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1. Introduction
Nowadays, there is a great deal of effort on speed-sensorless control of induction motors (IMs) due to the fact 
that IMs require low maintenance, can operate in harsh environmental conditions, and are easy to produce. The 
removal of the speed sensor has advantages such as cost reduction, enhanced drive safety, noise cancellation 
caused by sensor wiring, and so on. As a result of this intense interest, model based several methods have been 
proposed in the literature such as open-loop estimators (Bolognani et al., 2008), model reference adaptive systems 
(Kumar et al. 2015), observers (Atkinson et al., 1991; Lee and Blaabjerg, 2005; Zhao et al., 2014), etc. One of 
those methods, called extended Kalman filter (EKF), is a stochastic approach to nonlinear state and/or parameter 
estimation problem taking into account both the model errors and measurement noises.

In the literature, there are different studies in which EKF based state/parameter estimation is executed. Those 
studies can be divided into two groups: First group of studies (Alsofyani and Idris, 2016) in which the speed is 
assumed to be a constant state with the assumption that it changes slowly with respect to the electrical parameters 
and the second group of studies (Barut et al., 2007; Barut et al., 2012; Bogosyan et al., 2007; Inan and Barut, 2014; 
Zerdali and Barut, 2016; Zerdali and Barut, 2017) where the speed is included in the IM model with the help of 
equation of motion. The second group of studies is also needed to improve estimation performance especially in 
the low speed region, since it better reflects mechanical movements of IM by adopting IM as an electromechanical 
system; however, it is necessary to know the mechanical parameters such as unknown load torque, inertia varying 
with the load coupled to the shaft, and viscous friction (Barut et al., 2007).
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Abstract: �This paper aims to introduce a novel extended Kalman filter (EKF) based estimator including observability analysis to the 
literature associated with the high performance speed-sensorless control of induction motors (IMs). The proposed estimator 
simultaneously performs the estimations of stator stationary axis components of stator currents and rotor fluxes, rotor 
mechanical speed, load torque including the viscous friction term, and reciprocal of total inertia by using measured stator 
phase currents and voltages. The inertia estimation is done since it varies with the load coupled to the shaft and affects the per-
formance of speed estimation especially when the rotor speed changes. In this context, the estimations of all mechanical state 
and parameters besides flux estimation required for high performance control methods are performed together. The performance 
of the proposed estimator is tested by simulation and real-time experiments under challenging variations in load torque 
and velocity references; and in both transient and steady states, the quite satisfactory estimation performance is achieved.
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For this purpose, Barut et al. (2007) estimated the stator stationary axis components of rotor (φrα and φrβ ) or 
stator (φsα and φsβ) fluxes together with the stator stationary axis components of stator currents (isα  and isβ), rotor 
mechanical speed (nm), and load torque (tL) including friction term. On the other hand, the estimation performance 
of Barut et al. (2007) is still influenced by the variations in electrical and mechanical parameters such as frequency 
and temperature based stator (Rs) and rotor (Rr) resistances, inertia (jT), etc. In order to improve the estimation 
performance, Bogosyan et al. (2007) performed the estimations of isα, isβ, φrα, φrβ, nm, tL, Rs, and Rr using the braided 
EKF algorithm. Next, bi-input EKF (BI-EKF) algorithm, which uses two different IM model by periodically switching 
in a single EKF algorithm, is introduced to approximately reduce two times the required memory area instead of 
braided EKF utilizing consecutively switching two different EKF algorithms. Barut et al. (2012) estimated the similar 
parameters in Bogosyan et al. (2007) by using proposed BI-EKF. However, braided EKF in the study by Bogosyan 
et al. (2007) and BI-EKF in the study by Barut et al. (2012) estimate the Rs, and Rr at twice the sampling time (2×T) 
while they estimate the isα, isβ, φrα, φrβ, nm, and tL at each sampling time (T), and they are still affected by the variations 
of jT. Zerdali and Barut (2016) demonstrated the necessity of jT estimation for speed/position sensorless speed/
position control of IMs, and estimates the isα, isβ, φrα, φrβ, nm, tL, Rs, and γT (1/jT ) by utilizing BI-EKF approach. Similarly 
to BI-EKF in the study by Barut et al. (2012), BI-EKF in the study by Zerdali and Barut (2016) estimated the Rs, Rr, 
tL, and γT at twice the sampling time (2×T) while it estimates the isα, isβ, φrα, φrβ, and nm at each sampling time (T).  
In addition, Barut (2014) performed the estimations of the same parameters in the study by Zerdali and Barut (2016) 
except for γT, but it estimates mutual inductance instead of γT in order to improve estimation performance in the field 
weakening region. However, the design of BI-EKF algorithms in the study by Barut et al. (2012), Inan and Barut 
(2014) and Zerdali and Barut (2016), which use two different IM models by switching, are more complicated than 
standard EKF algorithms in the studies by Alsofyani and Idris (2016) and Barut et al. (2007).

