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 Abstract 
The article is devoted to solving the fundamental and applied problem of nonlinear structural me-
chanics of machines by introducing into the drum two additional stop cylinders with supporting 
rollers at the end and adjustable length, providing a given elliptical or circular shape of a flexible 
shell with a smoothly variable geometry in the area of its contact with compacted pavement material. 
Compaction of soil, gravel and asphalt concrete in the sphere of road is not only an integral part of 
the technological process of the roadbed, road foundation and surface construction, but it is actually 
the main operation to ensure their strength, stability and durability. The quality, cost and speed of 
road construction, the possibility of using fundamentally new technologies, structures and materials 
is largely determined by the availability of modern road machinery. 
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1. Introduction 

One of the main directions of scientific and technological 
progress is the creation and introduction of new equipment, 
the improvement of the existing one, as well as the im-
provement of its quality, reliability, durability with minimal 
material consumption and cost per unit of power. 

A summary of the issue of quantifying the carrying capaci-
ty of the shell can only be done after joint mathematical 
modeling of the physical process of interaction between the 
roller and the material of the sealing coating and solving the 
problem of local elastic stability of a thin-walled cylindrical 
shell (shell) under local contact pressure” (Abdeev et al., 
2011; Sakimov et al., 2018). 

The article presents the analysis of the behavior of the de-
formable roller shell of the road roller, and the material to be 
compacted under the compacting roller of the road roller 
(Dudkin et al., 2006), in which the rigid circular shell of the 
roller is replaced by a forcefully deformable elliptical shape, 
which, unlike the circular design, allows variation, adjust-
ment and optimization of the impact of the road roller on the 
material to be compacted. 

2. Mathematical Model 
This article is devoted to solving this fundamental and ap-

plied problem of nonlinear structural mechanics of machines 
(Birger et al., 1979) by introducing into the drum two addi-
tional stop cylinders with supporting rollers at the end and 
adjustable length, providing a given elliptical or circular 
shape of a flexible shell with a smoothly variable geometry 
(Dudkin et al, 2006; Abdeev et al., 2012et al., 2018) in the 
area of its contact with compacted pavement material, based 
on: 
1) the closest and symmetrical positioning at the same 

distance lр≥С of roller support-cylinders, the length of 
which in the design scheme of figure 1 is almost identi-
cal to the width B of the roller (figure 2), and their ri-
gidity, according to size, is much more than deformabil-
ity of the flexible shell having the thickness 𝛿𝛿 ≪ 𝑑𝑑р - the 
diameter of the rollers; 
2) the distribution locality of contact pressure func-

tions 𝑞𝑞С = 𝑞𝑞С(𝑥𝑥1),qp= qp(x1),, at which the lengths 
of the corresponding projections С,Cp  pologic shell 
arcs in contact with the material of the coating being 
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compacted are comparable to its thickness δ, and in 
this connection, as is known (Ponomarev and An-
dreeva, 1980), in small areas of the simulated thin-
walled system bounded by 2C×B areas (stationary 
roller, figure 1) and CП× В (rotating movable roller, 
figure 1) obvious conditions are observed (Sakimov 
et al., 2018; Bostanov et al., 2018) 

                      1
80

< 𝛿𝛿
2∙С

< 1
5

 , 1
80

< 𝛿𝛿
С𝑝𝑝

< 1
5
,           (1) 

confirming the low probability of clipping, since within the 
constraints (1) the shell will deform like a cylindrical flat 
shell-panel of relatively large thickness δ and a small bend 
(within the limits of size δ), in which (Kolkunov, 1972) 

               ymax< 2∙𝑙𝑙р
5

=0,4∙𝑙𝑙р.            (2) 

At the same time, in order to guarantee the tuning of the 
considered structure in order to exclude the possibility of 
local deformations from the reactive distributed forces 𝑞𝑞с, 𝑞𝑞𝑝𝑝  
(n), it is necessary to solve the stability test proble. For its 
mathematical formulation, with a margin of rigidity mand 
bearing capacity, an idealized model of a linearly elastic 
homogeneous isotropic rectangular plate-panel with a plan 
size 2𝑙𝑙р × В (Fig. 2) is used with an initial bend 𝑦𝑦1 = 𝑦𝑦(𝑥𝑥1), 
approximated by circle or ellipse functions and fixed projec-
tions 𝑙𝑙р ≥ С = 𝑚𝑚𝑚𝑚𝑚𝑚,   symmetrically located arcs Sр. At the 
same time, for the calculated pressure 𝑞𝑞р(𝑥𝑥1) with the great-
est extremum q=max (Fig. 2) the functional expression of 
Hertz-Shtererman  is taken (Sakimov et al., 2018) 

                𝑞𝑞р = 𝑞𝑞р(𝑥𝑥1) =
𝑞𝑞
𝑙𝑙р
�𝑙𝑙р2 − 𝑥𝑥1 

2 ≥ 0,    𝑞𝑞 < 𝑞𝑞𝑘𝑘𝑘𝑘, (3) 

changing on a plane −𝑙𝑙р ≤ 𝑥𝑥1 ≤ 𝑙𝑙р,−0,5 𝐵𝐵 ≤ 𝑧𝑧1 ≤ 0,5𝐵𝐵  by 
the same even law as addiction𝑞𝑞с = 𝑞𝑞с(𝑥𝑥1),   in the case of a 
stationary drum (Fig. 1) while limiting the maximum value 
𝑞𝑞 < 𝑞𝑞кв regulatory minimum safety factor  �𝑛𝑛у� = 1,5   for an 
ideal original shell surface (no dents) 

                𝑛𝑛у =
𝑞𝑞𝑘𝑘𝑘𝑘
𝑞𝑞𝑚𝑚𝑚𝑚

≥ �𝑛𝑛у� = 1,5   (4) 

in relation to the upper critical load 𝑞𝑞𝑘𝑘𝑘𝑘, corresponding to the 
unacceptable phenomenon of flipping the shell to a new 
stationary equilibrium state with the formation of a local 
bend (Temirbekov et al., 2019) 

Each mechanical system with the loss of stability can be-
have differently. A transition to a certain new equilibrium 
state usually takes place, which in the overwhelming majori-
ty of cases, is accompanied by large displacements, the ap-
pearance of plastic (residual) deformations or complete de-
struction. In relation to the considered road roller with 
flexible elastic shell (Dudkin et al., 2006; Abdeev et al., 
2012), the listed negative factors lead to the impossibility of 
its further operation or to a significant reduction in the quali-
ty indicators of the fulfillment of its functional purpose. On 
this basis, the topic of this article is extremely relevant, inno-
vative and promising. 

