th>Baseline thyroid function</th>
<th>Baseline thyroid function</th>
<th>Incidence risk of HT or risk factors</th>
<th>Model</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boomsma et al.* (2012)</td>
<td>105</td>
<td>3D-CRT (70), IMRT (35)</td>
<td>HN</td>
<td>Biochem. HT Yes</td>
<td>2-years: 36%</td>
<td>$\frac{1}{1+e^{-\gamma \cdot D}}$</td>
<td>S</td>
<td>0.011 + (0.062 * D_{mean}) + (0.19 * V_T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cella et al.* (2012)</td>
<td>53</td>
<td>3DCRT</td>
<td>HL</td>
<td>Biochem. HT Yes</td>
<td>2-year: 43.5%, 5-years: 49.1%</td>
<td>$\frac{1}{1+e^{-0.005 \cdot D}}$</td>
<td>g(x)</td>
<td>1.94 + (0.265 * V_T) - (2.21 * gender) - (0.268 * V_T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rønjom et al.* (2013)</td>
<td>203</td>
<td>IMRT</td>
<td>HNSCC</td>
<td>Biochem. HT Yes</td>
<td>1-year: 12%, 5-years: 26% & D_{mean}</td>
<td>$\frac{1}{1+e^{-\gamma \cdot D}}$</td>
<td>S</td>
<td>Logistic model: S= -2.019 + (0.0821 * D_{mean}) + (0.1162 * D_{mean}) - (0.2873 * V_T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakhshandeh et al.* (2013)</td>
<td>54 HN, 11 NPC</td>
<td>3D-CRT</td>
<td>HN</td>
<td>SHT Yes</td>
<td>1-year: 45%</td>
<td>$\frac{1}{1+e^{-\gamma \cdot D}}$</td>
<td>S</td>
<td>0.011 + (0.062 * D_{mean}) + (0.19 * V_T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakhshandeh et al.* (2013)</td>
<td>54 HN, 11 NPC</td>
<td>3D-CRT</td>
<td>HN</td>
<td>Clinical HT Yes</td>
<td>1-year: 45%</td>
<td>$\frac{1}{1+e^{-\gamma \cdot D}}$</td>
<td>S</td>
<td>0.011 + (0.062 * D_{mean}) + (0.19 * V_T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D’Avino et al., (2016)</td>
<td>100</td>
<td>3DCRT</td>
<td>HL</td>
<td>Biochem. HT Yes</td>
<td>Crude: 28%</td>
<td>$\frac{1}{1+e^{-\gamma \cdot D}}$</td>
<td>S</td>
<td>0.011 + (0.062 * D_{mean}) + (0.19 * V_T)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The realm of study in mathematical models for normal tissue responses to absorbed doses is broad and beyond the scope of this paper to discuss in detail. Several NTCP models with their inherent parameters have been explained in the literature, e.g. in Tsougos et al. [54].

Following “Emami’s paper”, Burman et al. published an accompanying article in which they fitted the Lyman-Kutcher-Burman model to tolerance data reported by Emami et al. for the clinical thyroiditis as the endpoint. The fitted parameters of n, m, and D50 for the whole volume of thyroid gland were obtained 0.22, 0.26, and 80 Gy, respectively [55]. Nevertheless, there are some limitations which make Emami’s paper not to be considered as a comprehensive and applicable guideline for all cases [56]. However, up to now, few published papers have focused on NTCP modeling of thyroid gland for hypothyroidism endpoint. Related studies on NTCP modeling of thyroid gland are listed in Table 2.
Recently, Bakhshandeh et al. [26] prospectively determined the dose-response relationship of the thyroid gland for RHT in 65 HNC patients (fraction sizes 1.8-2 Gy with consideration of α/β=3 Gy). They applied up to six different radiobiological models for estimation of NTCP, and analyzed the data obtained from one-year post-radiotherapy follow-up based on laboratory results of the patient serum samples (TSH, T3, T4, FT3 and FT4 levels). They found the best-fit parameters of the models by evaluating SHT and CHT separately. In their study, all of the models were in agreement with follow-up data according to goodness of fit measures. Finally, among the studied models, the mean dose model was introduced as the robust model to describe the dose-response relationship for RHT, whereas Lyman equivalent-uniform-dose (LEUD) model ranked second. For SHT endpoint, tolerance dose parameter was reported for 5 NTCP models ranging from 38.5 Gy (for the population critical volume model) to 44.3 Gy (for the Lyman EUD model). In addition, analyzing the parameters responsible for volume effect in all of six models showed a parallel structure for the thyroid gland (i.e. n in the Lyman EUD and logit EUD models, s in the relative seriality model, λ in the individual critical volume model, and µcr in the population critical volume model). The fitted value of m parameter was 0.25 in the LEUD model. Optimal values of the parameters for each model with 95% confidence intervals are shown in Table 2. For CHT endpoint, they performed another fitting on the obtained follow-up data using four models including mean dose, Lyman EUD, logit EUD, and relative seriality (RS). The fitted value for tolerance dose parameter was estimated as 60 Gy. Their reported optimal values of the parameters for each model with 95% confidence intervals are shown in Table 2.

