Preparation of activated carbon from the biodegradable film for CO₂ capture applications

J. Serafin¹, A.K. Antosik², K. Wilpiszewska³, Z. Czech²

West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Pulaskiego 10, 70-322 Szczecin, Poland
¹Institute of Inorganic Chemical Technology and Environment Engineering
²Institute of Organic Chemical Technology
³Polymer Institute
Corresponding author: e-mail: Jaroslaw.Serafin@zut.edu.pl

In this work for the first time, activated carbons were prepared from carboxymethyl film (low-cost carboxymethyl film waste), using chemical activation with potassium hydroxide. The samples were characterized by nitrogen adsorption-desorption at 77 K, XRD, SEM methods. The high values of the specific surface area and total pore volume were achieved and were equal to 2064 m²/g and 1.188 cm³/g, respectively. Waste from the film can be immediately utilized without CO₂ production. This is the environmentally friendly way of waste utilization. Through this process, we can protect our environment. This study showed that the activated carbon obtained from carboxymethyl film waste can be used as a good adsorbent for CO₂ adsorption.

Keywords: A biodegradable film activated carbon, adsorption, CO₂, capture.

INTRODUCTION

Growing global concerns on the environmental, social and economic effect of greenhouse gases (GHG) emissions motivated the development various strategies for GHG reduction1. The major GHG are CO₂ and CH₄. The main sources of CO₂ are fossil fuel combustion, deforestation, cement production. The main sources of CH₄ are fossil fuel production, agriculture, landfills.

Methane has a global warming potential 25 times² that of CO₂ but it is also valuable raw material mainly for syngas production. The most widely practiced production route of syngas (hydrogen and carbon oxide) is steam reforming. Unfortunately this process requires high temperatures (800–900°C)³ which makes it expensive. Alternatively, CO₂ can be used to produce syngas in conjunction with methane by the dry reforming⁴. This is alternative solution for CO₂ and CH₄ utilisation and economic effect of greenhouse gases (GHG) emissions motivated the development various strategies for GHG reduction¹. The major GHG are CO₂ and CH₄. The main sources of CO₂ are fossil fuel combustion, deforestation, cement production. The main sources of CH₄ are fossil fuel production, agriculture, landfills. Methane can be used as fuel in cars but good methane sorbent is needed. Adsorbed methane technology could allow methane consumption comparable to the other conventional petroleum-based fuels. Activated carbons can be applied as methane sorbents³⁶–³⁹.

There are many attempts for CO₂ utilization as a raw material e. g. photocatalytic reduction to methanol⁴⁰ but the efficiency is usually very low. Carbon dioxide is applied in industry as raw material to urea production but the urea production scale is much smaller than that of synthesis gas⁵–⁴². The most important commercially applied technology for CO₂ removal is the absorption process in amines. One major disadvantage of amine absorption processes is the high energy consumption, arising from high energy levels required to regenerate the sorbent⁴³–⁴⁵. The adsorption on solid sorbents seems more promising. Carbon materials are very good CO₂ sorbents. CO₂ adsorption on commercial activated carbons⁴⁶, modified commercial activated carbons⁴⁷–⁴⁹, carbon nanosheets⁵⁰, carbon nanotubes⁵¹–⁵³, activated carbons produced from biomass⁵⁴–⁵⁶ and from molasses⁵⁷ was investigated. Carbon materials have great potential. They can be applied also as sorbents of various chemicals⁵⁸–⁶⁰ and hydrogen⁶¹–⁶³ and even catalysts⁶⁸ or catalyst supports⁶⁹–⁷¹. They properties dependent on the carbon source and synthesis method⁷²–⁷⁷.