The corresponding applied physical and mathematical 
problem of an elastically deformable solid body is based on 
the fundamental system of two nonlinear fourth-order differ-
ential equations (Fig. 2). 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝐸𝐸 ∙ 𝛿𝛿2

12(1 − 𝜇𝜇2)∇
4𝜔𝜔 =

𝜕𝜕2Ф
𝜕𝜕𝑥𝑥12

∙
𝜕𝜕2𝜔𝜔
𝜕𝜕𝑧𝑧12

+
𝜕𝜕2Ф
𝜕𝜕𝑧𝑧12

�
𝜕𝜕2𝜔𝜔
𝜕𝜕𝑥𝑥12

+
𝜕𝜕2𝑦𝑦1
𝜕𝜕𝑥𝑥12

� −

−2
𝜕𝜕2Ф
𝜕𝜕𝑥𝑥1𝜕𝜕𝑧𝑧1

∙
𝜕𝜕2𝜔𝜔
𝜕𝜕𝑥𝑥1𝜕𝜕𝑧𝑧1

+
𝑞𝑞

𝛿𝛿 ∙ 𝑙𝑙р
�𝑙𝑙р2 − 𝑥𝑥12,

1
𝐸𝐸 ∇

4Ф = �
𝜕𝜕2𝜔𝜔
𝜕𝜕𝑥𝑥1𝜕𝜕𝑧𝑧1

�
2

−

−
𝜕𝜕2𝜔𝜔
𝜕𝜕𝑥𝑥12

∙
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(5) 
 

 
 
 
 

(6) 

  
where Е, µ – respectively, the modulus of elasticity and Pois-
son’s ratio of the shell material (structural spring steel (Ab-
deev et al., 2012)); 
 𝑥𝑥1, 𝑧𝑧1 – local coordinates of an arbitrary point of the 
median surface of the shell, varying within 

    −𝑙𝑙р ≤ 𝑥𝑥1 ≤ 𝑙𝑙р ≥ 𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚 > 𝐶𝐶𝑝𝑝 ,−0,5 𝐵𝐵 ≤ 𝑧𝑧1 ≤ 0,5𝐵𝐵;           (7) 

 
1 - Support rollers at the end of the hydraulic cylinders, creating  
  and supporting with the help of forces P, an elliptical shape of 
the shell, 2 - Hydraulic cylinders with roller bearings of cylindri-
cal type, providing a predetermined shape of the shell and in-
creasing its bearing capacity (local stability) in the area of action 
of reactive distributed loads 𝑞𝑞, 𝑞𝑞𝑝𝑝 

Fig. 1. Design and design diagram of a general form  
with contact pressure diagrams q and qp  
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Fig. 2. The calculated model of the section of the shell, limited size 
−𝑙𝑙𝑃𝑃 ≤ 𝑥𝑥1 ≤ 𝑙𝑙𝑃𝑃,−0,5В ≤ 𝑧𝑧1 ≤ 0,5В to test local sustainability 

𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚 – the greatest linear geometrical pa-
rameters within which contact pressures act 𝑞𝑞с, 𝑞𝑞п for station-
ary (C) and rolling (P) rollers (Sakimov et al., 2018): 

𝐶𝐶 = 1,0925 ∙ 𝑎𝑎� 𝐺𝐺𝑏𝑏
𝐸𝐸к∙𝑏𝑏∙𝐵𝐵

,   𝐶𝐶𝑝𝑝 = 0,74 𝑏𝑏
2

𝑎𝑎2
∙ 𝐶𝐶 < 𝐶𝐶;          (8) 

𝑞𝑞𝑐𝑐 =
2 ∙ 𝐺𝐺𝑏𝑏

𝜋𝜋 ∙ 𝐵𝐵 ∙ 𝐶𝐶2
�𝐶𝐶2 − 𝑥𝑥12, −𝐶𝐶 ≤ 𝑥𝑥1 ≤ 𝐶𝐶,

𝑞𝑞𝑝𝑝 =
𝐺𝐺𝑏𝑏

𝐵𝐵 ∙ 𝐶𝐶𝑝𝑝2
�

2
𝜋𝜋 +

3
2𝐶𝐶𝑝𝑝

∙ 𝑥𝑥1� ∙ �𝐶𝐶𝑝𝑝2 − 𝑥𝑥12, 0 ≤ 𝑥𝑥1 ≤ 𝐶𝐶𝑝𝑝;
⎭
⎪
⎬

⎪
⎫

 (9) 

𝑦𝑦1 = 𝑦𝑦1(𝑥𝑥1) −  arbitrary coordinate fixing the natural 
(“smooth”) outline of a shallow elliptical cylindrical shell 
when 𝑞𝑞р = 0  (Fig. 2): 

𝑦𝑦1 = 𝑦𝑦1(𝑥𝑥1) = 𝑏𝑏(1 − �1 − 𝑥𝑥12 ∙ 𝑎𝑎−2 ,−𝑙𝑙р ≤ 𝑥𝑥1 ≤ 𝑙𝑙р,

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑦𝑦1�±𝑙𝑙р� ≤ 𝑏𝑏,  𝑙𝑙р ≪ 𝑎𝑎;
�   (10) 

𝜔𝜔 = 𝜔𝜔(𝑥𝑥1, 𝑧𝑧1) –additional deflection, measured parallel to 
the axis 𝑦𝑦1 from the original middle surface (10) of the shell; 
Ек – specified normalized modulus of soil deformation or 
pavement, compacted to the termination of residual dis-
placements (Sakimov et al., 2018); 

𝑎𝑎 = 𝑎𝑎(𝜉𝜉), 𝑏𝑏 = 𝑏𝑏(𝜉𝜉) – the dimensions of the semi-axes of 
the ellipse presented in Figure 1 and described by the well-
known equation: 

𝑥𝑥2

𝑎𝑎2
+ 𝑦𝑦2

𝑏𝑏2
= 1               (11) 

depending on eccentricity (Abdeev et al., 2012.): 

𝜉𝜉 = �1 − 𝑏𝑏2

𝑎𝑎2
, 0 ≤ 𝜉𝜉 ≪ 0,57;     (12) 

 
𝐺𝐺𝑏𝑏 - the calculated mass of the roller and the corresponding 
part of the frame; 
𝐹𝐹 = 𝐹𝐹(𝑥𝑥1, 𝑧𝑧1) – desired function of normal 𝜎𝜎𝑥𝑥1,𝜎𝜎𝑧𝑧1and tan-
gent 𝜏𝜏 local stresses (Kolkunov, 1972) (Fig. 2): 

𝜎𝜎х1 = 𝜕𝜕2𝐹𝐹
𝜕𝜕𝑧𝑧12

,𝜎𝜎𝑧𝑧1 = 𝜕𝜕2𝐹𝐹
𝜕𝜕𝑥𝑥12

, 𝜏𝜏 = − 𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕,𝜕𝜕𝑧𝑧1

;                 (13) 

∇4= ∇4(𝑥𝑥1, 𝑧𝑧1) – double Laplace operator (Kolkunov, 
1972; Ponomarev and Andreeva, 1980). 

∇4= 𝜕𝜕4

𝜕𝜕𝑥𝑥14
+ 2 𝜕𝜕4

𝜕𝜕𝑥𝑥12𝜕𝜕𝑧𝑧12
+ 𝜕𝜕4

𝜕𝜕𝑧𝑧14
                        (14) 

In relation to the roller circular shape with a radius of the 
middle surface 𝑅𝑅𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 should, in the above relations 
(10) - (12), make a replacement 𝑎𝑎 = 𝑏𝑏 = 𝑅𝑅𝑐𝑐, as a module 
𝜉𝜉=0,  according to (12). 

