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Abstract: This paper deals with the stability analysis of MRAS current speed estimator in a motor-
ing and regenerating mode. The unstable operating points of the estimator, mainly in a regenerating
mode are widely discussed. The expanded version of the estimator MRASCC is proposed to provide its
stability in the whole operating range. The new correction coefficients for two analyzed stabilization
methods  are proposed. Finally, simulation results confirming the theoretical analysis are presented
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1. INTRODUCTION

Electric drives with induction motors using vector control methods are now widely
used in industrial practice. In these systems, the implementation of  field-oriented
control (FOC) or direct torque control (DTC) algorithms require the state variable
estimators, such as the rotor or stator fluxes [1]. In some applications also the speed
sensorless induction motor drives are the subject of interest [2], [3]. The advantages of
sensorless systems are: saving space allocated to drive, lower costs, fewer cables,
higher reliability. Although many methods of estimating the angular velocity of the
induction motor have been developed, these issues are still analyzed and published in
the literature.

A broad overview of these methods was included, among others, in [2], [3]. These
methods can be divided into 3 main groups (Fig. 1). The first one includes physical
methods, which take advantage of phenomena taking place in the machine. The next
methods are neural methods that use artificial intelligence (artificial neural networks,
including neuro-fuzzy structures). The third one, the most developed and studied
group comprises algorithmic methods. They are based on mathematical models of the
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induction motor and the different methods of control theory. This group can be
divided into more parts – estimators, state variables observers, and Kalman filters.

Among the state variable observers we can distinguish a nonlinear observer, an
extended observer, observers which use sliding mode theory (Sliding Mode Observer
– SMO [4], Dual-Mode – DM [5]) and the most popular of them – Adaptive Full-
Order Observer (AFO) [6]. In the case of AFO, many articles have been published, in
which appropriate selection of gain matrix or adaptation mechanism was proposed, to
improve observer stability especially in the regenerating mode [7]–[13].
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Fig. 1. Estimation methods of the induction motor speed

State estimators can be divided into two groups. The estimators with the rotor
speed value calculated algebraically, based on the estimated rotor flux vector angular
speed and calculated rotor slip pulsation, belong to the first group. Examples of such
estimators have been proposed in [3], [14]–[16].
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Fig. 2. The basic block scheme of MRAS type estimators
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The second group consists of estimators which use a technique of adaptive systems
– MRAS-type speed estimators. The basic structure of the MRAS-type estimator con-
sists of three blocks: a reference model, an adaptive model and an adaptation mecha-
nism (usually it is PI controller) (Fig. 2).

Estimators of this group can be divided into next three groups according to the er-
ror signal which is used in the speed adaptation mechanism:

– the error in the form of a vector product of the rotor flux vectors estimated from
the voltage and current rotor flux simulators – MRASF [17], [18]; it is one of the
most popular MRAS speed estimators;

– the error in the form of a vector product of the estimated values of electromotive
force MRASEMF [19] and extension of this estimator, where the error is in the
form of the difference between the reactive power values (the vector product of
the electromotive force and the stator current) estimated by the reference and
adaptive models – MRASRP [20];

– the error in the form of vector product of the estimated rotor flux vector and the
stator current error (between measured and estimated current vectors) – MRASCV

[21] and MRASCC [22].
In recent years, some research has been published concerning modified MRAS-

type estimator, with sliding mode controller instead of the PI controller in the speed
adaptation loop – SM-MRAS [23].

The third approach is unconventional, since the induction motor is considered as
a reference model in the case of these current-based MRAS-type estimators. Also
the speed adaptation mechanism is the same as in case of the adaptive full-order
observer AFO [6]. The above two features involve the possibility of classifying both
AFO and MRASCC_CV into one group. It should be mentioned that the influence of
the induction motor parameter changes to performance of each estimator of this
group was examined in [14], from the point of view of the speed estimation quality
and stability in the motoring mode. In the case of MRASCC the first study of its sta-
bility in the regenerating mode was made in [24] and some solutions for estimator
stabilization were proposed.

