LICHENS AND LICHENICOLOUS FUNGI OF MAGURSKI NATIONAL PARK (POLAND, WESTERN CARPATHIANS)

Urszula Bielczyk1, Paweł Czarnota, Martin Kukwa, Lucyna Śliwa, Robert Kościelniak, Laura Betleja, Ryszard Kozik, Beata Krzewicka, Mariusz Hachulka, Edyta Adamska, Michał Węgrzyn, Dominika Bielec, Adam Flakus, Beata Guzow-Krzemińska, Katarzyna Kolanko, Joanna Kozik, Grzegorz Leśniański, Maja Lisowska, Magdalena Oset, Piotr Osyczka, Katarzyna Pietrzykowska-Urbani, Anna Sadowska-Deś, Agnieszka Słaby, Elżbieta Studzińska-Sroka, Karina Wilk, Piotr T. Zaniewski & Daria Zarabska-Bożejewicz

Abstract. The paper lists 337 species from Magurski National Park (MNP): 314 lichens, 18 lichenicolous fungi, four saprotrophic fungi and one lichenicolous myxomycete; 112 of them are new for MNP, 75 are reported for the first time for the Beskid Niski Mts, and two are new for Poland. Selected species are accompanied by taxonomic notes and remarks on their distribution in Poland and other Carpathian ranges. First records of Intralichen lichenicola, Burgoa angulosa and Verrucaria policensis and a second record of Epigleoa urosperma are given for the whole Carpathian range, and Fuscidea arboricola was recorded for the first time in the Western Carpathians. Halecania viridescens and Mycomicrothelia confusa are new for the Polish Carpathians. The records of Absconditella pauxilla, Collema crispum, Licea parasitica and Rinodina griseosoralifera in MNP are their second known localities for the range. 93 species, mainly rare or threatened in Poland, were reported from MNP in the 20th century but were not refound.

Key words: lichenized fungi, saprotrophic fungi, myxomycete, lichen diversity, new records, rare species, Beskid Niski Mts

Urszula Bielczyk, Robert Kościeniak, Laura Betleja & Ryszard Kozik, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-84 Kraków, Poland; e-mail: bielczyk@up.krakow.pl, rkosciel@up.krakow.pl, lbetleja@up.krakow.pl, ryszardkozik@gmail.com

Paweł Czarnota, Department of Agroecology, Faculty of Biology and Agriculture, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland; e-mail: pawczarnota@poczta.onet.pl

Martin Kukwa & Magdalena Oset, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; e-mail: dokmak@ug.edu.pl, magdalenasyrrek@wp.pl

Lucyna Śliwa, Beata Krzewicka, Adam Flakus & Karina Wilk, Laboratory of Lichenology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: l.sliwa@botany.pl, b.krzewicka@botany.pl, a.flakus@botany.pl, kwilk@botany.pl

Mariusz Hachulka, Department of Algology and Mycology, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland; e-mail: m.hachulka@poczta.fm

Edyta Adamska, Chair of Geobotany and Landscape Planning Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; e-mail: adamska@umk.pl

Michał Węgrzyn, Piotr Osyczka & Agnieszka Słaby, Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland; e-mail: michal.wegrzyn@uj.edu.pl, piotr.osyczka@uj.edu.pl, a.slawy@uj.edu.pl

Dominika Bielec, Malczewskiego 5/61, 43-300 Bielsko-Biała, Poland; e-mail: dbielec@poczta.fm

Beata Guzow-Krzemińska, Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; e-mail: beatag@biotech.univ.gda.pl

Katarzyna Kolanko, Institute of Biology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland; e-mail: singI@op.pl

Joanna Kozik, Pieniny National Park, Jagiellońska 107B, 34-450 Krościenko n/Dunajcem, Poland; e-mail: asiakozik@o2.pl

1 Corresponding author
Introduction

Magurski National Park (MNP) was founded in 1995 for the purpose of protecting the most important landscape and natural formations typical of the Beskid Niski Mts, which are part of the Western Carpathians (Kondracki 1989). The Beskid Niski Mts are low and intermediate-height mountains built of Carpathian flysch (Fig. 1). Altitude ranges mainly from 650 to 700 m a.s.l., reaching maximum of 847 m at the summit of Magura Wątkowska Mt. The park covers 19,439 ha of the Wisłoka River valley, including its upper reaches and origin. MNP is located in a pass in the Carpathians where two

Fig. 1. Typical landscape of the Beskid Niski Mts – view of Ciechania village in Magurski National Park. Photo M. Węgrzyn.
main ecological corridors intersect: north-south and east-west. The park is a typical woodland (90% wooded area) with relatively well-preserved vegetation. The most frequent forest community is *Dentario glandulosae-Fagetum*, which creates the characteristic landscape of the park (Fig. 2). Sycamore woods, rare in the Polish Carpathians, are represented by three associations: *Sorbo-Aceretum*, which occurs only on the peak rocks on Kamień Mt., *Phyllitido-Aceretum*, occurring on Magura Wątłowska Mt., Kamień Mt. and Suchania Mt., as well as *Lunario-Aceretum* developed in several patches. In the foothills there are mainly planted and managed stands dominated by pine, as well as multi-species riparian forests, and rarely hornbeam woods. Non-forest vegetation is represented by varied meadow and grassland communities, and also peat-bogs. Biocenoses in MNP having a natural species composition and high stability helped to justify the inclusion of area in the Natura 2000 network; 14 kinds of habitats given in the annex to the Habitat Directive were identified here. Detailed information on the importance of the park and its vegetation is found in a monograph of MNP (Górecki & Zemanek 2009).

Prior to this work, Magurski National Park was lichenologically the least-known national park in the Polish Carpathians. More than 300 lichen species have been recorded (Bielczyk 2003 and literature cited therein) in the Beskid Niski area, but the majority were reported from outside the park (e.g., Motyka 1927; Olech 1974; Kukwa & Czarnota 2006) or are only historical records (e.g., Sulma 1936; Polakowska 2002 based on T. Sulma’s collection). In the 1970s, MNP was studied by lichenologists from Kraków (J. Nowak,
M. Olech, J. Kiszka, R. Kozik) but their herbarium collections were only partially examined and published in articles or taxonomic monographs (e.g., Kukwa 2005, 2011; Czarnota 2007; Flakus & Kukwa 2009; Krzewicka 2009, 2012; see also Bielczyk & Kozik 2009).