In the reserve of local deformability of the shell and in or-
der to simplify the integration of system (5), (6), due to the 
design features of the design schemes of figures 1 and 2, it is 
followed by the description of the final state of the element 
of the shallow shell (Figure 2) by the mechanical-
mathematical model of the cylindrical bend of a rectangular 
plate with the initial curvature y1 (10) (Kolkunov, 1972. 
Ponomarev and Andreeva, 1980), when the desired functions 
𝜔𝜔(𝑥𝑥1, 𝑧𝑧1)  and 𝐹𝐹(𝑥𝑥1, 𝑧𝑧1),  take the form: 

𝜔𝜔 = 𝜔𝜔(𝑥𝑥1), 𝐹𝐹 = 𝐹𝐹(𝑧𝑧1) = А ∙ 𝑧𝑧1
2

2
,               (15) 

and the stresses (13) in the middle surface become equal 

𝜎𝜎𝑥𝑥1 = 𝜕𝜕2𝐹𝐹
𝜕𝜕𝑧𝑧12

= 𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,  𝜎𝜎𝑧𝑧1 = 𝜏𝜏 = 0               (16) 

under the assumption that the internal force components 𝜎𝜎𝑥𝑥1  
is considered positive under compression. In this case, the 
equilibrium condition (5) is transformed into an ordinary 
differential equation 

𝐸𝐸∙𝛿𝛿2

12(1−𝜇𝜇2) ∙
𝑑𝑑4𝜔𝜔
𝑑𝑑𝑥𝑥14

= 𝐴𝐴 �𝑑𝑑
2𝜔𝜔
𝑑𝑑𝑥𝑥12

+ 𝑑𝑑2𝑦𝑦1
𝑑𝑑𝑥𝑥12

� + 𝑞𝑞
𝑙𝑙р∙𝛿𝛿

�𝑙𝑙р2 − 𝑥𝑥12,          (17) 

and relation (6) is identically satisfied 0≡0. 
It is necessary to supplement dependence (17) by Hooke’s 

law for constant linear relative deformation (Doudkin et al., 
2013) 

𝜀𝜀𝑥𝑥1 = 𝜎𝜎𝑥𝑥1
Е

= 𝐴𝐴
Е

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                  (18) 

and geometrically nonlinear Cauchy formula (Kolkunov, 
1972): 

                                 𝜀𝜀𝑥𝑥1 = 𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥1

+ 1
2

(𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥1

)2 = 𝐴𝐴
Е
 ;                           (19) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥1) – displacement function in the direction of 
the coordinate axis 𝑥𝑥1 (Fig. 3) 

The equation (17) is integrated approximately using the 
Bubnov-Galerkin method of sufficiently effective and accu-
rate variational analytical method (Doudkin et al., 2018; 
Doudkin et al., 2019). The function 𝜔𝜔(𝑥𝑥1) is approximated 
by a polynomial of the fourth degree (Kolkunov, 1972. 
Ponomarev and Andreeva, 1980). 

              𝜔𝜔 = 𝜔𝜔(𝑥𝑥1) = 𝑓𝑓 �1 − 𝑥𝑥12

𝑙𝑙р2
�
2

= 𝑓𝑓 �1 − 2𝑥𝑥12

𝑙𝑙р2
+ 𝑥𝑥14

𝑙𝑙р4
�,   

                                          (−𝑙𝑙р ≤ 𝑥𝑥1 ≤ 𝑙𝑙р),                                (20) 

satisfying the boundary conditions of Figure 3: 
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      𝜔𝜔�±𝑙𝑙р� = 0, �𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥1

�
𝑥𝑥1=±𝑙𝑙р

= 𝑓𝑓 �− 4𝑥𝑥1
𝑙𝑙р2

+ 𝑥𝑥13

𝑙𝑙р4
��
𝑥𝑥1=±𝑙𝑙р

= 0,        (21) 

where the maximum calculated chord length 𝑙𝑙р, identical to 
the distance between roller bearings (Fig. 1), is found, ac-
cording to (8) and guided by (Sakimov and Eleukenov, 2012; 
Sakimov et al., 2018). 
 

𝑙𝑙р ≥ 𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚 = 1,0925𝑎𝑎𝑝𝑝 ∙ �
𝐺𝐺в

𝐸𝐸к ∙ 𝑏𝑏𝑝𝑝 ∙ 𝐵𝐵
= 

= 1,0925 ∙ 1,0954 ∙ 𝑅𝑅𝑐𝑐�
𝐺𝐺в

𝐸𝐸к ∙ 0,9𝑅𝑅𝑐𝑐 ∙ 𝐵𝐵
=

= 1,26146 ∙ 𝑅𝑅𝑐𝑐�
𝐺𝐺в

𝐸𝐸к ∙ 𝑅𝑅𝑐𝑐 ∙ 𝐵𝐵
 

(22) 

 
Fig. 3. Arbitrary section z1, rigidly clamped on straight sides, ele-

ment of Figure 2 and deflection ω·f-1 from  
the calculated contact pressure qp 

 
with constructive-permissible dimensions of the semi axes of 
the ellipse (11) (Abdeev et al., 2012) 

       𝑎𝑎𝑝𝑝 = 1,0954 ∙ 𝑅𝑅𝑐𝑐 , 𝑏𝑏𝑝𝑝 = 0,9 ∙ 𝑅𝑅𝑐𝑐             (23) 

with extreme eccentricity (12) 

                 𝜉𝜉 = 𝜉𝜉𝑝𝑝 = 0,57           (24) 

To solve the system (17), (19), the necessary derivatives of 
the functions 𝜔𝜔(𝑥𝑥1),𝑦𝑦1(𝑥𝑥1), are preliminarily determined 
based on dependencies (10), (20), (21) and reference infor-
mation (Doudkin et al., 2013): 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥1

= 4𝑓𝑓 �− 𝑥𝑥1
𝑙𝑙р2

+ 𝑥𝑥13

𝑙𝑙р4
�,    (25) 

𝑑𝑑2𝜔𝜔1

𝑑𝑑𝑥𝑥12
= 4𝑓𝑓 �− 1

𝑙𝑙р2
+ 3𝑥𝑥12

𝑙𝑙р4
�,     (26) 

𝑑𝑑4𝜔𝜔1

𝑑𝑑𝑥𝑥14
= 24 𝑓𝑓

𝑙𝑙р4
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,      (27) 

𝑑𝑑𝑦𝑦1
𝑑𝑑𝑥𝑥1

= −
𝑏𝑏 �−2𝑥𝑥

𝑎𝑎2
�

2�1 − 𝑥𝑥12

𝑎𝑎2

≈
𝑏𝑏𝑏𝑏
𝑎𝑎2 ,

𝑑𝑑2𝑦𝑦1
𝑑𝑑𝑥𝑥12

=
𝑏𝑏

𝑎𝑎2 �1 − 𝑥𝑥12

𝑎𝑎2
�
3
2�
≈

𝑏𝑏
𝑎𝑎2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.

⎭
⎪⎪
⎬

⎪⎪
⎫

 (28) 

The first derivative (25) is substituted into the deformation 
relation (19) and by direct integration (Doudkin et al., 2013) 
the second kinematic component is found (Fig. 3): 

𝑢𝑢 = 𝑢𝑢(𝑥𝑥1) = ∫ �𝐴𝐴𝐸𝐸 −
1
2
� 𝑑𝑑ů
𝑑𝑑𝑥𝑥1

�
2
� ∙ 𝑑𝑑𝑥𝑥1 + 𝐶𝐶 = 𝐴𝐴

𝐸𝐸
𝑥𝑥1 − 8𝑓𝑓2 �𝑥𝑥1

3

3𝑙𝑙р4
−

    −2 𝑥𝑥15

5𝑙𝑙р6
+ 𝑥𝑥17

7𝑙𝑙р8
�,                                                                             (29) 

 
where is an arbitrary constant C = 0 from the odd-odd condi-
tion u(0)=0 function 𝑢𝑢(𝑥𝑥1). 

To calculate the constant A, the third homogeneous bound-
ary equality was formulated (Kolkunov, 1972): 

𝑢𝑢�±𝑙𝑙р� = ± �
𝐴𝐴
𝐸𝐸 𝑙𝑙р − 8𝑓𝑓2 �

1
3𝑙𝑙р

−
2

5𝑙𝑙р
+

1
7𝑙𝑙р

�� = 0,⇒ 

𝐴𝐴 =
64𝐸𝐸
105 ∙

𝑓𝑓2

𝑙𝑙р2
. 

