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1. Introduction
Induction motors are currently widely used in industry due to their simple structure, low price and relatively high 
reliability. They constitute about 90% of all electrical machines used in different individual drive systems and drives 
used in production lines (Orłowska-Kowalska and Dybkowski, 2016). Manufacturers try to make the largest number 
of products on their production lines in a relatively short time. Undesired downtime in a production process, even 
if very short, generates substantial losses, sometimes exceeding the costs of installing a system that can possibly 
prevent a machine from a serious fault. Therefore, the use of modern fault monitoring and diagnostic systems 
allowing the detection of faults at early stages is very important nowadays (Henao et al., 2014).

The most frequent electrical faults of induction motors include stator winding short circuits and broken rotor 
bars of a squirrel-cage rotor. If faults are detected at an early stage, it is possible to plan overhauls and, as a result, 
limit production line downtime costs. It seems that the detection of single shorted turns occurring in stator windings 
is especially important due to the fact that they are strongly destructive and can lead to serious faults in a short 
time (Wolkiewicz et al., 2015). The most frequently used diagnostic methods of induction motors are based on the 
spectral analysis of stator currents (Jung et al., 2006). Another non-invasive method used in the diagnostics of 
induction motor drives is based on the analysis of an axial flux (Bacha et al., 2008; Ceban et al., 2012; Ewert, 2017; 
Henao et al., 2014; Meshgin-Kelk et al., 2004; Penman et al., 1994; Pietrowski, 2011; Romary et al., 2013; Toni 
et al., 2007; Tulicki et al., 2016; Vas, 1993; Wolkiewicz and Skowron, 2017). However, the distinction of the electrical 
fault type is difficult because the fault symptoms visible in stator current or axial flux spectra cannot be easily found. 
Thus, neural networks, which are currently popular in the fault detection of electrical motors (Bacha et al., 2008; 
Kowalski and Orlowska-Kowalska, 2003; Morsalin et al., 2014; Pietrowski, 2011; Rama Krishna and Kishan, 2013; 
Vas, 1999; Wolkiewicz and Kowalski, 2016), have been used in this paper. Currently, the literature discusses the 
use of neural networks  to detect faults in induction motor rotors (Bacha et al., 2008) or stators (Pietrowski, 2011) 
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based on symptoms obtained from axial flux analysis. The new approach should be based on development of a 
neural detector that recognises different types of damages.

The main goal of this paper is the design of neural detectors that can help in the diagnosis of winding faults in 
the induction motor and will be able to distinguish between the stator inter-turn short circuit fault and a rotor bar 
damage, based on the fault symptoms obtained through analysis of the axial flux spectrum. The paper presents 
the results of experimental research conducted on a specially prepared induction motor, with modelled stator and 
rotor faults, fed directly from the grid. Analysis of the voltage induced in a measurement coil by the axial flux is used 
to monitor the type and level of a fault. These fault symptoms, after suitable pre-processing, have been used for 
training the neural fault detectors, and the results obtained for different neuron detector structures are presented. 
The symptoms obtained from the spectral analysis of a voltage induced in a measurement coil were used as the 
neural network inputs. The taught neural networks were used to detect the technical condition of the induction motor 
and for assessment of the type and degree of the damage.

2. Electrical faults
2.1. Axial flux measurement
The axial flux in an ideal electrical machine should equal zero. In reality, such a situation will never take place 
because there always are some asymmetries in the rotor and stator circuits, caused by e.g. non-ideal geometry, 
heterogeneity of the used materials or small errors made at the production stage. The occurrence of these 
asymmetries, as well as asymmetries caused by the motor winding faults, results in an axial flux, which can be 
measured using properly installed measurement coils. The axial flux distribution in an induction motor and the 
possible distribution of measurement coils are presented in Fig. 1.

