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The main focus of the present study is to utilize the artifi cial neural network (ANN) in predicting the 
natural convection from horizontal isothermal cylinders arranged in vertical and inclined arrays. The 
effects of the vertical separation spacing to the cylinder diameter ratio (Py/d), horizontal separation 
spacing to the cylinder diameter ratio (Px/d) and Rayleigh number (Ra) variation on the average heat 
transfer from the arrays are considered via this prediction. The training data for optimizing the ANN 
structure is based on available experimental data. The Levenberg-Marquardt back propagation algorithm 
is used for ANN training. The proposed ANN is developed using MATLAB functions. For the best ANN 
structure obtained in this investigation, the mean relative errors of 0.027% and 0.482% were reached 
for the training and test data, respectively. The results show that the predicted values are very close to 
the experimental ones.
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INTRODUCTION

The natural convection heat transfer from the arrays 
of the parallel horizontal cylinders are encountered in 
many engineering applications including space heating, 
the cooling of electronic devices, the heating or cooling 
of fl uids, process plants, oil heating, as well as the cool-
ing of refrigerator condensers. The heat transfer from 
a cylinder in an array is quite different from a single 
cylinder1–4 due to the interaction of the temperature 
and fl ow fi elds around the neighboring cylinders. This 
interaction owes to the buoyant plume that is generated 
by each cylinder and which may impinge on other cylin-
ders. This impingement may either increase or decrease 
the heat transfer relative to that for a single horizontal 
cylinder, depending on the position of the cylinders 
relative to each other. In previous investigations, the 
cylinders were arranged in a vertical array and in few 
studies in an inclined array. The fi rst investigation on 
the natural convection heat transfer from the cylinders 
in an array was conducted by Eckert and Soehngen5. 
Tokuraet al.6 studied the natural convection from vertical 
arrays of two, three and fi ve cylinders with spacing up 
to 20 times the cylinder diameter, for Grashof numbers 
ranging from 4.104 to 4.105.The experiments included 
three horizontal isothermal cylinders of 22.3mm diameter 
in a vertical inline and staggered arrangements. In the 
case of the vertical array, it was observed that the heat 
transfer from the lowest cylinder in the array remains 
the same as a single cylinder, whilst that from the other 
cylinders, decreases with the elevation in the array. In 
the staggered arrangement, the natural convection from 
the bottom cylinder also remains unchanged, but that 
from the offset middle cylinder improves with respect to 
the single cylinder. Marsters7 conducted an experimental 
study on the natural convection from a vertical array of 
three, fi ve and nine cylinders with spacing from 2 to 20 
times the cylinder diameter, for Grashof number ranging 
from 750 to 2000 under the condition of a uniform heat 

fl ux. It was found that, even for the closest center-to-
center separation distance, the Nusselt number of the 
bottom cylinder is substantially identical to that of a 
single cylinder. In contrast, the Nusselt number of the 
upper cylinders reduces at close spacing and enhanced 
at large spacing. Liberman and Gebhart8 experimentally 
investigated the interaction of the heated wires under the 
condition of a uniform heat fl ux. The authors used a fl at 
array of 10 wires of 0.127mm diameter with six spacing 
from 37.5 to 225 diameters and four equally orientation 
angles from 0° to 90°, for Grashof numbers of the orders 
of 10-1. It was reported that there is an optimum spacing 
at each array angle for a maximum Nusselt number. The 
highest average Nusselt number occurred at a spacing 
of 75 times the cylinder diameter for the array at 60°. 
In another investigation, Rezvantalab et al.9 investigated 
the natural convection from a pair of vertical arrays of 
the isothermal cylinders experimentally. The aim of the 
paper was to investigate the effects of the horizontal 
center-to-center spacing (Sh/D) and the Rayleigh num-
ber on the natural convection heat transfer from each 
vertical array. It was shown that higher values of Sh/D 
lead to an increased average Nusselt number for each 
individual cylinder in the array. In addition, for small 
Sh/D ratios, fl ow diverters had a negative effect on the 
heat transfer. Ashjaee and Yousefi 10 studied the natural 
convection from the vertical and inclined arrays of fi ve 
isothermal horizontal cylinders. The aim of the paper 
was to investigate the effects of the cylinder spacing and 
Rayleigh number on the natural convection heat transfer 
from vertical and inclined arrays. It was observed that 
the natural convection from the vertical array has an 
increasing trend with respect to vertical separation dis-
tance. Also in the inclined array, heat transfer increases 
with increasing the horizontal separation distance and 
decreases with increasing the vertical separation distance. 
The current study is mainly focused on the modeling of 
the natural convection from the horizontal isothermal 
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cylinders arranged in vertical and inclined arrays, using an 
artifi cial neural network(ANN).The applied experimental 
data were obtained by Ashjaee and Yousefi 10. The ANN 
is presently one of the powerful tools widely used for 
the modeling of various heat transfer processes. Sozen 
and Arcaklioglu11 developed an ANN based model for 
the Exergy analysis of an ejector-absorption heat trans-
former. Deng and Hwang12 applied neural networks to 
the solution of forward and inverse heat conduction 
problems. Zdaniuk et al.13 demonstrated the capability 
of ANN approach in predicting the heat transfer and 
friction in the helically-finned tubes. Scalabrin and Pi-
azza14 presented an ANN model of forced convection 
heat transfer to the supercritical carbon dioxide inside 
the tubes. Diaz et al.15 applied ANN for the dynamic 
prediction and control of heat exchangers. Chen et al.16 
adopted a neuro-based model to predict the heat transfer 
coefficients of the supercritical carbon dioxide. Hernández 
et al.17 employed the ANN to model the waste energy 
recovery in a heat transformer in a water purifi cation 
process. A schematic representation of the problem is 
shown in Figure 1. The cylinder diameter d, vertical and 
horizontal center-to-center separation distance Py and Px, 
the ordinal number of the cylinders Ni, and the height 
of the array H, are also shown in this fi gure.