Recent lichenological fieldwork in MNP was done during the 24th Meeting of Polish Lichenologists in September 2009, the results of which are presented here in the form of an annotated check-list of lichens, lichenicolous fungi and saprotrophic fungi known from MNP (taking into account all published data). Also, the lichenological values of MNP are characterized, and an attempt was made to evaluate changes in the lichen biota.

MATERIAL AND METHODS

This study is based on material we collected during fieldwork on 10–11 September 2009 at 58 localities in Magurski National Park (Fig. 3 and list of collecting sites given below); the collecting sites are mapped in the ATPOL grid square system (Zając 1978), subdivided into 1×1 km squares. The taxa recognized in the field were listed and samples of others were collected for identification in the laboratory by standard lichenological methods, including spot tests, UV reaction and TLC (Orange et al. 2010). Voucher material is housed in KRAP, with some duplicates in GPN, KRAM and UGDA.

The species list below is based on (1) original data collected during the 2009 fieldwork, (2) unpublished historical collections from UGDA (by T. Sulma) and

Fig. 3. Location of the collecting sites in Magurski National Park.
KRAM (by J. Nowak), and (3) all earlier publications. Nomenclature of taxa follows the MycoBank Database (2015; http://www.mycobank.org) except for the genus Caloplaca, which is treated traditionally. For species whose nomenclature was changed recently, synonyms used in Bielczyk (2003) are provided.

LIST OF COLLECTING SITES VISITED IN 2009

1 – EG-1928: Bednarka stream, 49°37’30”N, 21°19’52”E, alt. ca 440 m, mixed forest with alder and ash.

2 – FG-1041: Diabli Kamięń, 49°36’08.1”N, 21°22’05.3”E, alt. ca 500 m, mixed forest with beech, fir, birch and pine, and moderately sunlit (peak parts) or heavily-shaded (N exposure) sandstone rock.

3 – FG-1041: Diabli Kamięń, by trail along Kłopotnica stream, 49°36’31.8”N, 21°22’03.7”E, alt. ca 410 m, mixed forest with ash and alder.

4 – FG-1041: Fokus, by road to Diabli Kamięń, 49°36’38.5”N, 21°22’16.0”E, alt. ca 400, sunlit roadside bank.

5 – FG-1050: Kornuty, crossing of forest road and yellow trail, 49°36’01.8”N, 21°21’44”E, alt. ca 450 m, mixed forest with beech, fir, birch and larch, and roadside bank.

6 – FG-1051: Kosma Mt., SE slope, 49°35’48.8”N, 21°22’40.5”E, alt. ca 675, mixed forest with high proportion of fir.

7 – FG-1052: Magurski waterfall, 49°35’57.9”N, 21°23’09.2”E, alt. ca 520 m, mixed forest with beech, fir, birch and pine, and steep sandstone rock above headstream.

8 – FG-2001: Mareszka Mt., foot of NE slope, forest section no. 148/149, 49°33’09”N, 21°22’25”E, alt. ca 600 m, ca 80-year-old Dentario glandulosae-Fagetum.

9 – FG-2002: Mareszka Mt., NE slope, right tributary of Świerzowa stream, forest section no. 138, 49°33’28”N, 21°22’27”E, alt. ca 580 m, young, ca 40-year-old beech-wood.

10 – FG-2003: Świerzowa Ruska, Świerzowa stream valley, 49°33’0.2”N, 21°23’38”E, alt. ca 520 m, abandoned orchard, ruderal bushwood.

11 – FG-2004: Świerzowa stream valley, forest section no. 135/121, 49°32’54” N, 21°24’23” E, alt. ca 495 m, stream bed next to dirt road, marshy meadow, tall riverside bushwood.

12 – FG-2012: Mareszka Mt., E slope, forest section no. 146/147, 49°32’28”N, 21°22’53”E, alt. ca 700 m, ca 120–140-year-old Dentario glandulosae-Fagetum.

13 – FG-2111: Kamięń Mt., W slope, 49°32’17.4”N, 21°30’32.4”E, alt. ca 670 m, Dentario glandulosae-Fagetum.

14 – FG-2111: Kamięń Mt., summit part, 49°32’18.1”N, 21°30’37.5”E, alt. ca 700 m, individual trees and boulders.

15 – FG-2112: Kamięń Mt., NE slope, 49°32’15.2”N, 21°30’43.5”E, alt. ca 680 m, Sorbo-Aceretum, single boulders.

16 – FG-2122: Kamięń Mt., SE slope, 49°31’53.6”N, 21°31’03.7”E, alt. ca 680 m, Dentario glandulosae-Fagetum.

17 – FG-2123: Kamięń Mt., E slope, 49°31’48”N, 21°31’47”E, alt. ca 480 m, Ribeso nigri-Alnetum (Fig. 4).

18 – FG-2143: Kamięń Mt., S ridge spur, E slope, 49°30’53.5”N, 21°32’13.9”E, alt. ca 460 m, Phyllitido-Aceretum.

19 – FG-2144: Suchania Mt., W slope, 49°30’29.6”N, 21°32’40.2”E, alt. ca 430 m, Dentario glandulosae-Fagetum.

20 – FG-2144: Suchania Mt., W slope, valley of stream flowing into Wilszna river, 49°30’30.2”N, 21°32’29.6”E, alt. ca 360 m, riverside alder forest, boulders in stream.

21 – FG-2053: Uhorec Mt., S slope, forest section nos 291, 292, 49°30’24”N, 21°22’33”E, alt. ca 500 m, pine forest with some deciduous trees, young Dentario glandulosae-Fagetum.

22 – FG-2053: Uhorec Mt., SW slope, forest section no. 289/290, 49°30’25”N, 21°22’34”E, alt. ca 600 m, 80–100-year-old Dentario glandulosae-Fagetum, deep ravine.