In this paper, a detailed stability analysis of the MRASCC speed estimator in the regen-
erating operation mode is presented as well as new solution for the estimator stabilization
is proposed. The paper is divided into several sections. After the discussion of the state
variable estimation methods, with emphasis given to the MRAS-type techniques in the
Introduction part, the mathematical models of the induction motor and analysed
MRASCC estimator are shown in Section 2. In Section 3, a detailed stability analysis of
the estimator is presented. Next, methods for correcting the stability range in regener-
ating mode are discussed. In Section 5, the simulation results of testing the MRASCC

estimator in motoring and regenerating modes, for the induction motor drive with di-
rect field-oriented control are presented. The paper is concluded with summary of the
results obtained.
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2. MATHEMATICAL MODELS USED FOR STABILITY ANALYSIS

2.1. MATHEMATICAL MODEL OF AN INDUCTION MOTOR

In this research, a mathematical model of induction motor was used, which was
represented in spatial vector notation, using commonly applied simplifying assump-
tions and was written in coordinate system rotating synchronously with the rotor flux,
in relative units [3]. The state equation for the electromagnetic part of the induction
motor takes the following form
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By substituting the parameters of the induction motor and using complex notation

the following equation is obtained

 
s

r

s

ms
r

rr

m
r

r

r
s

r

s
N l

jkr

l
kj

l
kj

l
r

dt
dT u

ψ
i

ψ
i









































































0

1

1

1











, (2)

where rs, rr – stator and rotor resistance, ls, lr, lm – stator and rotor leakage inductance,
magnetizing inductance,  – total leakage factor, s – stator frequency, s – m = r
– rotor frequency in [p.u.] (or slip frequency), fsN – stator nominal frequency,
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2.2. MATHEMATICAL MODEL OF THE CURRENT SPEED ESTIMATOR – MRASCC

The current speed estimator MRASCC, which was proposed in [22], is presented in
Fig. 3. The scheme includes a model of stator current estimator
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Fig. 3. A block diagram of the basic MRASCC

This model requires information about rotor flux, which is obtained from the clas-
sical current simulator [3]
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Both models are tuneable by estimated rotor speed, which is calculated in the ad-
aptation mechanism


dt
dKK

dt
d

pim ˆ , (5)

where input error of the PI controller, compared to original solution [22], is modified
according to the proposal presented firstly in [10]
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where ssi iie ˆ  is the estimation error of the stator current vector.
The block diagram of this speed estimator is presented in Fig. 3.
The mathematical model of the current speed estimator MRASCC can be written

in the form similar to AFO [6], [9]–[13], through the expansion of its basic version by
the gain matrix G. Equations (3) and (4) are  now represented  by the following state
equation
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where K – matrix resulting directly from (4), which depends on motor parameters multi-
plied next by the measured stator current (not estimated current like in AFO) – see (8).
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By substituting the parameters of the induction motor into state, control and K ma-
trices, the following state equation of the estimator is obtained, with additional modi-
fication of its structure like in [24]
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Additionally, the input error of the PI controller, compared to the original solution

[22], can be  modified according to the proposal presented firstly in [10]
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Thus the modified speed adaptation algorithm with the additional correction of cur-
rent error will take the following form

 
dt
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d

pimˆ . (10)

The new form of this estimator is illustrated in a block diagram in Fig. 4.
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Fig. 4. A block diagram of the modified MRASCC estimator
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3. STABILITY ANALYSIS OF MRASCC ESTIMATOR

3.1. METHODOLOGY OF THE ESTIMATOR STABILITY ANALYSIS

The algorithm of the estimator stability analysis can be described in a few steps:
(1) Formulation of the state estimation error equation for the full model of the es-

timator
The state vector of estimator (8), consisting of two electromagnetic state variables