Figure 1. Schematic representation of (a) the vertical array 
(b) the inclined array

Figure 2. Schematic representation of the Mach-Zehnder 
Interferometer setup

METHOD OF MODELING 

Computational Intelligence Model 
The artifi cial neural networks (ANNs) are strong tools 

for the prediction and simulation in various engineering 
applications. In this study, the natural convection from 
the vertical and inclined arrays of horizontal isothermal 
cylinders, is adopted as a function of three variables, 
namely the vertical separation spacing to the cylinder 
diameter ratio (Py/d), horizontal separation spacing to 
the cylinder diameter ratio (Px/d) and Rayleigh number 
(Ra). Therefore, an ANN model as shown in Figure 3 is 
developed with the vertical spacing ratio (Py/d) ranging 
from 2 to 5, horizontal spacing ratio (Px/d) from 0 to 2 
and Rayleigh number (Ra) from 103 to 3×103as inputs 
and an average Nusselt number of the arrays  as 
the desired output.

Figure 3. A simplified overview of the proposed ANN model 
for heat transfer modeling

EXPERIMENTAL SETUP

All the information about the details of the experiment 
test section can be found elsewhere10. A 10cm diameter 
beam Mach-Zehnder Interferometer (MZI) was used 
in the experimental study. The interferometer consists 
of a light source, a micro lens, a pinhole, two doublets, 
two mirrors and two beam splitters (see Figure 2). The 
used light source was a 30mW Helium-Neon laser with 
λ=632.8nm. All the interferograms were digitized with 
a CCD camera (ARTCAM-320P) and the camera was 
connected to a video recorder through a PC.  The local 
Nusselt numbers at plate surface were obtained using the 
infi nite fringe mode which corresponds directly to the 
isotherms in the fl ow fi eld. Further information about 
MZI is available in literature18,19.

The ANN Advantages
The new techniques such as fuzzy logic(FL)20, arti-

fi cial neural network (ANN) and the adaptive neuro-
fuzzy inference system (ANFIS) consume less time for 
computation and offer better accuracy as compared to 
traditional techniques used for the modeling and pre-
diction purposes. In addition, since the data used for 
developing the ANN, ANFIS21 and etc, is based on the 
training data, therefore, we can test the validity of the 
proposed models with the test data. Since for developing 
a correlation, we basically use the total data, therefore it 
is not possible to carry on with the validity business. It 
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In this work, the sigmoid function f(z) is used given 
as follows22,

 (1)

In the limit of k=∞, as the slope approaches the 
infi nity, f(z) behaves like a threshold function. Here, 
the sigmoid function is adopted with a moderate slope 
so that the network can output a continuous range of 
values from −1 to 1, which brings the differentiability 
of the network23. Here, a Multilayer Perceptron (MLP) 
type network is adopted with three layers, which has 
been used for various applications23–26. The architecture 
of the perceptron neural network is shown in Figure 5. 

For clear notation, the indices i, j and k will be used 
for the units corresponding to “input”, “hidden” and 
“output” layers, respectively (see Figure 5). Note also that 
ni and oi are used to represent the input and output to 
the ith neuron, respectively. The input-output properties 
of the neurons in each layer can be simply expressed in 
a mathematical term as24, 

 (2)
Whereas the inputs to the neurons are given as,

 
and

 

Here, Ni and Nj represent the numbers of the units 
belonging to the “input” and “hidden” layers, while wij 
denotes the synaptic weight parameter which connects 
the neurons i and j. the threshold parameter (bias) 
with respect to the neuron j is represented by θj. We 
introduced the sigmoid function only in the “hidden” 
layer to realize smooth and moderate response of the 
ANN and the linear function for the output layer. This 
architecture of ANN is a good function approximator24. 
The overall response of the present network is given as, 