23 – FG-2053: Uhorec Mt., summit parts, forest section no. 167/291, 49°30’36”N, 21°23’33”E, alt. ca 680 m, Dentario glandulosae-Fagetum.

24 – FG-2055: Wilska stream valley, E slope of Uhorec Mt., forest section no. 172a, 49°30’17.9”N, 21°25’00.59”E, alt. 400 m, Dentario glandulosae-Fagetum.

25 – FG-2056: Cyrła Mt., NW slope, stream valley, forest section no. 150c, 49°30’14.09”N, 21°25’58.7”E, alt. 500 m, Dentario glandulosae-Fagetum.

26 – FG-2057: Świątka Mała, slopes above village, forest section no. 142b, 49°30’17.81”N, 21°26’47.85”E, alt. 514 m, fir-beech forest.

27 – FG-2063: surroundings of Nienajdowski, S slope of hill, forest section nos 293, 294, 49°29’39”N, 21°23’32”E, alt. ca 500 m, mixed forest, pasture.

28 – FG-2065: Wilska river valley, SE slope of Uhorec Mt., forest section no. 173a, 49°29’52.00”N, 21°25’14.5”E, alt. 400 m, Dentario glandulosae-Fagetum.

29 – FG-2066: Cyrła Mt., W slope, stream valley,
forest section no. 152a, 49°29′41.28″N, 21°25′54.27″E, alt. 550 m, shady *Dentario glandulosae-Fagetum*.

30 – FG-2067: Cyrla Mt., summit parts, forest section no. 143a, 49°29′42.05″N, 21°26′34.56″E, alt. 690 m, fir forest.

31 – FG-2068: Krempna stream valley, Las Słodki, forest section no. 140a, 49°29′37.85″N, 21°27′34.85″E, alt. 670 m, shady *Dentario glandulosae-Fagetum* with scattered old sycamores.

32 – FG-2161: Huta Krempska, 49°39′49″N, 21°30′29″E, alt. ca 450 m, willows by stream.

33 – FG-2073: surroundings of Nieznajowa, Wisłoka river valley, forest section nos 157, 158, 49°29′22″N, 21°23′27″E, alt. ca 435 m, remains of sawmill, willow-alder marshy meadow.

34 – FG-2078: Krempna stream valley, slopes of Słodkie Mt., forest section no. 146a, 49°29′01.72″N, 21°27′44.94″E, alt. 600 m, shady *Dentario glandulosae-Fagetum* with scattered old sycamores.

35 – FG-2171: Huta Krempska, ca 1 km SSW of village, 49°28′58″N, 21°30′19″E, alt. ca 500 m, stream bank, forest, scattered trees.

36 – FG-2171: Huta Krempska, S of village, 49°29′20″N, 21°30′34″E, alt. 440 m, open area.

37 – FG-2089: Żydowskie, site of former center of destroyed village at foot of Kiczera Żydowska Mt., 49°28′34″N, 21°28′15″E, alt. ca 450 m, abandoned orchards; remains of buildings and graveyard.

38 – FG-2181: Las Huciska, ca 2.5 km SSW of village Huta Krempska, 49°28′39″N, 21°30′26″E; alt. ca 600 m, beech woods.

39 – FG-2099: Żydowskie, S foot of Wysokie Mt., 49°27′51″N, 21°28′22″E, alt. ca 450 m, abandoned apple orchards on edge of woods.

40 – FG-2099: Wysokie Mt., slope N, 49°28′15.7″N, 21°28′10.5″E, alt. ca 500 m, *Dentario glandulosae-Fagetum*, boulders in stream.

41 – FG-2190: Żydowskie, site of former hamlet, by road to Ciechania (former state collective farm), 49°28′47″N, 21°28′27″E, alt. ca 445 m, boulders in stream, maple lane, remains of houses.

42 – FG-2194: Polany, ca 2 km SW of village, Hucianka stream valley, 49°27′41″N, 21°32′23″E, alt. ca 450 m, open area.

43 – FG-2290: Wilsznia river, 49°27′46.4″N, 21°37′58.4″E, alt. 485 m, remains of bridge.

44 – FG-2291: abandoned Wilsznia village, 49°27′42.2″N, 21°38′04.6″E, alt. 490 m, old orchard, plantings.

45 – FG-3009: slope of Wysokie Mt., 49°27′36″N,
21°29′26″E, alt. 600 m, initial grassland in gaps of plantations.

46 – FG-3104: Demcza, N of village Huta Polańska, 49°27′24″N, 21°32′24″E, alt. ca 470 m, forest, open area.
47 – FG-3106: Baranie stream valley, forest section no. 35b, 49°27′20.8″N, 21°34′02.9″E, alt. 480 m, shady 70–90-year-old *Dentario glandulosae-Fagetum*.
48 – FG-3106: Baranie stream valley, forest section no. 36b, 49°27′19″N, 21°34′08.3″E, alt. 485 m, roadside bank and edge of young fir-beech wood by forest road.
49 – FG-3111: Ciechania, N edge of destroyed village, below road to Żydowskie, 49°26′51″N, 21°30′07″E, alt. ca 590 m, single trees in fields and by roads.
50 – FG-3114: Huta Polańska village, Hucianka stream valley, 49°27′01″N, 21°32′22″E, alt. ca 470 m, open area, church, churchyard, forest E of village.
51 – FG-3116: Baranie stream valley, forest section no. 25a, 49°27′09.8″N, 21°04′26.9″E, alt. 500 m, sunlit side of forest road, small outcrops.
52 – FG-3116: Baranie stream valley, forest section no. 25a, 49°27′07.8″N, 21°34′32.7″E, alt. 550 m, shady ca 90-year-old *Dentario glandulosae-Fagetum*.
53 – FG-3116: Baranie stream valley, forest section no. 35a, 49°27′26.6″N, 21°34′05.4″E, alt. 470 m, grove of young ash in streamside marshy meadow.
54 – FG-3117: Baranie stream valley, forest section no. 27a, 49°27′02.0″N, 21°35′06.1″E, alt. 620 m, shady *Dentario glandulosae-Fagetum* by stream.
55 – FG-3119: Olchowczyk stream valley, forest section no. 21a, 49°26′30.4″N, 21°36′13.1″E, alt. 605 m, shady *Dentario glandulosae-Fagetum*, beech tree-stand.
56 – FG-3121: Ciechania, center of destroyed village, 49°26′29″N, 21°30′32″E, alt. ca 570 m, remains of basements, abandoned orchards.
57 – FG-3122: Ciechania, surroundings of research station in Magurski National Park, SE of edge of destroyed village, 49°26′36″N, 21°30′53″E, alt. 535 m, abandoned orchards, meadows, wasteland.
58 – FG-3128: Baranie Mt., summit area, 49°26′13.4″N, 21°35′51.2″E, alt. 754 m, exposed, sunlit place.