(estimated stator current and rotor flux vectors) is extended by the estimated angular
velocity of the induction motor and thus the nonlinear state equation of the estimator is
obtained. By subtracting the combined equations of the estimator (8) and (10) from
state equation of the induction motor model (2), the state estimation error equation is
obtained, where the error state vector is defined as follows
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(2) Linearization of the state estimation error equation around a fixed operating
point

The state estimation error equation formulated in the first step is linearized around
the fixed operating-point

mmm  ˆˆˆ; 00  eee (12)

and the following equation is obtained

eAeAe ee

dt
d

00
ˆˆ  . (13)

(3) Calculation of eigenvalues of the linearized state matrix (poles of the esti-
mator)

In this step, an analysis of the linearized state matrix is made. The eigenvalues are
calculated from the following equation

0)ˆdet( 0  es AI . (14)

(4) Analysis of the position of the real parts of all estimator eigenvalues at fixed
operating points

All poles should lie in the left half Gauss plane, therefore the real part of each of
them should have a negative sign. A positive sign provides about instability in the
certain operating point.



M. KORZONEK, T. ORŁOWSKA-KOWALSKA120

(5) Calculation of the boundaries of instability
The boundaries of instability are determined by comparing the value of the deter-

minant of a linearized state matrix to zero

0ˆdet 0 
eA . (15)

3.2. STABILITY ANALYSIS OF MRASCC

The full model of MRASCC estimator (8) can be rewritten as follows
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The following state matrix is obtained after linearization of the state estimation er-
ror equation
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Details concerning values of the a51–a55 coefficients and the matrix e

0Â  (in (13))
are given in the Appendix. It is also assumed that 0, 00  ryrefrx  .

A graph of unstable operating points is created by analysing the poles of the esti-
mator according to (14) in the following range
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During the above calculations the following assumptions were made: gs = 0,
gr = 0, φ = 0, to check the stability region of an original (not modified) estimator [22].
The placement of the unstable estimator eigenvalues is presented in Fig. 5. It should be
noted that the estimator is unstable in the regenerating mode in the whole range
examined. The two eigenvalues ( 4  and 5 ) are responsible for these properties.
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Fig. 5. Unstable eigenvalues of the estimator MRASCC and straight lines boundaries D1 and D2:
gs = 0, gr = 0, φ = 0, Kp = 0.5, Ki = 30

The next step is to designate the boundaries which limit the range of unstable oper-
ating points. Thus, according to (14) the determinant of the linearized system state
matrix e

0Â  is calculated and its value is compared to zero
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The obtained straight lines given by equations (19a) (boundaries of the unstable
operating points caused by unstable estimator eigenvalues 4 and 5) in the plane
s ↔ m can be easily recalculated to the plane mL ↔ m and are marked next as lines
D1 and D2 in Fig. 5,
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It should be noted that the coefficient Kp does not affect the unstable range of op-
erating points and the value of the determinant (see (18)).

4. STABILIZATION METHODS FOR THE ESTIMATOR

The stability in regenerating mode of the MRASCC estimator discussed in this arti-
cle can be improved by appropriate selection of the gain matrix G coefficients (as in
(7), (8)) or by shifting the stator current error versus rotor flux vector with the angle ϕ
in the adaptation mechanism (according to (9)). Then the position of the border line
D2 is changed. The aim of such modification is to obtain unstable operating points
only on line D1 so that line D2 must be equal to D1. It follows that the aim is to obtain
the following value of the determinant of the linearized system state matrix

2
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e A , (20)

where α is a positive constant depending on the stabilization method used.