Biodegradable film is environmentally friendly as it eventually degrades in the soil after about a month, and without the participation of microorganisms after year⁷⁸. If oxygen is present, aerobic biodegradation occurs and carbon dioxide is produced⁷⁹. If there is no oxygen, an anaerobic degradation occurs and methane is produced instead of carbon dioxide and water⁸⁰. An application of biodegradable film is obviously more advantageous than the traditional. It also has drawbacks: a) necessity for storage of the waste before decomposed; b) production of greenhouse gases (CO₂ or CH₄) to the atmosphere.

The goal of this work was to develop a method of preparing activated carbon using hydrophilic films based on...
on carboxymethyl starch (CMS) as a carbon precursor. Such method solves problems with storage of waste before they decompose and what more important with greenhouse gases emission. According to our knowledge, production of activated carbon from CMS was not described up to now. In addition, activated carbons prepared by us are good CO2 sorbents.

MATERIAL AND METHODS

MATERIAL

CMS with a degree of substitution 0.8 was prepared according to the method described elsewhere by Spychaj et al.\(^81\). Monohydrate citric acid (CA) (p. a.), and glycerol (p.a.), potassium hydroxide (KOH) (p.a.) were delivered from Chempur (Poland).

Preparation of biodegradable CMS-based film

The film was prepared in accordance with the method reported by Spychaj et al.\(^82\) namely: 3 g carboxymethyl starch, 2 g glycerol, and 1 g citric acid was introduced to 100 g of distilled water and stirred for 30 min. The final mixture was poured into polytetrafluoroethylene (PTFE) mold and dried for 48 h at 70°C. Obtained film (thickness 200–300 μm) was used for the production of activated carbon.

Preparation of activated carbon

Contained in film crosslinking CMS were used as a carbon precursor. CMS was crushed using an electric grinder. Chemical activation of the film powdered was done with saturated solution KOH (mass ratio KOH: carbon source, 1:1) during 3 h. The mixtures were dried at 200°C for 19 h. The next step was the carbonization of materials for 1h in a horizontal tube furnace under nitrogen flow at range 500–700°C. Cooled samples were washed with distilled water, treated with 1 M HCl for 19 h period, and then washed with distilled water until neutral. In the end, materials were dried at 120°C. The materials were denoted as CMS500, CMS550, CMS650, CMS700 (in accordance with the carbonization temperature). Method of activated carbon preparation was described in Polish patent application\(^83\).

XRD

The structures of activated carbon were determined by XRD. Samples were recorded using PANalytical X-ray Empyrean diffractometer with Cu Kα radiation (λ = 1.5418 Å). The test results were analysed using the X’Pert HighStore diffraction program.

Nitrogen and sorption

The texture characterization of activated carbons was carried out by N₂ adsorption and desorption at 77 K using, a Quadrasorb automatic system (Quantachrome Instruments). Before the analysis samples were degassed overnight (16 h) under high vacuum at 250°C. The Brunauer–Emmett–Teller (BET) equation was used to determine surface areas (SBET). The total pore volume (V\(_{\text{tot}}\)) was determined at the highest value relative pressure (p/p0 = 0.99). The volume of micropores (V\(_{\text{mic}}\)) and mesopores (V\(_{\text{mes}}\)) was obtained using the density functional theory (DFT).

Carbon dioxide sorption

CO₂ adsorption was provided at pressure up to 1 bar, at a temperature of 25°C. Before the analysis samples were degassed overnight (16 h) under high vacuum at 250°C.

SEM

Scanning electron microscopy (SEM) was used to investigate the morphology of the activated carbons (UHR FE-SEM Hitachi SU8020).

RESULTS AND DISCUSSION

Properties of the CMS film are shown Table 1.

Table 1. Useful properties of CMS-based film

<table>
<thead>
<tr>
<th>Properties</th>
<th>Results for CMS-film</th>
<th>Mechanical properties</th>
<th>Results for CMS-film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture absorption</td>
<td>20% after 72 h</td>
<td>Elongation</td>
<td>78%</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>58%</td>
<td>Young modulus</td>
<td>0.2 MPa</td>
</tr>
<tr>
<td>Contact angle</td>
<td>69.9 ± 1.4</td>
<td>Tensile strength</td>
<td>3 MPa</td>
</tr>
</tbody>
</table>

Figure 1 shows results of XRD measurements. Two peaks at about 26° and 45° were observed. The peak at 20 = 26° corresponds to an interlayer distance of which grapheene sheets (JCPDS by 26-1078). The lower temperature the broader peak at 26° indicating less and less ordered and structure. The peaks very broad indication of the random turbostratic stacking of layers.