LIST OF SPECIES KNOWN FROM MNP

As a result of fieldwork undertaken in 2009, 227 species of lichenized fungi, 12 of lichenicolous fungi and four of saprotrophic fungi traditionally included in lichenological lists, as well as one lichenicolous myxomycete species were recorded for the study area. The list below also contains 87 lichen species and six allied fungi previously reported from MNP, creating a complete list of 337 species currently known from this Carpathian national park.

For each species the following information is provided: habitat, number(s) of collecting site(s) and/or location of historical site(s), date and author of the collection, with reference to voucher specimen(s) and/or literature. For rare and taxonomically interesting species some comments are provided. Symbols: * – lichenicolous fungus, + – saprotrophic fungus, # – lichenicolous myxomycete, (!) – species new for the Beskid Niski Mts. Species recorded during the current study are **bolded**.

Abrothallus bertianus De Not.
On thallus of *Melanelixia glabrata* growing on apple tree. Collecting site: 37. (!)

Absconditella delutula (Nyl.) Coppins & Kilias
On shaded sandstone pebble. Collecting site: 53. (!)

Absconditella lignicola Vězda & Pišut
On decaying tree stump and and wood of *Abies alba* log. Collecting sites: 8, 30, 54. (!)

Absconditella pauxilla Vězda & Vivant
On decaying tree stump. Collecting site: 17. (!)

Note. An inconspicuous, ephemeral species only recently recorded in Poland, known from Gdański Pomerania (Kukwa & Zduńczyk 2011; Kukwa et al. 2013) and one locality in the Tatra Mts (Czarnota 2012). It usually grows on decaying wood of stumps and logs. Unlike other representatives of the genus, it forms narrow, needle-shaped ascospores.

Acarospora fuscata (Ach.) Th. Fr.
On sandstone and concrete. Collecting sites: 2, 41, 50.
HISTORICAL DATA: Diabli Kamień Mt. (FG-1041), 1936, leg. T. Sulma (UGDA; Polakowska 2002); Rostajne (FG-2075), Krempna (FG-2151), Ciechania (FG-3121), 1979, leg. J. Nowak (KRAM; Bielczyk & Kozik 2009).

Acarospora glaucocarpa (Wahlenb. in Ach.) Körb.
On limestone wall; Polany (FG-2175), 1976, leg. J. Nowak (KRAM; Leśniacki 2002).
Acarospora moenium (Vain.) Räsänen
Aspicilia moenium (Vain.) G. Thor & Timdal
On concrete. Collecting sites: 33, 41. (!)

Acarospora umbilicata Bagl.

Acrocordia gemmata (Ach.) A. Massal.
On bark of beech, apple tree and sycamore. Collecting sites: 34, 54.

Agonimia repleta Czarnota & Coppins
On bark at base of beech trees and mossy boulder in forest. Collecting sites: 12, 52, 54. (!)

Note. An inconspicuous microlichen, described from specimens from the Gorce Mts (Czarnota & Coppins 2000), nowadays frequently found in the Carpathians at the base and on roots of beech (Czarnota unpubl.).

Alyxia varia (Pers.) Ertz & Tehler
Opegrapha varia Pers.
On bark of beech, apple tree and sycamore. Collecting sites: 10, 26, 30, 34, 44.

Anaptychia ciliaris (L.) Körb.

Anisomeridium polypori (M. B. Ellis & Everh.) M. E. Barr
On bark of deciduous trees, mainly in forests, less frequently in open areas. Collecting sites: 33, 35, 38, 53, 54. (!)

Note. In the Polish part of the Carpathians the species was found in the Gorce Mts (Czarnota 2010), Babia Góra Massif (Czarnota & Węgrzyn 2012), the Pogórze Wiśnickie foothills (Śliwa 2010) and the Bieszczady Mts (Kościelniak 2013); recently it has spread into many regions of Europe; it can be locally common but most frequently it occurs in an anamorphic form with pycnidia characterized by its conical, elongated ostioles.

Arthothelium ruanum (A. Masas.) Körb.
Arthonia ruana A. Massal.
On bark of deciduous trees in shaded places in forests. Collecting sites: 1, 15, 18, 19, 35, 40.

Arthorhaphis aeruginosa R. Sant. & Tønsberg
On *Cladonia* sp. growing on soil; Diabli Kamień Mt. (FG-1041), 1955, leg. T. Sulma (UGDA; Polakowska 2002).

Aspicilia cf. laevata (Ach.) Arnold
On boulder; Diabli Kamięń Mt. (FG-1041), 1955, leg. T. Sulma (UGDA; Polakowska 2002).

Athelia arachnoidea (Berk.) Jülich
On *Lecanora conizaeoides* and *Scoliciosporum chlorococcum* growing on fir. Collecting sites: 2, 7, 34, 35, 53. (!)

Bacidia pycnidia Czarnota & Coppins
On decaying bark of log and wood of beech stump. Collecting sites: 46, 53. (!)

Note. Usually an epiphytic species, distinctive for its sorediate thallus and numerous pale to brown, globose external pycnidia with long, ostiolar necks. Originally it was reported from the
Czech Republic (E Sudetes) and Poland (Gorce Mts and Pogórze Strzyżowskie foothills) (Czar- note & Coppins 2006); currently it is known from additional sites in both countries (Łubek 2009, 2012; Vondrák et al. 2010b; Czarnota & Hernik 2014). It has also been found in Estonia, Belgium, Finland, Lithuania, Ukraine, the North Caucasus and the European part of Russia (Urbanavichene & Urbanavichus 2014).