The measurements of the axial flux can be non-invasive (using coils distributed on a machine body) or invasive 
(a coil placed inside a machine). The occurrence of a fault in a stator or rotor leads to the asymmetry of a given 
circuit, with a resultant increase in the value of the axial flux (Bacha et al., 2008; Ewert, 2017; Wolkiewicz and 
Skowron, 2017). The application of an axial flux in the detection of stator faults has been described in the literature 
previously (Penman et al., 1994; Vas, 1993; Wolkiewicz and Skowron, 2017). In this paper also, rotor faults are 
determined based on this measurement. Accurate analysis of the harmonics occurring in the axial flux is used to 
identify particular faults.

Stator

Stator

Axial 
flux

Rotor

Measurement 
coils

Fig. 1. Axial flux distribution in an induction motor with asymmetries and possible placement of measurement coils (Source: Ceban et al., 2012; 
Ewert, 2017; Henao et al., 2014; Romary et al., 2013)

2.2. Symptoms of stator winding faults in an axial flux
According to the literature, stator winding faults are the most common electrical faults of induction motors and make 
up about 38% of all faults (Morsalin et al., 2014; Wolkiewicz et al., 2015). The basic faults occurring in the stator of 
an induction motor are as follows (Morsalin et al., 2014; Wolkiewicz et al., 2015):
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1.  Short circuits between turns in a coil,
2.  Coil-to-coil short circuits in one phase,
3.  Phase-to-phase short circuits,
4.  Phase-to-ground short circuit, and
5.  Open phase.

Recently, research is oriented towards the early detection of short circuits between single turns in a coil, because 
this type of fault spreads out very quickly and is a source of the other stator winding faults mentioned earlier. 
Such a fault is not detected by currently used security systems, although the current flowing in one short circuit is 
sometimes several dozen times bigger than the nominal current. Such a large current is very destructive. It results 
in a quick increase in temperature in a shorted circuit and, in consequence, leads to the destruction of insulation and 
the spread of the fault. Unfortunately, the time interval between the occurrence of the short circuit between single 
turns and the inter-phase or phase-to-ground short circuits is not known. This is why diagnostic methods allowing 
for the early detection of the short circuit are very important.

Literature analysis shows that it is possible to detect stator winding faults on the basis of the spectral analysis of 
an axial flux. The characteristic harmonics of the flux spectrum are described by the following formula (Ewert, 2017; 
Toni et al., 2007; Wolkiewicz and Skowron, 2017):

	 f kf l s
p

f kf lf1
sd

b
m0 0 0= ± − = ± ,	 (1)

where:
f0 – supply voltage frequency [Hz],
fm – rotational frequency [Hz],
k – order of the time harmonic of supply frequency, k = 1, 3, 5,…,
l = 1, 2, 3,…, 2pb – 1,
pb – number of pole pairs, and
s – slip.
Table 1 presents the frequencies in the spectrum of the axial flux at the moment of the occurrence of a stator 

winding short circuit. According to (Wolkiewicz and Skowron, 2017) the distinguished components usually show the 
biggest amplitude changes and, from the point of view of diagnostics are of significant importance.

The detection of winding short circuits is most often non-invasive – a coil is located on a machine body, as 
illustrated in Fig. 1. Monitoring the state of windings is based on the spectral analysis of the voltage induced in a 
measurement coil.

Table 1. Presentation of harmonics in an axial flux informing about the occurrence of a winding short circuit in a motor with two pole pairs 