(30) 

Further, the procedure of the Bubnov-Galerkin method is 
applied to the one-dimensional equation (17) in the form of 
the corresponding integral-differential relation 

2� �
𝐸𝐸 ∙ ä2

12(1− ě2) ∙
𝑑𝑑4ů
𝑑𝑑𝑥𝑥14

−
64𝐸𝐸
105 ∙

𝑓𝑓2

𝑙𝑙р2
�
𝑑𝑑2ů
𝑑𝑑𝑥𝑥12

+
𝑑𝑑2𝑦𝑦1
𝑑𝑑𝑥𝑥12

� −
𝑞𝑞
ä .

𝑙𝑙р

0

∙ �1 −
𝑥𝑥12

𝑙𝑙р2
� × �1 −

𝑥𝑥12

𝑙𝑙р2
�
2

∙ 𝑑𝑑𝑥𝑥1 = 0, 

(31) 

taking into account expressions (20), (26) - (28), (30) and the 
symmetry of the design scheme of Figure 3, and the tables 
(Doudkin et al., 2013) are used to calculate the integrals 
included in (31), after a valid simplification of the functional 
formula 𝑦𝑦1(𝑥𝑥1), subject to the restrictions (10) (Temirbekov 
et al., 2019) and its derivatives (28): 

𝑦𝑦1 = 𝑦𝑦1(𝑥𝑥1) = 𝑏𝑏 �1 −�1 −
𝑥𝑥12

𝑎𝑎2� ≈ 𝑏𝑏 �1 − �1 −
𝑥𝑥12

2𝑎𝑎2�� =

=
𝑏𝑏 ∙ 𝑥𝑥12

2𝑎𝑎2 ,⇒
𝑑𝑑2𝑦𝑦1
𝑑𝑑𝑥𝑥12

=
𝑏𝑏
𝑎𝑎2  (𝑠𝑠𝑠𝑠𝑠𝑠 (28)); 

(32) 

  

∫ 𝑑𝑑4ů
𝑑𝑑𝑥𝑥14

�1 − 2𝑥𝑥12

𝑙𝑙р2
+ 𝑥𝑥14

𝑙𝑙р4
� ∙ 𝑑𝑑𝑥𝑥1 = 24𝑓𝑓

𝑙𝑙р4
𝑙𝑙р
0 (𝑥𝑥1 −

2𝑥𝑥13

3𝑙𝑙р2
+ 𝑥𝑥15

5𝑙𝑙р4
)�
0

𝑙𝑙р
= 64∙𝑓𝑓

5𝑙𝑙р3
,   (33) 

 

∫ 𝑑𝑑2ů
𝑑𝑑𝑥𝑥12

∙ �1 − 𝑥𝑥12

𝑙𝑙р2
�
2
∙ 𝑑𝑑𝑥𝑥1 =𝑙𝑙р

0 4𝑓𝑓 ∫ �− 1
𝑙𝑙р2

+ 3𝑥𝑥12

𝑙𝑙р4
� ∙𝑙𝑙р

0

�1 − 2𝑥𝑥12

𝑙𝑙р2
+ 𝑥𝑥14

𝑙𝑙р4
� ∙ 𝑑𝑑𝑥𝑥1 =  

(34) 
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= 4𝑓𝑓(−𝑥𝑥1
𝑙𝑙р2

+ 5∙𝑥𝑥13

3∙𝑙𝑙р4
− 7∙𝑥𝑥15

5∙𝑙𝑙р6
+ 3∙𝑥𝑥17

7∙𝑙𝑙р8
)�
0

𝑙𝑙р
= − 128∙𝑓𝑓

105∙𝑙𝑙р
, 

 

�
𝑑𝑑2𝑦𝑦1
𝑑𝑑𝑥𝑥12

�1 −
𝑥𝑥12

𝑙𝑙р2
�
2

∙ 𝑑𝑑𝑥𝑥1 =
𝑙𝑙р

0

=
𝑏𝑏
𝑎𝑎2 � �1 −

2𝑥𝑥12

𝑙𝑙р2
+
𝑥𝑥14

𝑙𝑙р4
� ∙ 𝑑𝑑𝑥𝑥1 =

𝑙𝑙р

0
 

= 𝑏𝑏
𝑎𝑎2
�𝑥𝑥1 −

2𝑥𝑥13

3𝑙𝑙р2
+ 𝑥𝑥15

5𝑙𝑙р4
��
0

𝑙𝑙р
= 8∙𝑏𝑏∙𝑙𝑙р

15∙𝑎𝑎2
 , 

(35) 

    

� �1 −
2𝑥𝑥12

𝑙𝑙р2
+
𝑥𝑥14

𝑙𝑙р4
�
2

∙ �1 −
𝑥𝑥12

𝑙𝑙р2
∙ 𝑑𝑑𝑥𝑥1

𝑙𝑙р

0

= � �1 −
𝑥𝑥12

𝑙𝑙р2
∙ 𝑑𝑑𝑥𝑥1 −

𝑙𝑙р

0
 

−
2
𝑙𝑙р2
� 𝑥𝑥12 ∙ �1 −

𝑥𝑥12

𝑙𝑙р2
∙ 𝑑𝑑𝑥𝑥1 +

1
𝑙𝑙р4
� 𝑥𝑥14 ∙ �1 −

𝑥𝑥12

𝑙𝑙р2
∙ 𝑑𝑑𝑥𝑥1 =

𝑙𝑙р

0

𝑙𝑙р

0
 

=𝑙𝑙р
2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥1

𝑙𝑙р
�
0

𝑙𝑙р
− 𝑙𝑙р

4
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥1

𝑙𝑙р
�
0

𝑙𝑙р
+ 𝑙𝑙р

16
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥1

𝑙𝑙р
�
0

𝑙𝑙р
= 5∙𝜋𝜋∙𝑙𝑙р

32
 

(36) 

 
Substituting (33) - (36) into algebraic equation (31), we 

obtain the classical cubic dependence q(f) (Kolkunov, 1972) 
between the extremum q of reactive pressure 𝑞𝑞р = 𝑞𝑞р(𝑥𝑥1)  
(Fig. 2) and deflection (20) (Fig. 3) with  𝜋𝜋 = 3,1416: 

𝑓𝑓 = 𝜔𝜔(0) = 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚:                    (37) 
 

𝑞𝑞 = 𝑞𝑞(𝑓𝑓) = 1,5137 ∙
𝐸𝐸 ∙ 𝛿𝛿
𝑙𝑙р4

∙ 𝑓𝑓3 − 

       −0,6622 ∙ 𝐸𝐸∙𝑏𝑏∙𝛿𝛿
𝑙𝑙р2∙𝑎𝑎2

∙ 𝑓𝑓2 + 2,173
1−𝜇𝜇2

∙ 𝐸𝐸∙𝛿𝛿
3

𝑙𝑙р4
∙ 𝑓𝑓       (38) 

In order to increase the level of generalization and univer-
sality of the practical application of the derived formula (38), 
according to the method (Kolkunov, 1972), dimensionless 
physical and geometric characteristics are introduced: 

𝜁𝜁 = 𝑓𝑓
𝛿𝛿

, 𝑞𝑞∗ = 𝑞𝑞
𝐸𝐸
�𝑙𝑙р
𝛿𝛿
�
4
   (39) 

 

𝜆𝜆 = 𝑏𝑏∙𝑙𝑙р2

𝑎𝑎2∙𝛿𝛿
= 2∙𝑙𝑙р2∙𝐸𝐸(𝜉𝜉)∙�1−𝜉𝜉2

𝜋𝜋∙𝑅𝑅𝑐𝑐∙𝛿𝛿
;                        (40) 

where, according to (12) and (Abdeev et al., 2012), 
 

𝑏𝑏 = 𝑎𝑎�1 − 𝜉𝜉2,   𝑎𝑎 = 𝜋𝜋∙𝑅𝑅𝑐𝑐
2∙𝐸𝐸(𝜉𝜉)

,                        (41) 
 

where 𝐸𝐸(𝜉𝜉) − elliptic integral of the second kind in the Le-
gendre form (Doudkin et al., 2013), for which calculation the 
reference tables were compiled. The transformed relation 
(38), including parameters (39), (40), takes a more compact 
form. 