The main contribution of this paper is to perform the simultaneously estimations of isα, isβ, φrα, φrβ, nm, tL including 
friction term, and γT for speed-sensorless control of IMs by utilizing the single EKF and assuming that measured 
phase currents and voltages are available. Namely, all mechanical state and parameters in addition to isα, isβ, φrα, 
and φrβ are simultaneously estimated by using the standard EKF algorithm in which 7th order extended IM model is 
used. Thus, real-time velocity and flux estimations, which are not affected by changes in the load torque and inertia 
varying with load, have been achieved. Moreover, unlike Herman and Vaclavek (2012) performing the observability 
analysis for the continuous-time IM model, the observability analysis of the discrete-time IM model including the 
states of isα, isβ, φrα, φrβ, nm, tL, and γT is introduced to the literature in the scope of this paper. 

This paper is organized into six sections. Section 1 introduces the literature related EKF based speed-sensorless 
control of IMs and the main contribution of this study. Sections 2 and 3 present the details of the 7th order extended 
IM model and the design of novel EKF based estimator, respectively. Section 4 shows the simulation performance 
of novel EKF based speed-sensorless drive system. Section 5 informs about the experimental setup used for 
the verification of the proposed EKF algorithm, and Section 6 demonstrates the real-time results confirming the 
effectiveness of novel EKF based estimator. Finally, Section 7 gives the conclusion.

2. Extended mathematical model of IM
In order to perform simultaneous estimations of tL and γT(1/jT) together with isα, isβ, φrα, φrβ, and nm by using measured 
phase currents and voltages, a rotor flux based 7th order extended IM model can be given in the following general form:
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where xe is the extended state vector, fe is the nonlinear function of the states and inputs, Ae is the system matrix, 
Be is the input matrix, ue  is the control input vector, he is the function of the outputs, He is the measurement matrix, 
w1 and w2 are the process and measurement noises, respectively. The detailed state-space representations of IM 
model expressed in general form (1) and (2) can be given as follows: 
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where Rs and Ls are the stator resistance and inductance, respectively. Rr and Lr are the rotor resistance and 
inductance referred to the stator side, respectively. Lm is the mutual inductance. Tr is the rotor time constant. Lσ = σLs 
is the stator transient inductance; σ = 1- Lm

2   /(LsLr) is the leakage or coupling factor. vsα and vsβ are stator stationary 
axis components of stator voltages. T is the sampling time.
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As it is well-known, a model must be observable in order to use for state/parameter estimation; therefore, the 

observability analysis of IM model presented in (1) and (2) has to be done. For this aim, the rank condition in the 
studies by Alonge et al. (2015) and Vaclavek et al. (2013) is utilized and constitutes the sufficient condition for the IM 
model to be locally weakly observable. Using the approaches as in the studies by Alonge et al. (2015) and Vaclavek 
et al. (2013), the associated observability matrices are constructed as in (3) and (4):

In order to ensure the rank condition according to Alonge et al. (2015) and Vaclavek et al. (2013), at least one 
of O1 and O2 must be positive definite. Thus,
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	 (5)