l k

1 3 5

- + - + - +

1 f0 - fm f0 + fm 3f0 - fm 3f0 + fm 5f0 - fm 5f0 + fm

2 f0 - 2fm f0 + 2fm 3f0 - 2fm 3f0 + 2fm 5f0 - 2fm 5f0 + 2fm

3 f0 - 3fm f0 + 3fm 3f0 - 3fm 3f0 + 3fm 5f0 - 3fm 5f0 + 3fm

2.3. Symptoms of squirrel-cage rotor faults in an axial flux
In technical literature, squirrel-cage rotor faults are reported to constitute nearly 10% of all induction motor faults 
(Kowalski and Orlowska-Kowalska, 2003; Meshgin-Kelk et al., 2004; Morsalin et al., 2014). In the case of ≈100 kW 
induction motors made with a die-cast aluminium cage, the need to diagnose faults is minimal. Faults hardly ever 
occur in such rotors and, if they do, they take place during the production process. In the case of higher-power 
motors or special solutions with a copper cage and a hard solder connection between bars and end rings, faults 
are more common. These faults are caused by clearance between the bars and slots, which makes heat exchange 
between bars and steel laminations more difficult and, in consequence, may lead to their deformation.
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As a result of cracks in the rotor cage, current and magnetic asymmetry arise in the stator and rotor circuits, 
resulting in a non-uniform magnetic pull between the stator and the rotor. As a consequence, bearing loads may 
be increased, and in extreme cases, a seizure between a rotor and a stator may occur. Unsymmetry of currents is  
characterised by slip frequencies occurring in the axial flux spectrum. For this purpose, the analysed spectrum  
is used to search for frequency of harmonic components described by the following equations (Ewert, 2017; Tulicki 
et al., 2016; Vas, 1993):

	 f sfrd1 0= ,	 (2)

	 f f s a s(1 )rd2 0= + −  ,	 (3)

where a = 3, 5, 7,….
As a result of the occurrence of speed oscillation caused by the faults of the squirrel-cage rotor bars, the 

spectrum can show the following components (Ceban et al., 2012; Ewert, 2017; Meshgin-Kelk et al., 2004; Romary 
et al., 2013; Tulicki et al., 2016):

	 f asfrd3 0= .	 (4)

Monitoring of the state of a squirrel-cage rotor can be conducted simultaneously with the monitoring of the state of 
stator windings. Both faults are characterised by different symptoms appearing in the axial flux, as well as in the 
voltage induced in the measurement coil.

3. Neural detectors of electrical faults
The neural detectors are designed for monitoring and diagnosing the described stator or rotor faults in the induction 
motor supplied from a grid. The proposed detectors are based on the most frequently used unidirectional neuron 
architecture, also defined in literature as ‘multi-layer perceptron’ (MLP; Bacha et al., 2008; Kowalski and Orlowska-
Kowalska, 2003; Morsalin et al., 2014; Rama Krishna and Kishan, 2013; Vas, 1999; Wolkiewicz and Kowalski, 
2016). The MLP network structure includes neurons connected with each other and grouped into layers (input and 
output layers, as well as hidden layers that do not have any direct connection with external signals). In addition to 
this, there are no connections between neurons in the same layer. Activation functions of input and output neurons 
are linear, while in the hidden layers, the hyperbolic tangent was used. In Fig. 2 and Fig. 3, two different neural 
structures are presented, regarding the objective of the network. The neural network with only one output, shown 

Results

CASE 1
0 – unfaulted motor 
1 – damaged motor

CASE 2
0 – unfaulted motor
1 – damaged stator
2 – defective rotor
3 – damaged stator and rotor

Output networkInput layer 
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s

Fig. 2. Sample structure of neural network with one neuron in the output layer
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in Fig. 2, can be used in two cases: Case 1 – the distinction between undamaged and damaged motors; Case 2 – 
distinction between the conditions of undamaged motor, damaged stator case, faulted rotor case or both faulted 
stator and rotor windings. The second network presented in Fig. 3 is designed for the diagnosis of the damage type 
or level. Both neural detectors with different structures have been trained using the same type of fault symptoms. 
They are described in detail in the following sections.

The output signal of a particular neuron in the MLP network is given by the following equation:

	 y f w x t w( )j ij i j
i

N

0
1

∑= +














=

,	 (5)

	 f u u( ) tgh( )β= ,	 (6)

where f – activation function, wij – weighting factors, xi – input signals, β – correction factor for the shape of the 
activation function, u – activation function argument and w0j – bias value.