Bacidia rubella (Hoffm.) A. Massal.
On bark of sycamore, ash and apple tree. Collecting sites: 8, 10, 15, 34, 38, 54.

Bacidia subincompta (Nyl.) Arnold
On bark of apple tree, beech, willow, ash and sycamore. Collecting sites: 10, 12, 15, 19, 35, 38, 47, 54. (!)

Bacidia viridescens (A. Massal). Norman
On concrete wall. Collecting site: 33. (!)

Bacidina adastra (Sparrius & Aptroot) M. Hauck
& V. Wirth
On bark of apple tree and willow. Collecting sites: 5, 35. (!)

Bacidina cf. brandii (Coppins & van den Boom) M. Hauck & V. Wirth
On blown-down tree. Collecting site: 19. (!)

Note. So far this species has been reported from only one locality in NE Poland (Kubiak & Sparrius 2004), but revision of the source material revealed that the specimen represents a specific morphotype of *Bacidina sulphurella* (Samp.) M. Hauck & V. Wirth (Czarnota unpubl.). The specimen found in Magurski National Park resembles a pale form of *B. brandii* but its thallus is composed of tiny yet distinct goniocysts and its exciple of branched hyphae. According to the original description (Coppins & van den Boom 2002), *B. brandii* is characterized by its crustose thallus built of flat, confluent areoles and a paraplectenchymatic exciple with wide cells (6–10 µm). The presence of Arnoldiana-brown pigment in the hypothecium suggests that the specimen belongs to the group *B. arnoldiana*, but this requires further research.

Bacidina egenula (Nyl.) Vězda
On sandstone structure of old bridge. Collecting site: 43. (!)

Note. In Poland the species is considered critically endangered (Cieśliński et al. 2006) but its threat category seems to be due to insufficient data. Several records of this species in the Polish Western Carpathians (wet microhabitats on man-made constructions) show that at least in this part of the country it is locally more frequent (Czarnota unpubl.).

Bacidina inundata (Fr.) Vězda
Bacidia inundata (Fr.) Körb.
On sandstone sprinkled with water. Collecting sites: 1, 7, 40.

Bacidina cf. neosquamulosa (Aptroot & van Herk) S. Ekman
On bark of ash and willow. Collecting sites: 33, 54. (!)

Note. The examined specimens with fruiting bodies possessed anatomical characteristics resembling *B. neosquamulosa* but differing in the structure of the thallus, which is indeterminate to granular, unlike the coralloid one which characterizes *B. neosquamulosa s.str*. Similar specimens have been recorded in different regions of Poland and elsewhere (Czarnota unpubl.). The possible taxonomic differentiation of the materials requires molecular proofs.

Bacidina phacodes (Körb.) Vězda
On bark of elm. Collecting site: 30.

Bacidina saxenii (Erichsen) M. Hauck & V. Wirth

Note. An inconspicuous, ephemeral species, often inhabiting small stones in ruderal localities, reported from several localities in Poland, including the buffer zone of Magurski National Park, near the village of Kotań (Czarnota & Coppins 2007).

Bacidina sulphurella (Samp.) M. Hauck & V. Wirth
On bark and epiphytic bryophytes of apple tree, willow, alder and ash. Collecting sites: 1, 6, 33, 46, 50, 54. (!)
Baeomyces rufus (Huds.) Rebent.
On soil, wood, roots and sandstone. Collecting sites: 2, 13, 14, 15, 17, 19, 29, 31, 34, 45, 47, 48.

Biatora chrysantha (Zahlbr.) Printzen
On epiphytic bryophytes on beech and bark of willow and cherry tree. Collecting sites: 1, 16, 26, 28, 29. (!)

Biatora efflorescens (Hedl.) Räsänen
On bark of sycamore. Collecting site: 34.

Biatora epixanthoides (Nyl.) Diederich
Mycobilimbia epixanthoides (Nyl.) Hafellner & Türk
On epiphytic bryophytes of elm, beech, willow and cherry tree. Collecting sites: 1, 15, 33, 51. (!)

Biatora globulosa (Flörke) Fr.
Bacidia globulosa (Flörke) Hafellner & V. Wirth.
On bark of willow and apple tree. Collecting site: 44.

Biliomia sabeltorum (Schreb.) Arnold
Myxobilimbia sabeltorum (Schreb.) Hafellner

Botryolepraria lesdainii (Hue) A. Canals, Hern.-Mar., Gómez-Bolea & Llimona
Lepraria lesdainii (Hue) R. C. Harris
On sandstone rock. Collecting site: 7. (!)

Bryoria capillaris (Ach.) Brodo & D. Hawksw.
Habitat not given; Folusz – stream valley (FG-1041), 1936, leg. T. Sulma (UGDA; Polakowska 2002).

Buellia griseovirens (Turner & Borrer ex Sm.) Almb.
On bark of deciduous trees and fir, on wood in one locality. Collecting sites: 10, 11, 16, 17, 19, 27, 29, 31, 33, 42, 44, 50, 54, 58.

Burgoa angulosa Diederich, Lawrey & Etayo
On decaying lichens and bark. Collecting site: 42. (!)

Note. A facultative lichenicolous or musci-colous species, on rocks and bark. It is characterized by its whitish bulbils of irregular shape and often angular surface, elongate internal hyphae, and no specialized external cells. The species has recently been described and reported from Belgium, France, Spain, Luxemburg, Great Britain and Hungary (Diederich & Lawrey 2007). Here it is recorded for the first time for Poland and the whole Carpathian range.

Caeruleum heppii (Nägeli ex Körb.) K. Knudsen & L. Arkadia
Acarospora heppii (Nägeli) Nägeli

Calicium viride Pers.

Caloplaca cerina (Ehrh. ex Hedw.) Th. Fr. s.l.

Note. The species is heterogenic (Šoun et al. 2011).