Assuming x = x(k) and x+ = x(k+1), the corresponding determinants of O1 and O2 under the hypothesis of x3
+-x3=0, 

x4
+-x4=0, and x6

+-x6=0 (constant rotor flux operation under no-load known as the worst case for speed-sensorless 
control of IM (Holtz, 2005; Zerdali and Barut, 2016)) are obtained as (6) and (7): 
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	 (7)

where χ=(3Lm
6pp

5RrT7)/(2Lr
7Lσ

5), |ϕm| is the amplitude of the maximum value of the flux components.
In order to ensure the rank condition under the constant rotor flux operation, Eqs. (6) and (7) must satisfy the 

condition in (8).
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• 
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As a result, IM model is observable if the condition in (8) is satisfied. The fluctuations in speed estimation stimulate 
the inertia estimation considering the equation of motion, however, this condition is no longer valid for dc condition 
due to constant zero speed (x5

+=x5=0). Obtained observability results are compatible with existing studies in Alonge 
et al. (2015) and Herman and Vaclavek (2012). In addition, Herman and Vaclavek (2012) are emphasised that 
generated electrical moment must change with time to enable the simultaneously estimations of speed, load torque, 
and moment of inertia. Moreover, speed and load torque can be estimated in any case where the IM is observable.

3. Development of novel EKF algorithm
In order to develop the novel EKF based estimator, the conventional equations of the EKF algorithm using IM model 
in (1) and (2) can be given as follows:
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• 

(9a)

(9b)

(9c)

(9d)

where Fe is the function to linearize the nonlinear model. P and N are the covariance matrix of state estimation 
error and extrapolation error, respectively. Q is the covariance matrix of the system noise or known as modeling 
errors. R is the covariance matrix of the output noise or called as measurement noise or errors.

4.	 Simulation results
To verify the effectiveness of novel EKF algorithm, proposed estimation algorithm is included in a direct control 
vector (DVC) system as in Fig. 1. The rated parameters of the IM used in simulation are given in Table 1. The 
covariance matrices used in the novel EKF algorithm are carried out by trial-and-error method as

Q=diag{10-8, 10-8, 10-8, 10-4, 10-3, 10-2},
R=diag{10-10,10-10},
P=diag{10,10,10,10,10,10,10}. 

In order to show the close-loop estimation performance of novel EKF based speed-sensorless DVC system, 
a scenario is determined as in Fig. 2 including several operating conditions. The resulting estimation and control 
performances of proposed speed-sensorless DVC system are presented in Fig. 3. In these figures, the “^” sign and 
e(.) mean the estimated state/parameter and the error defined as difference between measured and estimated ones, 
respectively.

Fig. 1. The novel EKF based speed-sensorless direct vector control system.
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Fig. 2. Variations of nm
ref, tL

ref and γm
ref for the performance test of novel EKF

Table 1. Rated parameters of IM

P [kW] V [V] I [A] nm [rpm] tL [Nm]

2.2 380 5.9 940 22

Rs [Ω] Rr [Ω] Lls [H] Llr [H] Lm [H]

3.03 2.53 0.0116 0.0174 0.135

The following observations can be done considering the resulting estimation and control performances shown 
in Fig. 3:

• �Despite zero-initial conditions of all estimated states and parameters, the estimations illustrated in Fig. 3 
converge rapidly to their actual values; therefore the errors quickly fall to zero, too. In addition, it appears that 
the estimations are directly compatible to the observability results done in Section 2, e.g., γT estimation as in 
the time interval of 0 ≤ t ≤ 1 s is not possible if constant electric torque is generated as described by Herman 
and Vaclavek (2012).

• �The proposed speed-sensorless DVC system can overcome the variations in tL and γT at high speeds for both 
forward and reverse rotations. Even at the transient states of the speed, it can tolerate the changes in tL and γT. 

• �As seen in Fig. 3, the drive has capability to get over tL and γT variations at zero speed region. Moreover, it 
can operate at zero rotor flux frequency for a satisfactory time interval (refer to 0 ≤ t ≤ 1 s, 13 ≤ t ≤ 17 s, and 
29 ≤ t ≤ 30 s in Fig. 3).