𝑞𝑞∗ = 𝑞𝑞∗(𝜁𝜁) = 1,5137𝜁𝜁3 − 0,6622𝜆𝜆𝜁𝜁2 + 2,173
1−𝜇𝜇2

𝜁𝜁       (42) 

For any values 𝜆𝜆 > 0 curve (42) always has one inflection 
point, which has the coordinate 𝜁𝜁0, determined from the 
equality of zero of the second derivative (Doudkin et al., 
2013): 

 
                         �𝑑𝑑

2𝑞𝑞∗

𝑑𝑑𝜁𝜁2
�
𝜁𝜁=𝜁𝜁0

= 9,0822𝜁𝜁0 − 1,3244𝜆𝜆 = 0,         (43) 

 
where it comes from: 

𝜁𝜁0 = 1,3244
9,0822

𝜆𝜆 = 0,1458 ∙ 𝜆𝜆.    (44) 

Realizing condition 𝑑𝑑𝑞𝑞∗

𝑑𝑑𝜁𝜁
= 0, two values are found 

𝜁𝜁в,   𝜁𝜁𝑛𝑛 , corresponding to the top 𝑞𝑞𝑘𝑘𝑘𝑘 
∗ and bottom 𝑞𝑞𝑘𝑘𝑘𝑘 

∗  (after 
clicking (Kolkunov, 1972)) critical pressure on the shell (Fig. 
2):  

 
�𝑑𝑑𝑞𝑞

∗

𝑑𝑑𝜁𝜁
�
𝜁𝜁=𝜁𝜁в

𝑛𝑛

= 4,5411𝜁𝜁в
𝑛𝑛
2 − 1,3244 ∙ 𝜆𝜆 ∙ 𝜁𝜁в

𝑛𝑛
+ 2,173

1−𝜇𝜇2
= 0,⟹        (45) 

 

𝜁𝜁в
𝑛𝑛

= 0,145825 ∙ 𝜆𝜆 ∓ �0,021265𝜆𝜆2 − 0,47852
1−𝜇𝜇2

         (46) 

 
Click area border 𝜆𝜆𝑔𝑔𝑔𝑔  adequate to the case when the func-

tion (42) has an inflection point containing a horizontal tan-
gent, when the root expression in (46) vanishes, ⇒ 

 
𝜆𝜆𝑔𝑔𝑔𝑔 = 4,7437

�1−𝜇𝜇2
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;    (47) 

and, as a consequence of (46), 
 

𝜁𝜁в
(𝑔𝑔𝑔𝑔) = 𝜁𝜁𝑛𝑛

(𝑔𝑔𝑔𝑔) = 𝜁𝜁𝑔𝑔𝑔𝑔 = 0,145825 ∙ 𝜆𝜆𝑔𝑔𝑔𝑔 = 0,69175
�1−𝜇𝜇2

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (48) 

Subsequent analytical testing of formulas (22), (42), (44), 
(46) - (48) are performed in numerical form using specific 
data given in published papers (Abdeev et al., 2018) for a 
circular outline of the (K) with 𝜉𝜉 = 0, Е(0) = 1,5708 and in 
the case of an elliptical shape (E) of the surface of the drum, 
when 𝜉𝜉 = 𝜉𝜉𝑝𝑝 = 0,57, Е�𝜉𝜉𝑝𝑝� = Е(0,57) = 1,434. The mate-
rial of construction is spring-spring steel 60С2ХА (Doudkin 
et al., 2013) having: Е = 1,96 ∙ 105 𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑁𝑁

𝑚𝑚𝑚𝑚2�, Poisson′s 

ratio 𝜇𝜇 = 0,256 and yield strength 𝜎𝜎т = 2270 𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑁𝑁
𝑚𝑚𝑚𝑚2�. 

As the linear dimensions of the shell are taken (Fig. 1 and 2) 
𝛿𝛿 = 6,5 𝑚𝑚𝑚𝑚, 𝑅𝑅𝑐𝑐 = 600 𝑚𝑚𝑚𝑚, В = 1400 𝑚𝑚𝑚𝑚,  𝑙𝑙р = 90 𝑚𝑚𝑚𝑚    
at rated axle load of the roller 𝐺𝐺в = 42500 𝑁𝑁 and defor-
mation module Ек   sealing coating (Sakimov et al., 2018): 

Ек = 8; 20; 30; 65; 116 𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑁𝑁
𝑚𝑚𝑚𝑚2�.    (49) 

 
Check the constructive-technological background (22), 

which regulates a fixed geometric characteristic 𝑙𝑙р = 90 𝑚𝑚𝑚𝑚 
(Fig. 1-3): 

 𝑙𝑙р = 90 мм > С = 1,26146 ∙ 𝑅𝑅𝑐𝑐�
𝐺𝐺в

Ек
(min) ∙ 𝑅𝑅𝑐𝑐 ∙ 𝐵𝐵

= 

= 1,26146 ∙ 600� 42500
8∙600∙1400

= 60,2 𝑚𝑚𝑚𝑚,                  (50) 

 
when  Ек

(min) = 8 𝑁𝑁
𝑚𝑚𝑚𝑚2, according to (49). 
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Figure 4 shows the graphs of the functional ratios of the 
maximum contact pressure 𝑞𝑞𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑚𝑚𝑚𝑚(Ек ) for a rolling 
roller (Fig. 1), constructed according to the formulas (Sa-
kimov et al., 2018) of figure 1 using dependencies (8), (22), 
(23) and the quantitative information of Table 1: 

– at 𝜉𝜉 = 0, Е(0) = 1,5708 (round drum - "K") 

𝑞𝑞𝑚𝑚𝑚𝑚
(к) = 1,2295 

𝐺𝐺в
𝐵𝐵 ∙ 0,74 𝐶𝐶 = 

= 1,2295
𝐺𝐺в�Ек ∙ 𝑅𝑅𝑐𝑐 ∙ 𝐵𝐵

𝐵𝐵 ∙ 0,74 ∙ 1,0925 ∙ 𝑅𝑅𝑐𝑐�𝐺𝐺в
= 

=
1,2295

0,74 ∙ 1,0925 ∙
�
𝐺𝐺в ∙ Ек
𝐵𝐵 ∙ 𝑅𝑅𝑐𝑐

= 

= 1,5208 ∙ �
42500 ∙ Ек
1400 ∙ 600 = 0,34208 ∙ �Ек 

 
 
 
 
 
(51) 

  
– at 𝜉𝜉 = 0,57, Е(0,57) = 1,434 (extreme - elliptical shape 
of the shell - "E") 
 

𝑞𝑞𝑚𝑚𝑚𝑚
(э) = 1,2295

𝐺𝐺в�Ек ∙ 𝑅𝑅𝑐𝑐 ∙ 𝐵𝐵

𝐵𝐵 ∙ 0,74 ∙ � 0,9
1,0954

�
2
∙ 𝑅𝑅𝑐𝑐�𝐺𝐺в

=

= 1,9511 ∙ �
𝐺𝐺в ∙ Ек
𝐵𝐵 ∙ 𝑅𝑅𝑐𝑐

= 

= 1,9511 ∙ �42500∙Ек
1400∙600

= 0,43887 ∙ �Ек. 