From Fig. 2 the nitrogen isotherm of CMS500 has the shape in between type I and type II according to IUPAC classification\(^84\). This type of isotherm is characterized by the micropore and mesopore structures. The H4-type hysteresis loop in the CMS500 material reveals the formation of narrow slit-like pores. Samples CMS550, CMS650 and CMS700 show type II isotherm with small hysteresis type H4.

Table 2 shows the BET surface area, total pore volume, mesopores and micropores volume values. Note that the CMS500 sample showed the highest specific surface area 2064 m²/g and the highest micropore volume 0.417 cm³/g.
but the process was very fast. The balance was fixed after about a minute.

The SEM micrographs showed the presence of macropores on the surface of all tested materials. The only surface of CMS500 is shown in Fig. 5 because the micrographs of the others materials were very similar.

Table 2. The values of specific surface area, total pore volume and micropores volume of obtained activated carbons

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET} (m2/g)</th>
<th>V_{tot} (cm3/g)</th>
<th>V_{mic} (cm3/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS 500</td>
<td>2064</td>
<td>1.188</td>
<td>0.417</td>
</tr>
<tr>
<td>CMS 550</td>
<td>443</td>
<td>0.225</td>
<td>0.151</td>
</tr>
<tr>
<td>CMS 650</td>
<td>743</td>
<td>0.377</td>
<td>0.261</td>
</tr>
<tr>
<td>CMS 700</td>
<td>849</td>
<td>0.409</td>
<td>0.278</td>
</tr>
</tbody>
</table>

Figure 2. Nitrogen adsorption-desorption isotherms for activated carbons at 77 K

Figure 3. DFT pore size distribution derived from nitrogen adsorption at 77 K of activated carbons CMS

DFT pore size distributions and cumulative pore volume curves are shown in Table 2, Fig. 3 respectively. The total pore volumes were estimated on the basis of the volume adsorbed at a relative pressure of about 0.95. The pore size distribution and micropore volume was obtained after application of the QSDFT model to the nitrogen adsorption data and assuming a slit-shape pore model. All samples have micropores locate about 1.8 nm. Generally, the micropores result from the rapid volatilization of light organics and amorphization of carbonaceous segments during direct carbonization at a relatively high temperature of 500°C. The occurrence of mesopores is visible for each CMS in the whole range from 2nm up to 35 nm where increasing. These pores are most demonstrating highest values in the range up to 7.5 nm. Obviously, CMS500 demonstrate a mesopore-dominant structure with a large mesopore value.

Figure 4 shows the sorption capacity of samples CMS. The highest sorption capacity was observer at activated carbon obtained at the temperature of 500°C and amounts to 3.52 mmol/g. The process of adsorption isotherms is typical for physical adsorption. Kinetics were not tested

Figure 4. Adsorption of CO$_2$ at 25°C for CMS500, CMS550, CMS600, CMS650, CMS700

CONCLUSION

The new carbon precursor, namely carboxymethyl starch film was used for activated carbon production. Potassium hydroxide was used as an activating agent. The high values of the specific surface area and total pore volume were achieved and were equal to 2064 m2/g and 1.188 cm3/g, respectively. It is a good alternative to solve the problem of the foil storage until it decomposes. Waste from the film can be immediately utilized without CO$_2$ production. This is the environmentally friendly way of waste utilization. Through this process, we can protect our environment. The activated carbons described here are good materials for removing CO$_2$ from the atmosphere.

LITERATURE CITED