Caloplaca cerinella (Nyl.) Flagey

Caloplaca citrina (Hoffm.) Th. Fr.
On sandstone in old bridge structure and on concrete wall. Collecting sites: 33, 41, 43.

Caloplaca crenulatella (Nyl.) H. Olivier
On concrete. Collecting site: 41. (!)
Historical data: Świerzowa Ruska (FG-203), 1979, leg. J. Nowak (KRAM).
Caloplaca decepiens (Arnold) Blomb. & Forssell
On concrete. Collecting site: 41. (!)

Caloplaca flavocitrina (Nyl.) H. Olivier
On mortar and concrete. Collecting sites: 33, 46, 50. (!)

Caloplaca holocarpa (Hoffm.) A. E. Wade s.l.
On mortar and concrete. Collecting sites: 15, 33, 46, 50, 56, 57.

Caloplaca oasis (A. Massal.) Szatala
On concrete. Collecting site: 41. (!)

Note. This species is separated from C. holocarpa (Hoffm.) A. E. Wade s.str. by its more prominent, yellow thallus, and apothecia tending to be more deeply orange, crowded, rather uniform in size, with a thinner proper margin that becomes indistinguishable from the apothecial discs; some anatomical differences are given by Arup (2009). The species perhaps is frequent but overlooked in the Carpathians (Wilk 2012).

Caloplaca phlogina (Ach.) Flagey
On bark of poplar. Collecting site: 46. (!)

Note. This is a corticolous representative of the C. citrina group. Substrate ecology seems to be the best way to separate the species from C. citrina itself. C. phlogina may be confused with C. flavocitrina, which may occur on the same kind of phorophyte (bark with high pH). The latter species differs from C. phlogina, which is entirely sorediate, in having an areolate thallus only partly dissolved into soredia (Arup 2006). In Poland it is known from the Bory Tucholskie forest (Kukwa et al. 2013).

Caloplaca pusilla (A. Massal.) Zahlbr.
On concrete. Collecting sites: 41, 46. (!)

Note. It is a common representative of Caloplaca, often confused with C. saxicola. C. pusilla differs from the latter by having a distinctly placodioid thallus with long lobes tightly attached to the substrate, and according to Wilk (2012) it is widespread in the Polish Carpathians.

Candelaria concolor (Dick.) Stein
On bark of apple tree. Collecting site: 45.

Historical data: on bark of willow; Folusz – stream valley (FG-1041), 1957, leg. T. Sulma (UGDA; Polakowska 2002); Wyszowatka towards Rostajne (FG-2095), 1979, leg. J. Nowak (KRAM).

Candelariella aurella (Hoffm.) Zahlbr.
On concrete and mortar. Collecting sites: 15, 33, 35, 41, 42, 46, 50.

Candelariella coralliza (Nyl.) H. Magn.
On sandstone rocks; Niecznajowa (FG-2073), 1979, leg. J. Nowak (KRAM; Bielczyk 2003; Bielczyk & Kozik 2009).

Candelariella efflorescens R. C. Harris & W. R. Buck
On bark of deciduous trees. Collecting sites: 1, 10, 21, 22, 33, 35, 36, 39, 41, 42, 44.

Historical data: Folusz – stream valley (FG-1041), 1957, leg. T. Sulma (UGDA; Polakowska 2002 as C. reflexa auct.).

Note. It is a sorediate species with polysporous ascii, previously misidentified in Poland as C. reflexa (Nyl.) Lettau (Kubiak & Westberg 2011). The species was reported by the latter authors from northern and central parts of the country, and by Śliwa and Kukwa (2012) from the Tatra Mts.

Candelariella vitellina (Hoffm.) Müll. Arg.
On sandstone rock, concrete wall and granite post. Collecting sites: 33, 50, 56.

Historical data: Kornuty Reserve (EG-1969) (Sulma 1936).

Candelariella xanthostigma (Pers. ex Ach.) Lettau
On bark of deciduous trees. Collecting sites: 10, 20, 28, 33, 37, 39, 41, 44, 46, 50, 56, 58.

Carbonea supersparsa (Nyl.) Hertel
On Lecanora polytropa growing on rock; Diabli Kamię Mt. (FG-1041), 1936, leg. T. Sulma (UGDA; Kukwa 2005).
Cetraria chlorophylla (Willd.) Vainio
On bark of trees; Folusz – stream valley (FG-1041), Diabli Kamięń Mt. (FG-1041), 1936, leg. T. Sulma (UGDA; Polakowska 2002).

Cetraria islandica (L.) Ach.
On rock waste; Kornuty Reserve (EG-1969) (Sulma 1936).

Chaenotheca brunneola (Ach.) Müll. Arg.
On standing decorticated wood in forests. Collecting sites: 8, 15, 40. (!)

Chaenotheca chrysocephala (Ach.) Th. Fr.
On bark of fir and willow, on wood. Collecting sites: 31, 34, 44.

Chaenotheca ferruginea (Turner ex Sm.) Mig.
On bark of fir, pine, alder and pear tree, and wood in forests. Collecting sites: 1, 2, 8, 15, 17, 16, 22, 27, 34, 40.

Chaenotheca furfuracea (L.) Tibell
On bark of elm. Collecting site: 34.

Chaenotheca phaeocephala (Turner) Th. Fr.
On bark of fir and sycamore, on wood. Collecting sites: 13, 15, 16, 34. (!)

Chaenotheca stemonea (Ach.) Müll. Arg.
On bark of old fir and alder, on wood. Collecting sites: 17, 33.

Chaenotheca trichialis (Ach.) Th. Fr.
On wood, bark of beech and fir. Collecting sites: 6, 40.

Chaenotheca xyloxena Nádv.

Chaenothecopsis pusilla (Ach.) A. F. W. Schmidt
On wood of beech and thallus of Chaenotheca xyloxena. Collecting sites: 8, 23, 40. (!)

Chrysothrix candelaris (L.) J. R. Laundon
On bark of beech and fir; Folusz – stream valley (FG-1041), 1957, leg. T. Sulma (UGDA; Polakowska 2002).