(52) 

Table 1 - Numerical data on functions (51), (52)  

 

   
 

1 - For a shell in the form of a circular cylinder; 2 - For elliptical 
shell outline 

Fig. 4. Graphic interpretation of the formulas (51), (52) 

From equality (48), taking into account (23), (39), (40), 
(42), (47), we find the boundary thickness 𝛿𝛿𝑔𝑔𝑔𝑔 , as well as 
maximum deflection 𝑓𝑓𝑔𝑔𝑔𝑔 and pressure 𝑞𝑞𝑔𝑔𝑔𝑔 , to which a click 
or local loss of stability will occur, accompanied by a change 
in the shape of the element of the cylindrical shell (Fig. 1 and 
2) in the form of a local dent (Fig. 3): 

𝜆𝜆𝑔𝑔𝑔𝑔 = 𝑏𝑏∙𝑙𝑙р2

𝑎𝑎2∙𝛿𝛿𝑔𝑔𝑔𝑔 
= 4,7437

�1−(0,256)2
= 4,9072;               (53) 

 

𝜁𝜁𝑔𝑔𝑔𝑔 =
𝑓𝑓𝑔𝑔𝑔𝑔
𝛿𝛿𝑔𝑔𝑔𝑔 

= 0,145825 ∙ 𝜆𝜆𝑔𝑔𝑔𝑔 = 

= 0,145825 ∙ 4,9072 = 0,7156;               (54) 

𝑞𝑞𝑔𝑔𝑔𝑔∗ = 1,5137 ∙ 𝜁𝜁𝑔𝑔𝑔𝑔3 − 0,6622 ∙ 𝜆𝜆𝑔𝑔𝑔𝑔 ∙ 𝜁𝜁𝑔𝑔𝑔𝑔2

+
2,173

�1 − (0,256)2
∙ 𝜁𝜁𝑔𝑔𝑔𝑔 = 

= 1,51137 ∙ (0,7156)3 − 0,6622 ∙ 4,9072 ∙ (0,7156)2
+ 2,2479 ∙ 0,7156 = 0,4984;  

   (55) 

     𝑞𝑞𝑔𝑔𝑔𝑔∗ = 𝑞𝑞гр
𝐸𝐸
∙ � 𝑙𝑙р

𝛿𝛿𝑔𝑔𝑔𝑔 
�
4

= 0,4984;                           (56)  

where: 
- for round drum with 𝑎𝑎 = 𝑏𝑏 = 𝑅𝑅𝑐𝑐 = 600 𝑚𝑚𝑚𝑚 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝛿𝛿𝑔𝑔𝑔𝑔

(к) =
𝑏𝑏 ∙ 𝑙𝑙р2

4,9072 ∙ 𝑎𝑎2 =
𝑙𝑙р2

4,9072 ∙ 𝑅𝑅𝑐𝑐
=

=
902

4,9072 ∙ 600 = 2,75 𝑚𝑚𝑚𝑚,

𝑓𝑓𝑔𝑔𝑔𝑔
(к) = 𝛿𝛿𝑔𝑔𝑔𝑔

(к) ∙ 0,7156 =
= 2,75 ∙ 0,7156 = 1,97 𝑚𝑚𝑚𝑚,   

𝑞𝑞𝑔𝑔𝑔𝑔
(к) = 0,4984 ∙ 𝐸𝐸 ∙ �

𝛿𝛿𝑔𝑔𝑔𝑔р
(к)

𝑙𝑙р
�
4

=

= 0,4984 ∙ 196000 ∙ �
2,75
90 �

4

= 0,085 
𝑁𝑁

𝑚𝑚𝑚𝑚2 ; 

 

 
 
(57) 
 
 
 
 
 
(58) 
 
 
 
 
 
(59) 

- for an elliptical shell surface 

𝑎𝑎 = 𝑎𝑎𝑝𝑝 = 1,0954 ∙ 𝑅𝑅𝑐𝑐 and  𝑏𝑏 = 𝑏𝑏𝑝𝑝 = 0,9 ∙ 𝑅𝑅𝑐𝑐 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝛿𝛿𝑔𝑔𝑔𝑔

(𝐸𝐸) =
0,9 ∙ 𝑅𝑅𝑐𝑐 ∙ 𝑙𝑙р2

4,9072 ∙ (1,0954 ∙ 𝑅𝑅𝑐𝑐)2 =

=
0,9 ∙ 902

4,9072 ∙ (1,0954)2 ∙ 600 = 2,06 𝑚𝑚𝑚𝑚,

𝑓𝑓𝑔𝑔𝑔𝑔
(𝐸𝐸) = 𝛿𝛿𝑔𝑔𝑔𝑔

(𝐸𝐸) ∙ 0,7156 =
= 2,06 ∙ 0,7156 = 1,47 𝑚𝑚𝑚𝑚,

𝑞𝑞𝑔𝑔𝑔𝑔
(𝐸𝐸) = 0,4984 ∙ 𝐸𝐸 ∙ �

𝛿𝛿𝑔𝑔𝑔𝑔
(𝐸𝐸)

𝑙𝑙р
�
4

=

= 0,4984 ∙ 196000 ∙ �
2,06
90 �

4

= 0,027 
𝑁𝑁

𝑚𝑚𝑚𝑚2

 

 
 
(60) 
 
 
 
 
 
(61) 
 
 
 
 
(62) 

        
Let us consider in more detail dependencies (39), (40), 

(42), (44) with the actual thickness of the shell (Abdeev et 
al., 2012)  𝛿𝛿 = 6,5 𝑚𝑚𝑚𝑚 > 𝛿𝛿𝑔𝑔𝑔𝑔, when the phenomenon of 
clicking is impossible: 
- for round-shaped drum (K) 
- with elliptical shell (E) 
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⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝜆𝜆𝐸𝐸 =

0,9 ∙ 𝑅𝑅𝑐𝑐 ∙ 𝑙𝑙р2

6,5 ∙ (1,0954 ∙ 𝑅𝑅𝑐𝑐)2 =

=
0,9 ∙ 902

6,5 ∙ (1,0954)2 ∙ 600 = 1,559,

𝜁𝜁0
(𝐸𝐸) = 0,1458 ∙ 𝜆𝜆𝐸𝐸 = 0,1458 ∙ 1,559 = 0,2273,

𝑞𝑞0
∗(𝐸𝐸) = 1,5137 ∙ (0,2273)3 −

−0,6622 ∙ 1,559 ∙ (0,2273)2 +
+2,3254 ∙ 0,2273 = 0,493.