5.	 Experimental setup
In order to demonstrate the performance of novel EKF algorithm, the experimental test setup illustrated in Fig. 4 is 
utilized. A 3-phase squirrel cage type IM having the specifications given in Table 1 is loaded by a 30 Nm Foucault 
brake. The 5000 lines/rev encoder is used for confirming the speed estimation while the 50 Nm torque transducer 
is employed to verify the load torque estimation. For measuring the phase currents and voltages, LA55-P/SP1 and 
LV100-400 are utilized, respectively. The IM is also driven by an AC drive in order to test the EKF algorithm with 
space vector pulse-with modulated voltages and thus currents in the stator stationary frame. A power PC-based 
DS1104 controller, which is compatible with Matlab Simulink software and includes 64-bit floating-point processor 
with 250 MHz clock, is used to develop the novel EKF. Thus, the novel EKF algorithm developed with the utilization 
of Matlab Simulink C/C++ S–function is used for real-time experiments.
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Fig. 3. The estimation and control performance of novel EKF based DVC system under closed-loop.

Fig. 4. The block diagram of open-loop experimental setup used for verifying novel EKF algorithm.

6.	 Experimental results
In order to illustrate the effectiveness of the novel EKF algorithm, challenging scenarios are set up as in Figs. 5–9. 
In these scenarios, 

• �the proposed algorithm is fed by the voltages and currents obtained from the ac drive shown in Fig. 4, and thus 
the real-time performance of the proposed algorithm is tested in open-loop case. In other words, the AC drive 

121



Extended Kalman Filter Based Speed-Sensorless Load Torque and Inertia Estimations 
with Observability Analysis for Induction Motors

is only used for supplying the IM and the proposed EKF based estimator and there is no-feedback to the AC 
drive from the estimator. 

• �the estimation performance of the proposed novel EKF is tested by starting with zero initial conditions in Fig. 
5, under step-type load torque variations in Fig. 6, under speed reversals with or without load in Fig. 7, at both 
low and zero speeds in Fig. 8, and at speeds from zero speed to rated speed in Fig. 9.

• �the Foucault brake cannot apply high load torque to the IM at very low speeds due to its the torque–speed 
characteristics. For example, no-eddy currents are induced in the Foucault brake’s disk at zero-speed, and 
therefore, no-torque is generated (Barut et al., 2012).

The “^” sign and e(.) mean the estimated state/parameter and the error defined as difference between measured 
and estimated ones, respectively. During the experiments, all initial conditions of states and parameters are set to 
zero and sampling time T is taken as 75 µs. Also, the tuning of EKF is still open to research (Zerdali and Barut, 
2017) even though there are some approaches as in the study by Bittanti and Savaresi (2000) in the literature. It is 
known that 

• �increasing diagonal elements of Q causes faster tracking response together with the increased noises on the 
estimated states/parameters,

• P is effective at the initial convergences of the estimations,
• �R can be calculated as in the study by Barut et al. (2012) or assumed the matrix to be tuned as in the study by 

Bittanti and Savaresi (2000).

Fig. 5. The estimation results of novel EKF starting with zero initial conditions.
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In this paper, the values of P, Q, and R are tuned by trial-and-error method until satisfactory estimation 
performance is obtained as follows:

Q=diag{10-1, 10-1, 10-7, 10-7, 10-4, 10-5, 10-8},
R=diag{10-1, 10-1},
P=diag{10, 10, 10, 10, 10, 10, 10} 

The details of the scenarios and the observations related to the estimation results are listed below: 
• �In the first scenario given in Fig. 5, the acceralation is achieved by manually changing the input frequency of 

the AC drive. The aim of this scenario is to show the initial estimation performance of novel EKF algorithm; 
therefore, IM is initialized while initial conditions of all states and parameters are zero. Since the changes in the 
inertia are effective during the transient state, the transient state is kept longer to clearly demonstrate how well 

Fig. 6. The estimation results of novel EKF under load torque variations.
Fig. 7. The estimation results of novel EKF under speed reversals with 
and without load torque.
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γT-estimation is obtained. As seen in Fig. 5, all of them converge the actual values immediately. The errors in 
transient states quickly converge to zero in steady states. Also it is observed that the proposed algorithm has 
also satisfactory estimation performances for a shorter transient states than one in Fig. 5.

• �The second scenario shown in Fig. 6 focuses on the estimation performance of novel EKF under step-
type load torque variations at rated speed. For this aim, IM is loaded to 8 Nm and 18 Nm at t = 25 s and  
t = 50 s, respectively. It successfully overcomes these step-type variations. Increasing load torque causes the 
acceptable steady state errors in ωm and tL estimations. Also, in the figures the speed has been given in r/min 
instead of rad/s in order to show the errors clearly. The small variations in γT at the transient states mean a 
slight or negligible variations in jT.