Cladonia arbuscula (Wallr.) Flo. subsp. beringiana Ahti
C. arbuscula subsp. squarrosa (Wallr.) Ruoss
On soil; Folusz – stream valley (FG-1041), 1936, leg. T. Sulma (UGDA; Polakowska 2002).

Cladonia arbuscula subsp. mites (Sandst.) Ruoss

Cladonia borealis S. Stenroos
On soil; Diabli Kamięń Mt. (FG-1041), 1957, leg. T. Sulma (UGDA; Polakowska 2002).

Cladonia caespiticia (Pers.) Flörke
At base of birch stump and on clay soil. Collecting sites: 1, 13.

Cladonia cariosa (Ach.) Spreng.
On soil. Collecting site: 36. (!)

Cladonia cenotea (Ach.) Schaeer.
On bryophytes at base of beech and on boulder. Collecting site: 19.

Cladonia chlorophaea (Sommerf.) Speng.
On soil, bark of deciduous trees, boulder and wood. Collecting sites: 9, 10, 17, 22, 24, 25, 26, 29, 31, 33, 34, 44, 45.

Cladonia chlorophylla (Sommerf.) Speng.
On soil, bark of deciduous trees, boulder and wood. Collecting sites: 9, 10, 17, 22, 24, 25, 26, 29, 31, 33, 34, 44, 45.
Cladonia coccifera (L.) Willd. s.l.

Cladonia coniocreae (Flörke) Spreng.
incl. Cladonia ochrochlora Flörke
On bark of trees, wood, and boulders. Collecting sites: 1, 3, 5, 6, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 24, 26, 29, 30, 31, 34, 35, 38, 39, 48, 44, 50, 51, 52, 56.

Cladonia cornuta (L.) Hoffm.
On soil and boulder. Collecting sites: 15, 16.

Cladonia crispata (Ach.) Flot.

Cladonia deformis (L.) Hoffm.
On soil; Diabli Kamień Mt. (FG-1041), 1955, leg. T. Sulma (UGDA; Polakowska 2002).

Cladonia digitata (L.) Hoffm.
On bark of trees, wood, soil, and bryophytes on rocks. Collecting sites: 1, 2, 5, 6, 7, 10, 14, 15, 18, 22, 24, 34, 38.

Cladonia fimbriata (L.) Fr.
On bark of apple tree and boulder. Collecting site: 10.

Cladonia furcata (Huds.) Schrad.
On soil and boulder. Collecting sites: 33, 41.

Cladonia glauca Flörke
On bark of sycamore. Collecting site: 15.

Cladonia gracilis (L.) Willd.

Cladonia humilis (With.) J. R. Laundon
On epiphytic bryophytes of beech. Collecting site: 12. (!)

Cladonia macilenta Hoffm.
On bark of deciduous trees, wood, soil, and bryophytes on rock. Collecting sites: 1, 2, 5, 6, 7, 10, 14, 15, 18, 22, 24, 34, 38.

Cladonia macroceras (Delise) Hav.

Cladonia macrophyllodes Nyl.

Cladonia meroclorophaeas Asahina

Cladonia monomorpha Aptroot, Sipman & van Herk
Cladonia cf. parasitica (Hoffm.) Hoffm.
On soil. Collecting site: 2. (!)

Cladonia phyllophora Hoffm.
On boulder; Diabli Kamięń Mt. (FG-1041), 1954, leg. T. Sulma (UGDA; Polakowska 2002).

Cladonia pleurota (Flörke) Schäer.

Cladonia pyxidata (L.) Hoffm.

Cladonia ramulosa (With.) J. R. Laundon

Cladonia rangiferina (L.) F. H. Wigg.

Cladonia rangiformis Hoffm.
On boulder; Diabli Kamięń Mt. (FG-1041), 1962, leg. T. Sulma (UGDA; Polakowska 2002).

Cladonia squamosa Hoffm.
On decaying stump, soil and boulder. Collecting sites: 1, 15.

Cladonia subulata (L.) F. H. Wigg.
On soil, bark of fir, and wood. Collecting sites: 5, 14, 29, 41, 45.

Coenogonium pineti (Ach.) Lücking & Lumbsch
Dimerella pineti (Ach.) Vězda
On bark of trees, epiphytic bryophytes and wood, on stone in one locality. Collecting sites: 1, 2, 5, 6, 7, 8, 9, 12, 15, 16, 19, 24, 28, 29, 30, 34, 35, 38, 50, 52, 53, 54.

Collema crispum (Huds.) F. H. Wigg.
On soil. Collecting site: 33. (!)

Note. In the Polish Carpathians the species is known only from the Góry Słonne Mts (Kiszka & Piórecki 1992).

Collema tenax (Sw.) Ach. emend. Degel.
On clay soil; Wilsznia village (FG-2291), 1979, leg. J. Nowak (KRAM; Bielczyk 2003; Bielczyk & Kozik 2009).

Cryptodiscus gloeocapsa (Nitschke ex Arnold) Baloch, Gilenstam & Wedin
Bryophagus gloeocapsa Nitschke ex Arnold

Dibaeis baemycyes (L.) Rambold & Hertel
On soil. Collecting sites: 4, 5, 45, 48.

Dictycatenulata alba Finley & E. F. Morris
On bark of beech. Collecting sites: 47, 55. (!)

Note. A lichenized species of basidiomycete, widespread worldwide. It is characterized by its white, elongated conidiophores aggregated in handle-shaped synnemata ended with ±spherical conidial masses. In Poland known only from the Gorce Mts (where it is locally very numerous; Czarnota unpubl.); in the Carpathians recorded in Slovakia and Ukraine (Diederich et al. 2008). It mainly inhabits bases of stumps and protruding roots of beeches in natural forests.

Diploschistes gypsaceus (Ach.) Zahlbr.
On limestone; Olchowiec, by Wilsznia River (FG-2199), 1979, leg. J. Nowak (KRAM; Bielczyk 2002).

Diploschistes muscorum (Scop) R. Sant.
On soil; Diabli Kamięń Mt. (FG-1041), 1954, leg. T. Sulma (UGDA; Polakowska 2002).