 

 
(66) 
 
 
 
 
(67) 
 
 
(68) 

Since, as already noted, at δ=6.5 mm, loss of stability is 
excluded, the assessment of its bearing capacity is of decisive 
importance for the normal elastic operation of the shell, 
(Temirbekov et al., 2019) 

ó𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜎𝜎т,                                           (69) 

at the highest normal stress and yield strength of the material 
𝜎𝜎т = 2270 𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑁𝑁

𝑚𝑚𝑚𝑚2� (Abdeev Bet al., 2012). Solving this 
issue will require a preliminary determination of the operat-
ing maximum dimensionless characteristics:  

𝑞𝑞м
∗(к), 𝑞𝑞м

∗(𝐸𝐸), 𝜁𝜁мк, 𝜁𝜁м𝐸𝐸  при  𝑞𝑞м𝑃𝑃
(к) = 3,684

𝑁𝑁
𝑚𝑚𝑚𝑚2 = 𝑚𝑚𝑚𝑚𝑚𝑚   

𝑞𝑞м𝑃𝑃
(𝐸𝐸) = 4,727 𝑁𝑁

𝑚𝑚𝑚𝑚2 = 𝑚𝑚𝑚𝑚𝑚𝑚  (see table 1 and figure 4), based 
on relations (39), (42), (63), (66): 
 

𝑞𝑞м
∗(к) = 𝑞𝑞м𝑃𝑃

(к)

Е
∙ �𝑙𝑙р

𝛿𝛿
�
4

= 3,684
196000

∙ �90
6,5
�
4

= 0,6908,       (70) 
 

𝑞𝑞м
∗(𝐸𝐸) = 𝑞𝑞м𝑃𝑃

(𝐸𝐸)

Е
∙  �𝑙𝑙р

𝛿𝛿
�
4

= 4,727
196000

∙ �90
6,5
�
4

= 0,8864;       (71) 
 

⎩
⎪
⎨

⎪
⎧ 1,5137 ∙ 𝜁𝜁мк3 − 0,6622 ∙ 2,0769 ∙ 𝜁𝜁мк2 +

+2,3254 ∙ 𝜁𝜁мк = 𝑞𝑞м
∗(к) = 0,6908,               

1,5137 ∙ 𝜁𝜁м𝐸𝐸3 − 0,6622 ∙ 1,559 ∙ 𝜁𝜁м𝐸𝐸2 +
+2,3254 ∙ 𝜁𝜁м𝐸𝐸 = 𝑞𝑞м

∗(𝐸𝐸) = 0,8864;             

 

 
 (72) 
 
 
 
 (73) 

 
whence by the method of selection or by Cardan’s formulas 
(Doudkin et al., 2013), 

𝜁𝜁мк = 0,3398, 𝜁𝜁м𝐸𝐸 = 0,4109,                    (74) 
 
and the real greatest deflections 𝑓𝑓к, 𝑓𝑓𝐸𝐸 (Fig. 3) will have the 
following meanings: 
 

𝑓𝑓к =  𝜁𝜁мк ∙ 𝛿𝛿 = 0,3398 ∙ 6,5 = 2,21 𝑚𝑚𝑚𝑚,  (75) 
 

𝑓𝑓𝐸𝐸 = 𝜁𝜁м𝐸𝐸 ∙ 𝛿𝛿 = 0,4109 ∙ 6,5 = 2,67 𝑚𝑚𝑚𝑚 (76) 
 

Visual illustration of the function (42) approximated by 
analytic expressions: 

 
𝑞𝑞∗(к) = 1,5137𝜁𝜁3 − 1,37534𝜁𝜁2 + 2,3254𝜁𝜁 (77) 

 
                           𝑞𝑞∗(𝐸𝐸) = 1,5137𝜁𝜁3 − 1,03234𝜁𝜁2 + 2,3254𝜁𝜁        (78) 
 

respectively, for circular (K) and ellipsoid (E) shells with 
𝛿𝛿 = 6,5 𝑚𝑚𝑚𝑚,presented in figure 5. Dependency graphs 
𝑞𝑞∗(к)(𝜁𝜁),𝑞𝑞∗(𝐸𝐸)(𝜁𝜁) constructed according to table 2 and char-
acteristic values (64), (65), (67), (68),(70), (71), (74). 

Table 2. Numerical information on the functional curves of Figure 5  

Shell 
Form  ć 0 0,1 0,2 0,3 0,4 0,5 

1 - 
Circle 

q*(к) 
0 0,2203 0,4222 0,6147 0,807 1,008 

2 - 
Ellipse 

q*(E) 0 0,2237 0,4359 0,6456 0,8619 1,094 

 
Fig. 5. Graphs of dimensionless functional relationships 

(77) and (78) 

3. Conclusion 
Having absolute extreme deformations (75), (76) – deflec-

tions 𝑓𝑓к , 𝑓𝑓м, it is possible to define: 
• local compressive stresses 𝜎𝜎𝑥𝑥1

(к),𝜎𝜎𝑥𝑥1
(𝐸𝐸) according to the 

general formula (16) taking into account (30): 
 

                𝜎𝜎𝑥𝑥1
(к) =

64 ∙ 𝐸𝐸
105 ∙

𝑓𝑓к2

𝑙𝑙р2
= 

=
64 ∙ 196000

105 ∙ �
2,21
90 �

2

= 72,04 
𝑁𝑁

𝑚𝑚𝑚𝑚2, 
(79) 

 

         𝜎𝜎𝑥𝑥1
(𝐸𝐸) =

64 ∙ 𝐸𝐸
105 ∙

𝑓𝑓𝐸𝐸2

𝑙𝑙р2
= 

                   =
64 ∙ 196000

105 ∙ �
2,67
90 �

2

= 105,14 
𝑁𝑁

𝑚𝑚𝑚𝑚2 ; 
(80) 

 
• highest normal stresses 𝜎𝜎𝑢𝑢

(к) = 𝜎𝜎𝑢𝑢
(к)(𝑥𝑥1),  𝜎𝜎𝑢𝑢

(𝐸𝐸) = 𝜎𝜎𝑢𝑢
(𝐸𝐸)(𝑥𝑥1) 

from local cylindrical bend in design sections 𝑥𝑥1 =
0, 𝑥𝑥1 = ±𝑙𝑙р = ±90 𝑚𝑚𝑚𝑚  (Fig. 3), applying the differen-



MIKHAIL DOUDKI ET AL. / PRODUCTION ENGINEERING ARCHIVES 23 (2019) 27-35 
 

ARCHIWUM INŻYNIERII PRODUKCJI                                    34 
 

tial ratio (Ponomarev et al., 1980; Bostanov et al., 2018) 
and the second derivative (26) of the function 𝜔𝜔(𝑥𝑥1): 

 

𝜎𝜎𝑢𝑢 = 𝜎𝜎𝑢𝑢(𝑥𝑥1) = −
𝐸𝐸 ∙ 𝛿𝛿

2(1 − 𝜇𝜇2) ∙
𝑑𝑑2𝜔𝜔
𝑑𝑑𝑥𝑥12

,⟹ (81) 

 

𝜎𝜎𝑢𝑢
(к)(0) = −

𝐸𝐸 ∙ 𝛿𝛿
2(1 − 𝜇𝜇2) ∙ �−

4𝑓𝑓к
𝑙𝑙р2
� =

2 ∙ 𝐸𝐸 ∙ 𝛿𝛿 ∙ 𝑓𝑓к
(1 − 𝜇𝜇2)𝑙𝑙р2

= 

=
2 ∙ 196000 ∙ 6,5 ∙ 2,21
[1 − (0,256)2] ∙ 902 = 744 

𝑁𝑁
𝑚𝑚𝑚𝑚2, 

(82) 

 

𝜎𝜎𝑢𝑢
(𝐸𝐸)(0) =

2 ∙ 𝐸𝐸 ∙ 𝛿𝛿 ∙ 𝑓𝑓э
(1 − 𝜇𝜇2)𝑙𝑙р2

=
2 ∙ 196000 ∙ 6,5 ∙ 2,67
[1 − (0,256)2] ∙ 902 =

= 898,8 
𝑁𝑁

𝑚𝑚𝑚𝑚2 ; 
(83) 