More recently, D’Avino et al. [27] retrospectively estimated the parameters of Lyman-Kutcher-Burman (LKB) and RS models for RHT in 100 HL patients based on laboratory results of the patient serum samples (TSH, FT3 and FT4 levels) at a median follow-up of 73.5 months (fraction sizes 1.5–1.8 Gy). Parameters of volume effect in both models showed a parallel structure for the thyroid gland. Then, they compared the prediction results of the models with that of a 3-variable critical volume model. The fitted value for tolerance dose parameter was estimated as 30 Gy. Their reported optimal values of the parameters for each model with 95% confidence intervals are shown in Table 2.

Apart from dose-volume parameters as previously presented, a set of other clinical and (pre)treatment variables may be associated with the development of RHT inclusive of age, diabetes mellitus [17], (hemi-) thyroidectomy, laryngectomy, neck dissection, and chemotherapy [17,31,34]. To this end, three studies have been conducted on developing multivariate NTCP models based on clinical and (pre)treatment parameters to predict RHT in HNC, BC, and HL patient cohorts [52,57,58]. Boomsma et al. [52] prospectively pioneered a multivariate NTCP model during 2.5 year follow-up of 105 HNC patients based on laboratory results of the patient serum samples (TSH and T4 levels). Their constructed multivariate NTCP model based on two variables included the mean dose and volume of thyroid gland (Table 2). Higher mean dose for thyroid gland resulted in larger values of NTCP (P<0.001), with an odds ratio of 1.064/Gy (95% confidence intervals). Besides, larger volume of thyroid gland exhibited smaller values of NTCP (P=0.001) with an odds ratio of 0.826/cm3 (95% confidence intervals). In other similar study, Cella et al. [57] retrospectively developed two multivariate NTCP models for RHT in 53 HL patients with a median follow-up of 32 months (1.5–1.8 Gy). The 3-variable model including absolute thyroid volume exceeding 30Gy (V30(cc)), thyroid gland volume (VT) and gender (P<0.001) provided an optimal prediction compared with the 2-variable model including the thyroid volume exceeding 30Gy (V30(%)) and gender. Their multivariate logistic regression model for the risk of RHT are given in Table 2. In their study, the two models were compared with Boomsma’s NTCP model for RHT. As a consequence, the 3-variable model seemed to work out better for predicting RHT in other external patient populations.

Ronjom et al. [58] retrospectively derived an NTCP model from 203 patients with HNSCC with a median follow-up of 25.1 months (fraction size of 2 Gy) for RHT development. Data were analyzed with both a logistic and a mixture model (including latency time correction) to determine risk factors of RHT. Mixture model defined thyroid gland volume, thyroid gland mean dose, and latency time as predictive parameters. In this survey, the five-year incidence of RHT was 26%. In order to maintain the risk percentage below 26%, dose constraints of 26 Gy, 38 Gy, 48 Gy and 61 Gy (Dmean) for thyroid gland volumes of 10, 15, 20 and 25 cm3 was proposed respectively on the basis of the mixture NTCP model. Both models are listed in Table 2. In another study by Ronjom et al. [59] variations of their previously developed NTCP mixture model in relation to changes in delineation of the thyroid gland were inspected for RHT estimation. In this study, the thyroid gland was outlined in 246 treatment plans of patients with HNSCC. Ultimately 46 of these plans were arbitrarily selected for blinded re-delineation to survey intra- and inter-observer variability of thyroid gland volume, thyroid gland mean dose and NTCP estimations for RHT. Consequently, the variation resulted from NTCP model for prediction of RHT risk in HNC patients was small, thereby the model was robust opposed to observer variations in delineation of the thyroid gland. Despite this, large differences may exist in estimated risk for an individual patient which make it necessary to contour the thyroid gland more precisely for acquisition of accurate dose and NTCP estimations in treatment planning of individuals.

