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This paper presents the results of nonlinear statistical modeling of the bauxite leaching process, as part of Bayer 
technology for alumina production. Based on the data, collected during the year 2011 from the industrial production 
in the alumina factory Birač, Zvornik (Bosnia and Herzegovina), nonlinear statistical modeling of the industrial 
process was performed. The model was developed as an attempt to defi ne the dependence of the Al2O3 degree 
of recovery as a function of input parameters of the leaching process: content of Al2O3, SiO2 and Fe2O3 in the 
bauxite, as well as content of Na2Ocaustic and Al2O3 in the starting sodium aluminate solution. As the statistical 
modeling tool, Adaptive Network Based Fuzzy Inference System (ANFIS) was used. The model, defi ned by the 
ANFIS methodology, expressed a high fi tting level and accordingly can be used for the effi cient prediction of the 
Al2O3 degree of recovery, as a function of the process inputs under the industrial conditions. 
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INTRODUCTION

In 1888, Karl Josef Bayer developed and patented 
a process which has become the cornerstone of the 
aluminum production industry worldwide1. The Bayer 
process of alumina extraction is a basic commercial 
procedure and more than 90% of the world alumina 
production is obtained in this way. Regardless of the fact 
that this process has been used for alumina production 
for a long period of time, there are still attempts for 
further improvements of the process2. 

Bauxite is a complex heterogeneous ore material used 
in the Bayer process of alumina extraction. Aluminum is 
usually present in the bauxite in the form of hydroxide 
minerals, such as gibbsite (hydrargillite) (Al(OH)3), 
boehmite (AlO(OH)) or diaspore (HAlO2). Besides 
aluminum minerals, the bauxite ore contains various 
combinations of silica (SiO2), aluminosilicates, iron oxide 
(Fe2O3), titanium oxide (TiO2) and other impurities; such 
as carbonates and sulfi des, in trace amounts3–5. However, 
the most important constituents of the bauxite ore are 
Al2O3, SiO2 and Fe2O3, because their content directly 
determines its future behavior during the Bayer process.

Bayer process includes the high pressure leaching of 
bauxites in a concentrated sodium hydroxide (caustic) 
solution at temperatures, ranging from 373 K (100oC) 
to 523 K (250oC), depending on the mineralogical form 
of aluminum hydroxide in the bauxite6–9. The process 
includes reactions with soluble silica compounds and 
titan dioxide under certain conditions10. The rate of 
aluminum – hydroxide leaching process depends on 
its mineral form in the bauxite. The trihydrate bauxite 
type – gibbsite can be dissolved in a caustic solution 
in the temperature range of 373–453 K (100–180oC). 
Monohydrate bauxite forms (boehmite and diaspore) 
are dissolved in the following temperature ranges: 
403–453 K (130–180oC) and 473–523 K (200–250oC), 
respectively1, 11, 12.

The main source of aluminum and sodium hydroxide 
losses during the Bayer process is Sodium aluminosilicate 
which is precipitated in red mud. Sedimented red mud, 
obtained this way, also presents the environmental pro-

blem, because it can be only partially recycled13. Most of 
its content is disposed at the waste yards. This problem 
attracts much attention nowadays, especially because of 
global environmental protection problems which demand 
the appliance of the global principles during local acting.

During the process of bauxite leaching in the alkaline 
sodium aluminate, the solution of aluminum ions are 
hydrolyzed in an aqueous environment forming nume-
rous mononuclear and polynuclear hydroxo complex 
ions. Finally, in mild-to-strong alkaline solutions, the 
Al(OH)4

– complex ion is the predominant one and, at pH 
higher than 10, is the only existing aluminum – bearing 
ion in the solution13. 

According to the available references, most important 
process parameters, infl uencing the degree of Al2O3 
recovery during the leaching are: the mineralogical and 
chemical composition of bauxite, grain size distribution, 
Al2O3 concentration of the starting solution and its Na2O 
(caustic) content, leaching process temperature, stirring 
speed and duration of the process2, 12–14.