The values of the weighted connection coefficients were trained using the Levenberg–Marquardt algorithm 
(Morsalin et al., 2014; Vas, 1999).

Results

CASE 1
Neuron I:
0 – undamaged rotor
1 – damaged rotor
Neuron II: 
0 – undamaged stator
1 – damaged stator

CASE 2
Neuron I:
0 – undamaged rotor
1 – 1 broken rotor bar
2 – 2 broken rotor bars 
3 – 3 broken rotor bars
4 – 4 broken rotor bars
Neuron II: 
0 – undamaged stator
1 – 1 shorted turn
2 – 2 shorted turns
4 – 4 shorted turns
5 – 5 shorted turns
8 – 8 shorted turns
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II
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Fig. 3. Sample structure of neural network with two neurons in the output layer

4. Description of the laboratory setup and fault symptoms measurements
The experimental research was conducted on a specially prepared small power induction motor, 1.5 kW, Sh-90L-4 
type, coupled with a DC motor (1.5 kW, PZB b44b type), generating a load torque. The induction motor is supplied 
directly from the grid. The specially prepared stator winding allowed to conduct the controlled short circuits of a 
selected number of turns at each stator phase. This article presents the results obtained for the short circuit of 
maximum eight turns in phase A, while the total number of turns is equal to 312. Rotor faults were modelled by 
physical reaming of selected bars. The weight loss was compensated by a resin mixture to prevent imbalance. The 
article presents the results obtained for maximum four faulted bars, while the total number of bars is equal to 26. 
The measurement coil used for the purpose of the research was made of 600 turns, and the wire diameter was 
0.7 mm2; it was placed on the bearing cover. A picture of the laboratory test stand is presented in Fig. 4.

The acquisition of measurement data and the signal analysis were conducted using a personal computer (PC) 
equipped with a NI USB-9234 measurement card. The diagnostic signal was measured at 2,048 Hz frequency for 
10 seconds. The research application for signal pre-processing was created in the LabView 2016 environment.
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The experimental research was focussed on the analysis of the voltage induced by the axial flux in a measurement 
coil. The detection of stator faults can be conducted on the basis of the analysis of the spectrum and the root mean 
square (RMS) value of this voltage. In Fig. 5 are shown the spectra of the motor running under nominal load without 
any faults, as well as with the following conditions: with eight shorted turns in phase A; with four broken rotor bars; 
and also with simultaneous stator (eight shorted turns) and rotor (four faulted bars) faults. The presented spectra 
are shown in the range up to 250 Hz. The arrows on the spectra mark the characteristic fault frequencies. The 
logarithmic value [dB] of the induced voltage is obtained using the following formula:

	 U dB
U
U

[ ] 20 log RMS

ref
10=











 ,	 (7)

where Uref is a reference value equal to 1 V.

5. Results of the study of neural detectors
5.1. Description of the inputs of neural detectors
Based on the analysis of laboratory tests, the symptoms of damage to the rotor cage and stator windings were 
selected. The design of neural detectors was performed in a MatLab–Simulink environment. The following inputs 
of the neural network are introduced:

-  slip value s (informing about the motor load),
-  effective value of the induced voltage in the measurement coil (RMS),

Fig. 4. Laboratory test stand
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-  amplitudes of the characteristic for rotor damage frequencies (sf0 and 3sf0),
-  amplitudes of the characteristic for stator damage frequencies ( f0 + 2fm, f0 + 3fm, 3f0 + fm and 3f0 - 3fm).