 3)

is useful mentioning that, among these new techniques, 
the ANN and ANFIS are widely used for the modeling 
and prediction purposes. In the current study, the ANN 
model is preferred due to the following reasons:

a) The speed of training the ANN is more than that 
of the ANFIS. 

b) Two outputs in the ANFIS, require designing two 
networks, whereas in the ANN case, it is possible to 
consider more than one output with a single network. 

c) Increasing the number of inputs, increases the time 
of ANFIS training whereas, the ANN training time is 
affected by the number of inputs but not that much.

d) Adding an extra input to the ANN, requires that 
an additional neuron with a simple relation (for example 
a linear or Tansig relation) to be added to the network, 
but in the ANFIS case by adding a similar input to the 
network, in fact one membership function having a 
nonlinear relationship should be added, which in turn 
increases the computations volume and subsequently, 
decreases the training speed of the network.

Feed Forward Artifi cial Neural Networks
In this study, the feed forward multi-layer perceptron 

(MLP) network was selected among the main neural 
network architectures used in engineering. The ANN is 
constructed as a massive connection model of the sim-
ply designed computing unit, called “neuron”. Figure 4 
illustrates a simple model of the n-inputs single-output 
neuron. All the input signals are summed up as z and 
the amplitude of the output signal is determined by the 
nonlinear activation function f(z). 

Figure 4. Basic model of the multi-inputs one-output neuron

Figure 5. Three layer Multilayer Perceptron consisting of the ‘input’, ‘hidden’ and ‘output’ layers
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Where 

 (4)

ANN training is an optimization process in which an 
error function is minimized by adjusting the ANN pa-
rameters (weights and biases). When an input training 
pattern is introduced to the ANN, it calculates an output. 
The output is compared with the real output (experimen-
tal data) provided by the user. This difference is used 
by an optimization technique to train the network. The 
error function to be minimized in our study is Mean 
Relative Error, MRE, and is given as follows21,22,24,

 (5)

Where, yj is the target data and oj is the output of 
the neural networks. In our method the target data was 
the experimental data. The network is trained via the 
fast convergence gradient-descend back-propagation27 
method with the momentum term for the nonnegative 
energy function22,24. 

MODELING RESULTS AND DISCUSSION 

Applying the ANN Model to the Current Study  
At fi rst, fi ve hundred values for the average Nusselt 

number of each individual cylinder in the arrays, from 
the experimental data obtained by Ashjaee and Yousefi 10 
are collected. So the average Nusselt number of the 
vertical array  is obtained as the arithmetic mean 
value of the average Nusselt number of each individual 
cylinder  in the array:

 (6)

For the inclined array a similar process is performed. 
The average Nusselt number of the inclined array  
is obtained as the arithmetic mean value of the avera-
ge Nusselt number for each individual cylinder in the 
array :

 (7)

From the equations (6) and (7), one hundred values for 
the average Nusselt number of the vertical and inclined 
arrays, is obtained. It is worth mentioning that in order to 
build up the ANN model, different data sets with various 
percentages such as 74%, 26%, 73%, 27%, 72%, 28%, 
71%, 29%, 70%, 30% are used for training and testing 
as far as the modeling of the process is concerned. Here, 
in each data set with its associated trained and tested 
percentage, the number of the hidden layers and also 
the neurons of each hidden layer are varied and the best 
results (minimum train and test error) are recorded. In 
the current study, in each data set, at fi rst, one hidden 
layer is considered and the number of neurons is varied 
from 2 to 25. The best results with the corresponding 
number of neurons are recorded. If satisfi ed results are 
obtained, the structure of the ANN model will consists 
of one hidden layer with the decisive number of the 
neurons. If the results are not appropriate, then the 
second step begins. In this step two hidden layers are 

considered and the number of neurons is varied in the 
same range. In this step, again the best corresponding 
results are recorded. If satisfi ed results are obtained, the 
structure of the ANN model will consists of two hidden 
layers with the decisive number of neurons. Again, if the 
results are not appropriate, then the third step begins. 
This process is being iterated so that reasonable results 
with the low error rate are obtained. 

In the present investigation, a network consisting of 
the percentages of 74% and 26% for training and test-
ing, respectively, with the error limits mentioned later, 
is selected as the best confi guration for our network. 
Moreover, in order to validate the proposed ANN 
model, sixteen experimental data which are not seen in 
the training and test data are compared to the predicted 
one by the ANN model. The best architecture for the 
proposed neural network is described in table 1.