Being infl uenced by large number of different input 
parameters, the process of bauxite leaching, under 
industrial conditions of Bayer technology for alumina 
production, is highly complex. The ability to predict the 
recovery of Al2O3 during the leaching, as the result of 
the input process parameters modeling, presents a great 
challenge for the management of the process10.

Based on the facts described in previous sections, 
the main objective pursued in this work was to create 
a mathematical model for the prediction of the degree of 
Al2O3 recovery (output of the process), during boehmite 
bauxite leaching, as the function of the input parameters 
of the process. The obtained model presents a great 
advantage due to its ability to predict accurately enough 
the output of the investigated process, and as such is of 
great practical importance. 

EXPERIMENTAL DATA

Data base, used for the calculations presented in this 
paper, was formed according to the data collected during 
the industrial production in the alumina factory Birač, 
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Figure 1. Identifying the outliers of the standardized model 
variables

at 518 K (245oC). The pressure in the autoclave reactors 
was 35 bar. The size distribution of the bauxite grains 
was 100% – 74 μm, obtained after the hydrocyclone 
classifi cation. The solid to liquid ratio of the autoclave 
charge was S:L = 1:5. Solid phase concentration was 
160–200 g/dm3, depending on the Na2O (caustic) con-
centration in the returned aluminate solution. The rate 
of mechanical stirring was 31 min–1. 

RESULTS AND DISCUSSION

For the modeling of the bauxite leaching process, the 
data were collected by measuring the important input and 
output process parameters, defi ned in the previous text. 

Because of  the different nature and the scope of va-
lues of the inputs and the output of the process, all the 
data lines were standardized and examined for potential 
outliers before any further modeling procedure. In some 
cases the strong extreme behavior of the variables was 
detected (Fig. 1). Those variables were removed from 
the database. This way, the fi nal database obtained, after 
the removal of the outliers, contained 299 data lines.

Zvornik (Bosnia and Herzegovina). This factory has 
the production capacity of 600 000 tons of alumina per 
year. The important process parameters included in the 
obtained database, were: the chemical composition of 
the bauxite (the main constituents including Al2O3, SiO2 
and Fe2O3); the composition of the starting aluminate 
solution (including Al2O3 and Na2O); the content of 
the Al2O3 in the aluminate solution at the end of the 
leaching process, which is actually the main target of the 
modeling procedure. All important process parameters 
were measured on the daily base, during the year 2011, 
and these way 330 data lines were collected. The meas-
urements of the parameters were performed only during 
the regular production mode. During the days in which, 
from some reasons, process was stopped or interrupted, 
measurements were not performed. 

The bauxite chemical composition was determined 
using the absorption spectrophotometer Perkin Elmer 
4000 and UV/VIS spectrophotometer LAMBDA 15.

The aluminate solutions employed in the leaching 
process were the regular industrial solutions used in 
the everyday production process in the alumina factory 
Birač (Bosnia and Herzegovina). Initial aluminum con-
centration in the alumina solution was determined by a 
reverse titration of zinc nitride solution (complexometric 
titration) with xylenol orange used as the indicator.

The output of the investigated process was the “Al2O3 
leaching recovery” – which will be presented as Y in the 
further text – and it refers to the alumina recovery in 
the digestion process and it has been calculated using 
the following equation:

 (1)

where:
Al2O3(b); Fe2O3(b) – contents in the bauxite (%)
Al2 O3(r m) ; Fe2O3(r m) – contents in the residual autoclave 
mud (red mud) (%).

According to the material balance of the Bayer process, 
starting Al2O3 from the bauxite is divided between the 
aluminate solution and the residual autoclave mud (red 
mud). This way, the content of the Al2O3 in the fi nal 
aluminate solution, at the end of the leaching process, 
can be calculated according to the equation (1). By ap-
plying the equation (1) for calculating the Al2O3 degree 
of recovery during the leaching process, which is based 
on adopting the “inert” Fe2O3, it is possible to get the 
acceptable results (accuracy above 99%).