Amplitudes of characteristic frequencies were obtained from the spectral analysis of a voltage induced in a 
measurement coil. The paper presents the results obtained for different structures of neural networks, with 

Fig. 5. Spectra of the motor running under nominal load: a) unfaulty motor; b) eight shorted turns in phase A; c) four faulty rotor bars; d) four faulty 
rotor bars and eight shorted turns in phase A
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both one and two hidden layers, as well as with one or two neurons in the output layer. The neural network was 
taught to detect the occurrence of damage, as well as the type or level of damage. During the experimental 
research, 327 measurements were made, from which the obtained symptoms were divided into two vectors: 
teaching vector (201 measurements) and test vector (126 measurements). The measurements included the 
following: undamaged motor, damaged rotor (from one to four broken bars) and damaged stator (one, two, four, 
five and eight shorted turns). In addition, measurements were made at different load levels (from 0 to 1.2 MN).  
Tests for the undamaged motor and for the one and two broken rotor bars included 10 load levels, while the 
tests for three and four broken rotor bars included three load levels (0, 0.6 MN and MN). Stator damage was 
tested for each rotor used, as well as for the three load levels (0, 0.6 MN and MN). Measurements were made with 
various numbers of measurement series (from two to six). Symptoms from one measurement series created 
a test vector, whereas a training vector was created from the remaining measurement series. The network 
learning parameters are as follows:

–  activation function: hyperbolic tangent,
–  learning method: Levenberg–Marquardt,
–  the maximum number of epochs: 2,000,
–  performance goal (mean squared error): 10–5.

In order to average the performance of tested neural network structures, 30 series of teaching and testing were 
conducted. The results are summarised in Tables 2–7. The effectiveness of a neural detector (ηND) or a single 
neuron from the output layer (ηND

I or ηND
II) is defined as follows:

	 η
( )

=
==

⋅
y y

y

nnz round ( )

length ( )
100%ND

0 , 	 (8)

where:
y – neural network output vector,
y0 – expected result,
nnz( ) – number of non-zero elements,
round( ) – value rounded to the integer,
length( ) – length of vector.
The efficiency of a neural detector with two neurons in the output layer (ηND

I-II) requires a transition from a binary 
form (each neuron is a single bit) to a decimal form and is defined as follows:

	 η
( )( ) ( )

=
⋅ + ⋅ == ⋅ + ⋅

⋅−
y y y y

y

nnz round 2 round 2 2 2

length( )
100%I II

I 0 II 1
0
I 0

0
II 1

ND
,	 (9)

where:
yI – value at the output of Neuron I in the output layer,
yII – value at the output of Neuron II in the output layer,
y0

I – expected value at the output of Neuron I in the output layer,
y0

II – expected value at the output of Neuron II in the output layer.

5.2. Assessment of the technical condition of the machine
To evaluate the technical condition of the motor, a neural network with one output neuron was built. At the output of 
the neural network, only two types of information were obtained: undamaged motor – value 0 at the output of the 
network; or damaged motor – value 1 at the output of the network. Several network structures with one hidden layer 
have been developed. The test results of these neural networks are presented in Table 2.
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Table 2. Effectiveness of detection of damage in induction motor by neural networks with one hidden layer 

Effectiveness of 30 learning and testing series, %
Neural network structure

8-3-1 8-5-1 8-7-1 8-9-1

Lowest 89.7 92.9 88.9 91.3

Highest 100.0 100.0 100.0 100.0

Average 97.8 97.6 97.3 96.5

Table 2 shows that the examined structures of neural networks are very effective at evaluating the technical condition 
of the machine. The average efficiency of tested detectors is about 96%–98%. It can be assumed that the network 
8-3-1 or 8-5-1 is sufficient for this task.

5.3. Evaluation of the type of damaged element
In this case, the output of the neural network with one output neuron returns four values: 0 – undamaged motor, 
1 – damaged stator, 2 – defective rotor, 3 – damaged stator and rotor. Networks with one (Table 3) and two (Table 4) 
hidden layers were used to detect the type of damage.