Table 1. The optimum architecture and specifi cations of the 
proposed ANN model

Modeling Results
The training, testing and validation results of the 

proposed ANN model are shown in Figures 6 to 8. 
The comparison between the average Nusselt numbers 
obtained from the experiments and the predicted one 
by the ANN model for the vertical array as a function 
of vertical spacing ratios for some arbitrary Rayleigh 
numbers is shown in Figure 9. Also, a similar compari-
son for the inclined array as a function of horizontal 
spacing ratios for some arbitrary Rayleigh numbers, and 
vertical spacing ratios is shown in Figure 10. According 
to these fi gures and also the results shown in Figures 6 
and 7, the maximum errors of the proposed ANN model 
in predicting the Nusselt number for the training and 
test data are 0.12% and 2.44%, respectively. Also the 
mean relative errors for the training and test data are 
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0.027% and 0.482%, respectively. In addition, the mean 
relative error for the validation data is 0.943%. Since, 
the error values are low, therefore, it can be concluded 
that there is good consistency between the experimental 
and predicted results for the training and the test data 

sets. Hence, the ANN results can be applied to model 
the experiments precisely. According to Figures 9 and 
10, in the vertical and inclined arrays, heat transfer 
increases by increasing the Rayleigh number. Figure 9 
also indicates that in the vertical array, by increasing 
the vertical separation spacing, heat transfer increases. 
In addition, as can be observed in Figure 10, the heat 
transfer increases by increasing the horizontal spacing 
ratio and decreases by increasing the vertical spacing 
ratio. Complete details of the physical interpretation 
of the effects of the horizontal and vertical separation 
distance on the heat transfer from both arrays can be 
found elsewhere10.

Comparison of the ANN Model with Traditional Cor-
relations

Ashjaee and Yousefi 10 have presented a correlation 
for the average Nusselt number of the vertical array as 
a function of the Rayleigh number and vertical spacing 
ratio (Py/d) as follows:   

 (8)

In addition, another correlation has been developed for 
the inclined array as a function of the Rayleigh number, 

Figure 6. The comparison between the experimental and pre-
dicted values of an  average Nusselt number using 
ANN for the training data

Figure 7. The comparison between the experimental and pre-
dicted values of an average Nusselt number using 
ANN for the testing data

Figure 8. The comparison between the experimental and pre-
dicted values of an average Nusselt number using 
ANN for the validation data

Figure 9. The experimental results obtained by Ashjaee et al. 
and Yousefi 10 and the average Nusselt number values 
of the vertical array predicted using the ANN for 
a) Ra=1.5×103 b) Ra=2.5×103
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vertical spacing ratio (Py/d) and horizontal spacing ratio 
(Px/d) as follows:

 (9)
Where 

 (10)

The statistical information of the above correlations is 
presented in table 2. As shown in this table, the Nusselt 
numbers predicted by the ANN model are closer to those 
ones predicted by the above correlations.
Table 2. Comparison between the predicted Nusselt numbers 

using the traditional correlations and ANN model

Figure 10. The experimental results obtained by Ashjaee et al. 
and Yousefi 10 and the average Nusselt number values 
of the inclined array predicted using the ANN for a) 
Ra=103, b) Ra=2×103, c) Ra=3×103

CONCLUSIONS

In this paper, an artifi cial neural network (ANN) was 
employed in order to model and predict the natural co-
nvection from horizontal isothermal cylinders arranged 
in vertical and inclined arrays. The comparison between 
the experimental and predicted values of the proposed 
ANN model showed that there is excellent consistency 
between the predicted heat transfer and the experimental 
results with least error. This means that the proposed 
ANN model is a reliable fl exible mathematical structure 
for the modeling and prediction of the results due to its 
high accuracy and therefore, it can be used to simulate 
the experiments precisely. 

Nomenclature
d  diameter of the cylinders, (m) 
g  gravitational acceleration, (m/s2) 
l  length of the cylinder, (m) 
N  number of the cylinders in the array,   
  N = 5 
Ni  ordinal number of the ith cylinder   
  in the array 

 average Nusselt number of the arrays 
 average Nusselt number for all the cylinders  

  in the inclined array 
 average Nusselt number for all the cylinders  

  in the vertical array 
 average Nusselt number of the ith cylinder  

  in the inclined array 
p  pressure, (Pa) 
Px  horizontal center-to-center separation   
  distance, (m)
Py  

vertical center-to-center separation   
  distance, (m) 
Ra  Rayleigh number based on the cylinder   
  diameter, = gβ(Tw− T∞)d3/να 
T  temperature, (K) 

Greek symbols  
α  thermal diffusivity of the air, (m2/s) 
β  coefficient of volumetric thermal expansion 
  of  the air, (1/K) 
ε  fringe shift 
λ  laser wave length = 632.8 nm 
ν  kinematic viscosity of the air, (m2/s) 
φ  angle of the fl ow diverter = 45o 

Subscripts  
w  referred to the undisturbed air
∞  referred to the cylinder surface
ref  referred to a fringe shift = 0
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