4.1. SELECTION OF THE GAINS MATRIX COEFFICIENTS

In order to select coefficients of the gain matrix G the determinant of a linearized
state matrix of the estimation error with non-zero values gs ≠ 0, gr ≠ 0 (and φ = 0) is
calculated and takes the following form
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Thus the gain values which satisfy the condition given by (20) are obtained
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where k > 0.
It should be noted that gsy and gry depend on the measured value of the angular veloc-

ity. In sensorless systems the actual speed of the induction motor is unknown. Replacing it
with the estimated value of the speed will not give evidence to global stability of the esti-
mator. Therefore, the following approximation resulting from the D1 equation is used

00 ~ rm   . (23)

With the above approximation the following gain coefficients are obtained
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In Fig. 6, the resulting placement of the modified estimator eigenvalues is pre-
sented for accurate and approximate values of the gain matrix coefficients (22) and
(24), respectively.
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Fig. 6. Unstable operating points when φ = 0, Kp = 0.5, Ki = 30:
(a) gs and gr – equation (22), (b) gs and gr – equation (24)
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Appropriate selection of the gain matrix G coefficients for the estimator MRASCC

allows expected properties to be achieved. The range of instability becomes just
a straight line D1 (Fig. 6a). Unfortunately, approximation (24) leads to the appearance
of unstable operating points in motoring mode (Fig. 6b). It means that the gain matrix
coefficients should become zero under the transition from the regenerating mode to
motoring mode.

4.2. SELECTION OF THE SHIFT ANGLE FOR MRASCC

Another way to improve stability of the estimator is appropriate selection of the
shift angle between the stator current error and the rotor flux. In order to calculate this
value, the determinant of the linearized state matrix of estimation error for φ ≠ 0 and
gs = 0, gr = 0 is presented
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Taking into account (20), the following value of the shift angle is obtained
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As for the gain matrix, the approximation (23) is used
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As follows from Fig. 7a, the shift angle is well chosen, but only in the low speed
range. Unfortunately, with increasing speed unstable operating points appear. The insta-
bility in regenerating mode disappears after increase of the coefficients in the adapta-
tion algorithm (Kp and Ki), which is shown in Fig. 7b.

The use of approximation (27) allows the unstable operating points to be com-
pletely reduced (even for smaller values coefficient Kp) (see Fig. 8). Of course, the
unstable eigenvalues appear only on the straight line D1 (s0 = 0). In the case of tran-
sition from the regenerating mode to motoring mode the value of the shift angle
should be changed to zero; otherwise the estimator may be unstable in the motoring
mode.
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Fig. 7. Unstable operating points when gs = 0, gr = 0, φ – equation (25):
(a) Kp = 0.5, Ki = 30, (b) Kp = 100, Ki = 1000
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Fig. 8. Unstable operating points when gs = 0, gr = 0, φ – equation (27), Kp = 0.5, Ki = 30

5. SIMULATION TESTS OF THE ESTIMATOR IN DRFOC STRUCTURE

Under the simulation tests the induction motor drive was controlled using the Di-
rect Rotor flux Field-Oriented Control (DRFOC), the structure of which is shown in
Fig. 9. Simulation tests were done in the regenerating mode of the drive system and
the MRASCC estimator behaviour was analysed for the following speed reference val-
ues mnm  }9.07.05.03.01.0{  . When the motor speed had reached
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the assumed reference value, the load torque was applied. The load torque was grow-
ing for 20 s from zero to twice the nominal value.
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Fig. 9. The DRFOC control structure used in the simulation tests

Figure 10 shows an example of simulation results. It illustrates the behaviour of
the estimator for the reference speed m = 0.3mn and slowly changing regenerative
load torque in the range (0÷ –2)mn. It is seen that for certain value of the load torque
the estimator loses the stability. Similar simulation tests have been realised for other
above-mentioned values of reference speed and results are plotted in the plane
mL ↔ m in Figs. 11–13.
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In the following figures the results confirming the theoretical analysis shown in the
previous sections are presented. Traces in Fig. 11 confirm theoretically defined unsta-
ble regions of the classical MRASCC [22] in the regenerating mode. For each of the
test speed reference values, MRASCC loses the stability inside the appointed region.
Therefore, the estimator should be stabilized by appropriate selection of the gain ma-
trix coefficients or the shift angle value. The behaviour of the estimator for both stabi-
lization methods is shown in Fig. 12 and Fig. 13, respectively.
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Fig. 11. Unstable operating points for classical MRASCC