Conclusions and perspectives

Incidence of RHT, its clinically acceptable risk level, and certain factors associated with RHT have been studied by
numerous studies. However, its radiobiological modeling for radiation therapy purpose has been the subject of few investigators. Different mathematical models have been used to predict the response of thyroid gland after radiation therapy. However, it needs more detailed research to provide a comprehensive model for prediction of thyroid response to radiation therapy.

Comparing the NTCP models developed by Boomsma et al., Cella et al., and Rnjom et al. which provided noticeable results, indicates that these NTCP models had 'thyroid volume' parameter in common and all the three studies identified the importance of this parameter in developing RHT. In other words, larger thyroid volume caused a significant decrease in the incidence of RHT [52,57,58]. On the other hand, the observed variations in the values of D50, n, and m can be ascribed to other factors like sample size, race, cancer type, treatment planner’s skill, accuracy in delineation of thyroid gland by a radiation oncologist, and choice of endpoint.

From the reviewed studies, it can be concluded that logistic NTCP models offer slightly higher effectiveness for predicting RHT compared to other radiobiological NTCP models [27].

Finally, in all NTCP modeling studies, statistical analyses and developing NTCP models were dependent on the choice of endpoint. Assessment of the hormone levels of thyroid gland for endpoint definition determines its dose-response relationships [26,27,58].

Different dose-volume constraints have been reported by the current studies. For instance, volumes of V50 [23,44,45,60,61], V40 [62], V45 [46,49,63] and V50 [48] in patients with BC, LH, and HNC have been considered as useful dose constraints for treatment planning optimizations, though higher certainty in the threshold value of dose-volume for thyroid gland will require more comprehensive studies. While D’Avino et al. [27] reported the value of D50 = 37.3 Gy for biochemical hypothyroidism, the threshold doses of D50 = 44 Gy for SHT and D50 = 60 Gy for CHT were estimated by Bakhshandeh et al. [26] which were approximately compatible with the values of D50 = 45 Gy, D50 = 60 Gy and D50 = 70 Gy reported by Emami et al. for induction of CHT within five years [51]. In the same study, it was shown that at least two-thirds of the volume should be injured in order to induce CHT [51]. In radiobiological modeling for hypothyroidism, the volume effect was considered as “n” parameter in all the studies in which the values of n = 0.99 and n = 0.92 were applied for estimation of SHT by the LKB model. These data were completely in agreement with the concept of volume effect in parallel structures [64-66].

In total, among potential clinical factors of developing RHT, neck surgery can substantially influence the risk of RHT, thus, the presence of post-surgery patients in the study population will increase the likelihood of RHT incidence [67,68]. Also, authors found no impact of adjuvant chemotherapy with agents such as cisplatin, 5Fluoro-Uracil, epirubicin, and cyclophosphamide on thyroid gland function [26,60], while gender and age were found to be the most significant predictors of developing RHT [26,57,68]. According to the conclusion by Jereczek-Fossa et al., it is still controversial whether chemotherapy has an effective role as a risk factor for RHT development [16].

It should also be noted that other causes of hypothyroidism such as medications which interfere with thyroid hormone production have not been considered in all reviewed studies. With respect to the knowledge resulted from reviewed papers, more studies are needed to determine certain variables and develop new multivariate NTCP models in order to demonstrate their external validation in independent datasets for RHT prediction.

As little information is in hand on modeling for RHT, it is still demanding to conduct more studies in both prospective and retrospective methodology by considering other potential methods such as artificial neural network. Besides, application of other imaging technologies such as MRI, PET, and 4DCT data in future studies can provide more accurate data for efficient radiobiological modeling.

In the end, it seems that the incidence of hypothyroidism could further increase with a longer follow-up time [19]. However, the developed NTCP models can be used exclusively in the follow-up time mentioned by investigators to estimate the risk of RHT [52].

Acknowledgements

The authors would like to thank immunology research center of Tabriz University of Medical Sciences for financial support of this research as an MSc thesis in the field of Medical Physics.

References

Namdar et al. Radiation-induced hypothyroidism in radiation therapy: review

Norris AA, Amdur RJ, Morris CG, Mendenhall WM. Hypothyroidism when the thyroid is included only in the low neck field during head and neck radiotherapy. Am J Clin Oncol. 2006;29(5):442-445.