The following process parameters were selected as the 
inputs included in the statistical modeling procedure:

X1 – Na2O (caustic) concentration in the starting 
solution (g/dm3),

X2 – Al2O3 concentration in the starting solution 
(g/dm3),

X3 – Al2O3 content in the bauxite (%),
X4 – SiO2 content in the bauxite (%),
X5  – Fe2O3 content in the bauxite (%).
During the period when these parameters were me-

asured and the corresponding data base was formed, 
the operation of the factory was in a stable mode. The 
boehmite bauxite, used for alumina production, was from 
the ore body Vlasenica (Bosnia and Herzegovina). The 
temperature of the leaching process was kept constant 

The original, non-standardized, values of the measured 
input parameters of the technological process (X1 – X5) 
as well as the process quality indicator – output of the 
process (Y) in the form of descriptive statistics results 
– are presented in Table 1. The descriptive statistics is 
presented for the 299 data lines, remaining after the 
removal of the outliers.

It should be noted that variables X3, X4 and X5 have 
a small variance (Table 1). However, these variables are 
important for the investigated technological process, 
especially X3. The variable X3 presents the Al2O3 content 
in the starting bauxite; it is one of the most important 
parameters of the Bayer process; thus, it cannot be 
omitted from the analysis.

ADAPTIVE NETWORK BASED FUZZY INFERENCE 
SYSTEM

The reason to use the Adaptive Network Based Fuzzy 
Inference System (ANFIS) for modeling the boehmite 
bauxite leaching process, presented in this paper, can 
be found in the previous research presented in manu-
scripts1, 15, 16. 
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the levels of ranges of input variables. For example, 
one rule might be “if the SiO2 content in the starting 
sample is low, than the degree of Al2O3 recovery is 
high”, where low and high are linguistic variables. The 
database defi nes the membership functions applied in 
fuzzy rules and the reasoning mechanism performs the 
inference procedure27, 28.

This way, for example that there are two input varia-
bles (X1 and X2), and assuming that their ranges can be 
divided in two levels, there would be the rule base with 
two rules for modeling the value of output variable Y:

Rule 1: If X1 is in the range A1 and X2 is in the range 
B1, then f1 = p1x1 + q1x2 + r1

Rule 2: If X1 is in the range A2 and X2 is in the range 
B2, then f2 = p2x1 + q2x2 + r2

In the case f(x1, x2) is a fi rst-order polynomial, then 
the model is called a fi rst-order Sugeno fuzzy model26.

The graphical presentation of general ANFIS network 
is presented in Figure 2.

As can be seen in Figure 2, ANFIS architecture can be 
presented with fi ve layers. Where X1 and X2 are inputs 
to nodes in layer 1, Ai and Bi are the linguistic label of 
the ranges of input variables (small, large, etc), associated 
with the node function. Membership functions of nodes 
located in layer 1 (Oi

1 = mAi(Xi) or Oi
2 = mBi(Xi)) 

specifi es the degree to which the given Xi satisfi es the 
quantifi er Ai, Bi, etc. Usually, membership functions 
are either bell-shaped with maximum equal to 1 and 
minimum equal to 0, or Gaussian function. 

Nodes located in the layer 2 are multipliers, which 
are multiplying the signals exiting the layer 1 nodes. 
For example Oi

2 = Wi = mAi(Xi) x mBi(Xi), i = 1, 
2, etc. Output of each node is representing the fi ring 
strength of a rule. The i-th node of layer 3 calculates 
the ratio of i-th rules fi ring strength to sum of all rules 
fi ring strengths.