 

𝜎𝜎𝑢𝑢
(к)�±𝑙𝑙р� = −

𝐸𝐸 ∙ 𝛿𝛿
2(1 − 𝜇𝜇2) ∙ �

8𝑓𝑓к
𝑙𝑙р2
� = 

       = −2𝜎𝜎𝑢𝑢
(к)(0) = −2 ∙ 744 = −1488 𝑁𝑁

𝑚𝑚𝑚𝑚2, 
 

(84) 

𝜎𝜎𝑢𝑢
(𝐸𝐸)�±𝑙𝑙р� = −2𝜎𝜎𝑢𝑢

(𝐸𝐸)(0) = −2 ∙ 898,8 = −1797,6
𝑁𝑁

𝑚𝑚𝑚𝑚2 (85) 

• common bending static stresses 𝜎𝜎о𝑖𝑖
(к)(𝑥𝑥1),𝜎𝜎о𝑖𝑖

(𝐸𝐸)(𝑥𝑥1) from 
shell deformation in case Р ≥ 0 (figure 1) (Dudkin et al., 
2012) 

𝜎𝜎о𝑖𝑖
(к)(0) = 𝜎𝜎о𝑖𝑖

(к)�±𝑙𝑙р� = 0 (86) 

at Р = 0; 

𝜎𝜎о𝑖𝑖
(𝐸𝐸) = −

6
𝐵𝐵 ∙ 𝛿𝛿2 ∙

𝐸𝐸 ∙ 𝐵𝐵 ∙ 𝛿𝛿3

12(1− 𝜇𝜇2) ∙ 𝑅𝑅𝑐𝑐
⎣
⎢
⎢
⎡ 0,7502

�1 − 0,2708 𝑥𝑥12

𝑅𝑅𝑐𝑐2
�
3
2�
− 1

⎦
⎥
⎥
⎤

= 

= −
𝐸𝐸 ∙ 𝛿𝛿

2(1 − 𝜇𝜇2) ∙ 𝑅𝑅𝑐𝑐
⎣
⎢
⎢
⎡ 0,7502

�1 − 0,2708 𝑥𝑥12

𝑅𝑅𝑐𝑐2
�
3
2�
− 1

⎦
⎥
⎥
⎤

,⟹ 

 
(87) 

 

𝜎𝜎о𝑖𝑖
(𝐸𝐸)(0) = −

196000 ∙ 6,5
2[1 − (0,256)2] ∙ 600

(0,7502− 1)

= 283,8
𝑁𝑁

𝑚𝑚𝑚𝑚2, 
(88) 

 
𝜎𝜎о𝑖𝑖

(𝐸𝐸)�±𝑙𝑙р� =

= −
𝐸𝐸 ∙ 𝛿𝛿

2(1 − 𝜇𝜇2) ∙ 𝑅𝑅𝑐𝑐
⎣
⎢
⎢
⎢
⎡ 0,7502

�1 − 0,2708 𝑙𝑙р2

𝑅𝑅𝑐𝑐2
�
3
2�
− 1

⎦
⎥
⎥
⎥
⎤

= 

= −
196000 ∙ 6,5

2(1 − (0,256)2) ∙ 600
⎣
⎢
⎢
⎢
⎡

0,7502

�1 − 0,2708 � 90
600

�
2
�
3
2�
− 1

⎦
⎥
⎥
⎥
⎤

= 276
𝑁𝑁

𝑚𝑚𝑚𝑚2. 

 
(89) 

Using the results of calculations (79), (80), (82) - (86), 
(88), (89), condition (69) is checked by neglecting the stress 
σN in the middle surface of the shell from Р > 0 (Fig. 1), 

compared with the bending components, which are much 
more orders of magnitude 𝜎𝜎𝑁𝑁, as proved in article (Abdeev et 
al., 2012): 

- for the material in section x1=0 (Fig. 2 and 3) 
 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
(к) (0) = 𝜎𝜎𝑥𝑥1

(к) + 𝜎𝜎𝑢𝑢
(к)(0) + 𝜎𝜎о𝑖𝑖

(к)(0) = 72,04 + 744 + 0

= 816,04
𝑁𝑁

𝑚𝑚𝑚𝑚2, 
(90) 

 
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

(𝐸𝐸) (0) = 𝜎𝜎𝑥𝑥1
(𝐸𝐸) + 𝜎𝜎𝑢𝑢

(𝐸𝐸)(0) + 𝜎𝜎о𝑖𝑖
(𝐸𝐸)(0) = 

= 105,14 + 898,8 + 283,8 = 1207,74 𝑁𝑁
𝑚𝑚𝑚𝑚2; 

 
(91) 

– for sections 𝑥𝑥1 = ±𝑙𝑙р = 90 𝑚𝑚𝑚𝑚 (Figures 2, 3) 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
(к) �±𝑙𝑙р� = 𝜎𝜎𝑥𝑥1

(к) + �𝜎𝜎𝑢𝑢
(к)�±𝑙𝑙р�� + 𝜎𝜎о𝑖𝑖

(к)�±𝑙𝑙р� = 

= 72,04 + 1488 + 0 = 1560,04
𝑁𝑁

𝑚𝑚𝑚𝑚2,   
(92)        

 
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

(𝐸𝐸) �±𝑙𝑙р� = 𝜎𝜎𝑥𝑥1
(𝐸𝐸) + �𝜎𝜎𝑢𝑢

(𝐸𝐸)�±𝑙𝑙р� + 𝜎𝜎о𝑖𝑖
(𝐸𝐸)�±𝑙𝑙р�� = 

= 105,14 + |−1797,6 + 276| = 1626,74
𝑁𝑁

𝑚𝑚𝑚𝑚2. (93) 

Thus, 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
(к) = 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

(к) �±𝑙𝑙р� = 1560,04
𝑁𝑁

𝑚𝑚𝑚𝑚2 < 𝜎𝜎т = 2270 
𝑁𝑁

𝑚𝑚𝑚𝑚2 ,

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
(𝐸𝐸) = 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

(𝐸𝐸) �±𝑙𝑙р� = 1626,74
𝑁𝑁

𝑚𝑚𝑚𝑚2 < 𝜎𝜎т = 2270 
𝑁𝑁

𝑚𝑚𝑚𝑚2 ,
� (94) 

 
and the required elastic operation of this shell without unac-
ceptable residual deformations is ensured with a large mini-
mum margin reaching 28.3%, primarily due to the use of 
structural spring steel 60С2ХА (Abdeev et al., 2012) with a 
high yield strength 𝜎𝜎т = 2270 МPа � 𝑁𝑁

𝑚𝑚𝑚𝑚2� (Doudkin et al., 
2013). 
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可变接触面几何形状的钢辊壳局部变形的力学和数学研究 
 

關鍵詞 

压路机 

贝壳 

力 

强调 

 摘要 

本文致力于解决机器非线性结构力学的基本问题和应用问题，将两个附加的止动缸末端和可调

长度引入到滚筒中，提供给定的椭圆形或圆形形状的柔性壳体，使其平滑在与压实路面材料接

触的区域内的可变几何形状。 

路面土壤，砾石和沥青混凝土的压实不仅是路基，路基和地面施工技术过程中不可或缺的一部

分，而且实际上是确保其强度，稳定性和耐久性的主要操作。道路建设的质量，成本和速度，

使用基本新技术，结构和材料的可能性在很大程度上取决于现代道路机械的可用性。 
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