with gs = 0, gr = 0, φ = 0, Kp = 0.5, Ki = 30

From Fig. 12a it results that in the case of knowledge of the actual induction motor
speed, the estimator with gain matrix selected according to (22) is stable in the full
range of speed. The use of approximation of the motor speed by slip frequency (24)
leads to unstable operating points in the motoring mode (Fig. 12b). This confirms that
the gain matrix should be adjusted to zero under the transition from regenerating to
motoring mode.

m

-1 -0.5 0 0.5 1
-2

-1

0

1

2
b)

m

-1 -0.5 0 0.5 1

m
L/m

n

-2

-1

0

1

2
a)

D1
D2

mref

mest

Fig. 12. Unstable operating points of the modified MRASCC with φ = 0, Kp = 0.5, Ki = 30:
(a) matrix G according to (22); (b) matrix G according to (24)
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Kp = 0.5, Ki = 30; (b) angle φ according to (26), Kp = 100, Ki = 1000;

(c) angle φ according to (27), Kp = 0.5, Ki = 30

Figures 13a, b show the effect of increasing the coefficients in the adaptation
mechanism to improve stability, when equation (26) is used for the calculation of an-
gle . The increase of Kp and Ki reduces the range of unstable operating points in mo-
toring mode. However, if equation (27) is applied to angle calculation, then similarly as
in the case of the gain matrix (24), the value of the shift angle should be switched to zero
under transition from the regenerating mode to motoring mode. If the angle is not
switched on, then the unstable operating points appear in the motoring mode (Fig. 13c).

6. CONCLUSION

The modified version of the speed estimator MRASCC, with two stabilization mecha-
nisms proposed in the literature for the Adaptive Full Order Observer [8]–[11] to improve
the estimator stability in the regenerating mode, was analysed in this paper. The range of
unstable operating points which appear in the regenerating mode was determined by the
stability analysis. The results obtained are similar to those shown in [24], but the present
analyses confirmed by simulation results are more detailed.

Analysis of the determinant of the state matrix of the linearized estimation error
equation makes it possible to determine the appropriate elements (coefficients of the
gains matrix or shift angle between the stator current error and the rotor flux vectors)
stabilizing the MRASCC estimator operation in the regenerating mode and to reduce
the range of unstable operation points to the straight line D1 (s0 = 0). In this article,
both gain matrix and shift angle choice has been proposed and analysed. From the
extended simulation tests it results that the gain matrix elements or shifting angle
should be set to zero under the transition from the regenerating to monitoring mode
and vice versa.



Stability analysis of MRASSCC speed estimator... 129

Simulation tests confirm the theoretically determined range of the MRASCC instability
in regenerating mode and the conditions when this estimator behaves stable in this range.

APPENDIX

Coefficients a51–a55 are given as follows
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Matrix e
0Â  has the following form
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Table 1. Parameters of the induction motor

Parameter Value [physical unit] Value [per unit]
Nominal power PN = 1500 [W] pn = 0.6211
Nominal torque MN =10.1588 [N] mn = 0.6608
Nominal voltage UN = 230 [V] un = 0.7071
Nominal current IN = 1.5 [A] in = 0.7071
Nominal motor speed nN = 1440 [obr/min] ωmn = 0.94
Magnetizing inductance Lm = 278.5 [mH] lm = 1.3314
Stator/rotor inductance Ls = Lr = 295.8 [mH] lr = ls =1.4141
Stator resistance Rs = 5.3073 [Ω] rs = 0.0808
Rotor resistance Rr = 4.8430 [Ω] rr = 0.0737
Flux Ψr = 0.9328 [Wb] ψr = 0.9009
Frequency fsN = 50 [Hz] –
The number of pole pairs pb = 2 –
Moment of interia J = 0.0193 [kgm2] –
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