This way Oi
3 =  = Wi /(W1 + W2 + …), i = 1, 

2, … Every node i in the layer 4 has a node function 
of following type: Oi

4 =  . f1 =  . (pix1 + qix2 + 
ri), where pi, qi and ri will be referred to as consequent 
parameters. The single node of layer 5 is the node that 
computes the overall output as the summation of all 

incoming signals i.e., 

Training of the parameters in the ANFIS structure 
is accommodated according to the hybrid learning rule 
algorithm which is the integration of the gradient descent 
method and the least square methods. In the forward 
pass of the algorithm, functional signals go forward until 

In the paper1, attempt was made to develop the 
numerical model for the calculation of Al2O3 leaching 
recovery, based on assembling of differential equations. 
This type of modeling belongs to the class of the so-called 
“white box” modeling17, 18. Although, an accurate enough 
model was developed, resulting with  a predicted accu-
racy of 98%, it can be stated that the model developing 
procedure was too complex and resulted in the model 
equation which cannot be used in production practice, 
without prior modifi cation.  On the other hand, bauxite 
leaching process was also the target of linear statistics 
modeling (MLRA), presented in the manuscript15, and 
the nonlinear statistic modeling based on artifi cial neural 
networks (ANNs) in16. Both of those approaches belong 
to the so-called class of “black box” modeling19, 20. The 
MLRA approach resulted with low accuracy of obtained 
model (R2 = 0.56), while the ANNs approach resulted 
with higher accuracy (R2 = 0.723). However, the demerit 
of the ANNs based model, developed in the SPSS softwa-
re21 (PASW Statistics) lies in the fact that it is based on 
only one rule describing the behaviour of input variables. 
In this way it is diffi cult to use the same model on the 
validation of a new set of input parameters, obtained 
from the same process in subsequent time intervals22. 

Owing to this reason, it was decided to develop the 
ANFIS based numerical model, which is based on more 
than one rule describing the behaviour of input variables. 
Considering that the ANFIS procedure can allocate the 
values of each input variable in more than one scale, it 
can be used for modelling the set of input variables with 
a wide range; such are the variables X1, X2 and Y, in 
Table 1. Examples of an application of ANFIS procedure 
in modelling different complex technological processes 
are presented in many contemporary references23, 24, 25.

The ANFIS system serves as a basis for constructing 
a set of fuzzy if-then rules with appropriate member-
ship functions to generate the stipulate input-output 
pairs. The ANFIS structure is obtained by embedding 
the fuzzy interference system into the framework of 
adaptive networks. An adaptive network is a network 
structure consisting of a number of nodes connected 
through directional links. The outputs of these adapti-
ve nodes depend on modifi able parameters pertaining 
to these nodes. The learning rule specifi es how these 
parameters should be varied through iterations to mi-
nimize the fi nal error. On the other hand, according to 
Takagi and Sugeno26 the fuzzy inference system (FIS) is 
a framework based on fuzzy set theory and fuzzy if-then 
rules. Three main components of a FIS structure are: a 
rule base, a database, and a reasoning mechanism. The 
rule base has an adequate number of if-then rules for  

Table 1. Descriptive Statistics of the Input (Xi) and the Output (Y) Parameters of the Bauxite Leaching Process Including 299 
Data Sets
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In the gathering data process for the training and the 
testing stage, the values for each input and the output 
variable were standardized by the maximum values. This 
was done because of different nature and measuring 
units of the input and the output variables.

According to the trends and the ranges of the time 
series for the input variables, presented in Table 1, it 
was decided that two rules ANFIS network should be 
applied. Selected membership function was Gaussian 
one. Representation of the membership functions for 
all 5 input variables is presented in Figure 3.

During the training phase the correction of the 
weighted parameters (pi, qi, ri, etc) of the connections, 
presented in the Figure 2, is achieved through the neces-
sary number of iterations, until the mean squared error 

layer 4 and the consequent parameters are identifi ed by 
the least squares method to minimize the measured error. 
In the back propagation pass, the premise parameters 
are updated by the gradient descent method27. 

To apply the ANFIS methodology, to the bauxite 
leaching process presented in this paper, the assembly 
of 299 input and output samples was divided into two 
groups. The fi rst group consisted of 214 (»70%) at 
random selected samples, and it was used for training 
of the model, whereas the second group consisted of 85 
(»30%) remaining samples from the starting data set, and 
it was used for testing the model. The selection of the 
variables for these two stages was performed by using the 
random number generator. The random number genera-
tor, which was used, is based on Bernoulli distribution.  