• �The third scenario presented in Fig. 7 purposes to demonstrate the estimation performance under speed 
reversals with or without load. In this scenario, IM is loaded to 20 Nm in the time interval of 0 ≤ t ≤ 50 s, and its 
speed is reversed at t =25 s. Next, load is removed at approximately t =50 s, and its speed is reversed again 
at t =75 s. Thus, the speed of IM is reversed at both loaded and unloaded conditions. In Fig. 7, it seems that 
the estimation errors have a slight increase in the loaded conditions as in Fig. 6. Considering the estimation 
performance in Fig. 7, novel EKF can handle the speed reversals both in loaded and unloaded conditions.

Fig. 8. The estimation results of novel EKF both at rated and zero 
speeds with or without load torque.

Fig. 9. The estimation results of EKF at speeds from zero speed to 
nominal speed.
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• �The fourth scenario aims to verify the effectiveness of novel EKF algorithm in low and zero speed regions. 
In this scenario, the speed is decreased to zero at t =20 s when IM runs at 50 r/min. Next, IM speeds up to  
50 r/min at  t =180 s again while IM continues to run at zero speed in the time interval of 20 ≤ t ≤ 180 s. 
According to the results obtained for the fourth scenario, the proposed method can operate in the zero rotor 
flux frequency where most of model-based methods in the literature fail because no-induction occurs from 
the stator to the rotor side. It has been also proven that the model-based estimation is impossible only when 
constant rotor magnetic flux condition (dc condition) is fulfilled (Alonge et al., 2015; Herman and Vaclavek, 
2012). This case occurs at zero speed operation under no-load. Although IM model is unobservable at dc 
condition, the performed estimations does not diverge from the actual values for a long time, and then the 
proposed algorithm can detect the changes in states and parameters since the EKF naturally takes the system 
noise into account, which helps to improve the estimation performance at zero stator frequency.

• �The fifth scenario seen in Fig. 9 is the most challenging scenario because most of model-based estimation 
techniques in the literature are fail at zero rotor flux frequency and cannot operate at both high and zero speeds 
at the same time. In this scenario, the speed is reduced to zero as it runs the nominal speed without load, and 
IM continues to operate at zero speed for about 50 seconds. Next, the IM speeds up to rated speed with 19 
Nm load. Resulting estimation performance proves that the novel EKF can overcome this challenging scenario 
despite the zero speed reference. 

• �The last scenario in Fig. 10 is performed to show the superiority of the proposed 7th order EKF method over the 
6th order EKF algorithm estimating isα, isβ, φrα, φrβ, nm, and tL except for jT as the study by Barut et al. (2007). As 
seen in Fig. 10, the variations of 0.5×jTN, 2×jTN and 3×jTN occurring in jT  causes estimation errors in the transient 
states, this scenario calls for the estimation of jT (or γT = 1/jT).

Fig. 10. The estimation results of sixth-order EKF algorithm estimating isα, isβ, φrα, φrβ, nm, and tL except for jT
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7.	 Conclusion
In this paper, a novel EKF based estimator with observability analysis, which fulfills the simultaneous estimations 
of  isα, isβ, φrα, φrβ, nm, tL including friction term, and γT by using the measured phase currents and voltages, is firstly 
introduced for high performance speed-sensorless control of IMs. In order to demonstrate the effective performance 
of the proposed estimation technique, it is tested by real-time experiments under challenging variations of load torque 
and velocity references. Considering the obtained real-time results, the quite satisfactory estimation performance 
has been achieved in both transient and steady states, and the proposed method can operate between zero speed 
and nominal speed regions in which most of methods in the literature fail. In addition, the inertia, which changes 
with load coupled to the shaft and affects the speed estimation performance, is also estimated; Thus, proposed 
estimation technique is robust to the inertia variations. In this context, all the mechanical parameters and state in 
addition to the flux estimation required for high performance control methods are estimated. However, the proposed 
algorithm is still sensitive the RS, Rr, and Lm variations which deteriorate the estimation performance; Therefore, it 
requires the changing RS, Rr, and Lm (in field weakening region) knowledge.
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