Table 3. Effectiveness of detection of electrical faults in an induction motor by neural networks with one hidden layer 

Effectiveness of 30 learning and testing series, %
Neural network structure

8-3-1 8-5-1 8-7-1 8-9-1 8-11-1 8-13-1 8-15-1

Lowest 26.2 67.5 76.2 73.0 65.9 65.9 76.2

Highest 88.1 89.7 91.3 93.7 95.2 93.7 93.7

Average 74.5 82.0 85.1 84.9 85.4 85.8 86.8

Table 4. Effectiveness of detection of electrical faults in an induction motor by neural networks with two hidden layers 

Effectiveness of 30 learning and testing series, %
Neural network structure

8-5-3-1 8-7-5-1 8-9-7-1 8-11-9-1 8-13-11-1 8-15-13-1

Lowest 26.2 37.3 73.8 78.6 59.5 68.3

Highest 96.8 97.6 97.6 99.2 98.4 98.4

Average 81.0 84.9 88.3 91.6 88.8 92.3

The average efficiency of neural detectors with one hidden layer oscillates around 85%. The lowest average 
effectiveness was obtained for the network of 8-3-1 structure. Hence, we arrive at the conclusion that three neurons 
in the hidden layer is too low a value to accomplish this task. Network 8-7-1 seems to be the best solution because 
the minimum efficiency achieved in the 30 tests was about 76%. Similar results were obtained for the 8-15-1 
network, which has eight neurons more in the hidden layer. Usage of neuron detectors with two hidden layers 
(Table 5) improves the average detection rate by only a few percentages.

Another approach proposed in this research is to use neural networks with two neurons in the output layer 
(Fig. 3). In this structure, Neuron I informs about the rotor damage, while Neuron II informs about the stator 
damage. At the output of each neuron, two values are obtained: 0 – undamaged element or 1 – damaged 
element. Table 5 summarises the results of the tested neural networks with different numbers of hidden  
neurons.

The results show that Neuron II – informing about the stator damage – obtained a few percentages higher 
average effectiveness compared to Neuron I. In the case of both neurons, the average efficiency of the 30 tests 
oscillates around 93%–98%. The average efficiency of the entire neural network described by the relationship 
expressed in Eq. (9) is also high and ranges from about 91% for the 8-3-2 network to about 94% for the network of 
8-11-2 structure.
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Table 5. Effectiveness of detection of electrical faults in induction motor by neural networks with one hidden layer and two neurons in the output layer

Effectiveness of 30 learning and testing series, % Neural network structure

8-3-2 8-5-2 8-7-2 8-9-2 8-11-2

I II I II I II I II I II

Lowest 77.8 92.9 90.5 92.1 88.9 94.4 91.3 92.1 91.3 90.5

Highest 97.6 99.2 98.4 99.2 99.2 99.2 99.2 100.0 98.4 100.0

Average 92.8 97.7 95.1 97.1 95.2 97.4 95.9 96.8 96.2 97.3

Lowest 76.2 88.1 87.3 87.3 86.5

Highest 96.8 96.8 98.4 98.4 97.6

Average 90.9 93.0 93.2 93.3 94.1

5.4. Evaluation of the type and degree of damage
The usefulness of neural networks with two neurons in the output layer for detection of type and degree of damage 
was also tested. In this case, Neuron I received values from 0 (undamaged rotor) to 4 (four faulted rotor bars), while 
Neuron II returned values from 0 (undamaged stator) to 8 (eight shorted turns). Table 6 shows the effectiveness of 
neural networks with one hidden layer, whereas Table 7 concerns the networks with two hidden layers.