Figure 2. Graphical presentation of ANFIS architecture 

Figure 3. Membership functions of input variables (X1 to X5)
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The fi nal fi delity of the obtained ANFIS model can 
be assessed by the coeffi cient of determination (R2) be-
tween the measured and the model predicted values of 
the Al2O3 leaching recovery (Y), in the training and the 
testing stage. The R2 values are presented in Figure 6a 
and 6b, for the training and the testing stage, respectively. 

between the calculated and measured outputs of the 
ANFIS network, is minimal. During the second phase, 
the remaining 30% of the data is used for testing the 
’’trained’’ network. In this phase, the network uses the 
weighted parameters determined during the fi rst phase. 
These new data, excluded during the network training 
stage, are now incorporated as the new input values (Xi) 
which are then transformed into the new outputs (Y). 
For the calculation presented in this paper MATLAB 
ANFIS editor was used29.

In the phase of the network training, the necessary 
number of iterations was performed until the error 
(RMSE) between the measured output of the Al2O3 
leaching recovery – Y and the calculated values wasn’t 
minimized and remained constant. In the case of the 
investigation presented in this paper, the optimal number 
of iterations (epochs) was 10. 

In the testing phase, the remaining data lines were used 
to test the trained ANFIS network. Figure 4, presents 
the obtained values of the Root Mean Squared Error 
(RMSE), for all ten epochs, during the training and the 
testing stage. The obtained results from the training and 
the testing stage can be evaluated by comparison of the 
calculated values Y with the measured ones. Comparison 
between the measured and the ANFIS model predicted 
values of the Al2O3 leaching recovery (Y) during training 
stage, are presented in Figure 5.

Figure 7. The recovery predicted by ANFIS vs. the actual 
measured Al2O3 recovery in the validation stage

Figure 6. The recovery predicted by ANFIS vs. the actual 
measured Al2O3 recovery in the (a) training and (b) 
testing stage

Figure 5. Time series of measured ( –x– ) and ANFIS model 
predicted (--o--) values of the Al2O3 recovery in the 
training stage

Figure 4. RMSE of the ANFIS model during training ( – ) 
And the testing stage (---)
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The ANFIS modelling approach, predicted the Al2O3 
leaching recovery with a determination coeffi cient R2 = 
0.909 (Fig. 6a) and R2 = 0.751 (Fig. 6b), in the training 
stage and the testing stage – respectively, which  repre-
sents very large signifi cance. This means that the Al2O3 
leaching recovery can be predicted with the accuracy 
above 75%, based on the known input parameters (X1 
to X5), using the ANFIS model described in this paper. 

To further sustain the applicability of the proposed 
ANFIS model, validation vas performed with the data 
collected during the year 2012. For that purpose, an 
additional set of 85 data lines was recorded at the same 
production line, during the period January–March 2012. 
This was the same number of data, as previously used in 
the testing stage. With this new data base, validation of 
the model was performed. The ANFIS model responded 
with expected high accuracy, resulting with the coeffi cient 
of determination R2 = 0.681 (Fig. 7).

CONCLUSIONS

Values of the correlation analysis of the degree of 
Al2O3 recovery from the boehmitic bauxite leaching 
under industrial conditions in the factory Birač, Zvornik 
(Bosnia and Herzegovina) were determined using the 
ANFIS methodology. The selected ANFIS structure 
consisted of 214 (70 pct) samples for training and 85 
(30 pct) for testing. 

The values of the coeffi cient of determination (R2) 
were 0.909 and 0.751, in the training and the testing 
stage – respectively. These results indicated a highly 
acceptable degree of fi tting of the dependence Y = 
f(X1–X5), obtained using MLRA procedure as part of 
the Math Lab software application, version 7.1 (2007).

Further validation of the developed model was per-
formed with additional data base containing 85 new 
data lines, obtained in subsequent measurements. As 
expected, the model responded with adequately high 
accuracy resulting in R2 = 0.681, for the validation data 
set. This value indicated that the defi ned elements of the 
ANFIS structure can be applied to different conditions 
in the same factory, as well as generally to conditions in 
any factory that uses the Bayer technology for alumina 
production.  
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