Table 6. Effectiveness of detection of type and degree of electrical faults in induction motor by neural networks with one hidden layer and two 
neurons in the output layer 

Effectiveness of 30 learning and testing series, %

Neural network structure

8-3-2 8-5-2 8-7-2 8-9-2 8-11-2 8-13-2 8-15-2

I II I II I II I II I II I II I II

Lowest 22
.2

73
.8

69
.0

72
.2

66
.7

73
.0

72
.2

79
.4

79
.4

81
.7

74
.6

84
.1

84
.9

87
.3

Highest 84
.1

92
.1

92
.1

96
.0

94
.4

96
.0

95
.2

95
.2

96
.8

95
.2

94
.4

96
.8

97
.6

99
.2

Average 65
.9

80
.1

77
.1

87
.5

86
.2

90
.5

87
.9

90
.3

89
.0

91
.3

90
.0

92
.4

92
.2

92
.8

Lowest 22.2 54.0 52.4 61.1 73.0 68.3 78.6

Highest 67.5 84.1 89.7 90.5 92.1 91.3 96.8

Average 55.4 69.4 79.8 81.0 83.2 84.9 87.9

Table 7. Effectiveness of detection of type and degree of electrical faults in induction motor by neural networks with two hidden layers and two 
neurons in the output layer 

Effectiveness of 30 learning and testing series%

Neural network structure

8-5-3-2 8-7-5-2 8-9-7-2 8-11-9-2 8-13-11-2 8-15-13-2

I II I II I II I II I II I II

Lowest 34.9 26.2 42.1 47.6 79.4 73.8 79.4 80.2 64.3 65.1 75.4 69.0

Highest 94.4 92.1 96.0 96.8 98.4 96.8 96.0 96.0 95.2 89.7 96.8 92.9

Average 79.1 82.3 83.8 87.3 89.8 90.5 89.8 88.4 86.0 81.7 88.5 83.0

Lowest 20.6 28.6 67.5 73.8 51.6 60.3

Highest 84.1 91.3 95.2 91.3 88.1 89.7

Average 69.3 76.7 84.5 84.2 76.1 78.6
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A neural network with at least nine neurons in the hidden layer is required to obtain an average detection efficiency 
of >80% for the type and degree of damage. In this case, Neuron II also has a higher average effectiveness. The 
highest average neural network efficiency of approximately 88% was obtained for structure 8-15-2. In Fig. 6, the 
sample test results for the neural network with structure 8-15-2 are shown. The use of neural networks with two 
hidden layers does not affect the efficiency of detection.

The neural network shown in Fig. 6 has a very high efficiency of about 94%. Effectiveness of individual output 
neurons is also high, about 97.6% for Neuron I and about 96% for Neuron II.

6. Summary
On the basis of laboratory tests, it can be stated that the symptoms obtained by the spectral analysis of the voltage 
induced in the measurement coil by an axial flux enable the diagnosis of electrical damage in induction motors. The 
use of neural networks automates the process of assessing the technical condition of the tested machine. A relatively 
simple neural network with one hidden layer and structure 8-3-1 or 8-5-1 can detect electrical damage in induction 
motor with high efficiency (>95%). The use of a little bigger network with structure 8-7-1 enables the detection of the 

Fig. 6. Sample testing results of 8-15-2 neural network structure (ηND
I-II ≈ 94.4%)
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damage type with an average effectiveness of approximately 85% using the herein-described 30 tests. Application 
of networks with two hidden layers increases the effectiveness of detection of the type of damage to a small extent 
(a few percentages). At the same time, the use of two neurons in the output layer reduces the number of mistakes 
in determining which electrical circuit of the motor is damaged. A neural network with two neurons in the output 
layer is able to detect the type and degree of the damage. The highest average efficiency (about 88%) of detection 
of the degree of damage was obtained for the 8-15-2 neural network. In this case, the use of a neural network with 
two hidden layers also does not improve the performance of the neural detector. The presented research shows 
that relatively simple MLP-based neural networks with one hidden layer, after proper training procedure, can be 
effectively applied for different diagnostic tasks, e.g. detection of motor damage, detection of stator or rotor fault, as 
well as detection of the level of stator fault (number of shorted turns) or rotor fault (number of broken bars).

Supplying the motor from the frequency converter is planned in further research. In this way, it will be possible 
to check the influence of higher harmonics on the effectiveness of the proposed diagnostic method.
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