Diploschistes scruposus (Schreb.) Norman
"Epigloea urosperma" Döbbeler
On thallus of *Placynthiella* sp. growing on rock. Collecting site: 4. (!)

Note. In the Carpathians the species was previously recorded only in the Babia Góra Massif (Czarnota & Hernik 2013). Unlike other species in the genus, which usually are algicolous fungi, *E. urosperma* is a lichenicolous fungus associated in Poland with *Placynthiella dasaea* and *P. uliginosa* (Kukwa & Flakus 2009; Czarnota & Hernik 2013).

Evernia divaricata (L.) Ach.
On bark of beech; Kornuty Reserve (EG-1969) (Sulma 1936).

Evernia mesomorpha Nyl.
On bark of birch and fir, and on rock; Diabli Kamięń Mt. (FG-1041), 1936, *leg. T. Sulma* (UGDA; Polakowska 2002).

Evernia prunastri (L.) Ach.
On bark of deciduous trees and shrubs, on pine and boulders. Collecting sites: 10, 27, 39, 44, 50, 58.

Flavoparmelia caperata (L.) Hale

Fuscidea arboricola Coppins & Tønsberg
On bark of sycamore. Collecting site: 15. (!)

Note. This sorediate, sterile lichen was collected in the Pogórze Dynowskie foothills in the early 21st century but was not reported then (Czarnota unpubl.; GPN). Probably overlooked, but in the mountains certainly not as frequent as in the northern part of the country (e.g., Fałtynowicz 2003; Lubeck & Jaroszewicz 2012 and literature cited therein). Known from the Eastern Carpathians in Slovakia and Ukraine (Kondratyuk *et al.* 2003; Coppins *et al.* 2005) and Romania (Ardelean *et al.* 2013). A species new for the Western Carpathians.

Fuscidea pusilla Tønsberg
On bark of deciduous trees and fir. Collecting sites: 1, 2, 33, 38.

Historical data: Diabli Kamięń Mt. (FG-1041), 1955, *leg. T. Sulma* (UGDA).

Graphis scripta (L.) Ach.
On bark of deciduous trees. Collecting sites: 5, 7, 8, 9, 12, 15, 16, 17, 18, 19, 22, 24, 28, 30, 34, 46, 52, 53, 54.

Gyalecta ulmi (Sw.) Zahlbr.

Halecania viridescens Coppins & P. James
On bark of ash. Collecting site: 1. (!)

Note. A sterile species resembling *Rinodina efflorescens* Malme and *R. griseosoralifera*, both of which develop similar bluish-grey to brownish external soredia. The two taxa can be easily distinguished from *Halecania viridescens* chemically: *R. efflorescens* contains pannarin and zeorin as major secondary compounds and *R. griseosoralifera* contains atranorin and zeorin, whereas *Halecania viridescens* produces argopsin and ‘gracilenta unknown 1’. In Poland the species is reported from the northern part of the country (Kukwa & Jabłońska 2009; Schiefelbein *et al.* 2012). A species new for the Polish Carpathians.

Hydropunctaria rheitrophila (Zschacke) Keller, Gueidan & Thüs

Verrucaria rheitrophila Zschacke
On stones in stream and on wet rock. Collecting sites: 7, 8, 40.

Historical data: Rostajne (FG-2075), Las Słodki (FG-2077), 1979; *leg. J. Nowak* (KRAM; Nowak 1995; Biełczyk & Kozik 2009).

Hypocenomyce scalaris (Ach.) M. Choisy
On bark of trees, on wood. Collecting sites: 1, 2, 10, 11, 14, 15, 16, 17, 19, 21, 22, 26, 27, 29, 30, 38, 39, 41, 44, 45, 49, 50, 56, 57.
Hypogymnia physodes (L.) Nyl.

On bark of trees and shrubs, on wood, boulders and epilithic bryophytes. Collecting sites: 1, 2, 5, 6, 10, 11, 14, 15, 16, 17, 18, 19, 22, 26, 27, 28, 29, 30, 31, 33, 34, 35, 39, 41, 42, 44, 45, 49, 50, 53, 56, 57.

Hypogymnia tubulosa (Schaer.) Hav.

On bark of deciduous trees, pine, fir and larch, on wood. Collecting sites: 5, 27, 29, 39, 42.

Hypotrichyna afrorevoluta (Krog & Swinscow) Krog & Swinscow

Imshaugia auriculata (Ach.) S. L. F. Meyer

On bark of birch, fir and pine. Collecting site: 2.

Intralichen lichenicola (M. S. Christ. & D. Hawksw.) D. Hawksw. & M. S. Cole

On thallus and apothecia of *Candelariella aurella* growing on concrete. Collecting site: 42. (!)

NOTE. The species is distinguished by its multicellular conidia arising as elongate chains of cells. It is much less frequent than *I. christiansenii*, which is characterized by its 1-septate conidia. *I. lichenicola* was previously reported from Europe (Greenland, Luxemburg, Norway, Spain, Svalbard, Sweden), Asia (Siberia) (Hawksworth & Cole 2002) and North America (California) (Kocourkova et al. 2012). Here it is newly reported for Poland and the Carpathian range.

Ionaspis ceracea (Arnold) Hafellner & Türk

Lecania erysibe (Ach.) Mudd

On sandstone in structure of old bridge. Collecting site: 43. (!)

Lecanora albellula (Pers.) Ach.

Lecanora albescens (Hoffm.) Flörke

On concrete. Collecting sites: 15, 33, 46, 49.

Lecanora argentea (Ach.) Malme

On bark of beech, fir, sycamore and rowan. Collecting sites: 12, 15, 16, 18, 19.

Lecanora carpinea (L.) Vain.

On bark of beech, hornbeam and alder. Collecting sites: 15, 18, 19, 23, 35, 46.

Lecanora chlorotera Nyl.

On bark of deciduous trees and fir, on wood. Collecting sites: 2, 10, 15, 23, 26, 31, 34, 50, 52, 53, 58.

HISTORICAL DATA: Diabl Kamień Mt. (FG-1041), 1954, *leg. T. Sulma* (UGDA; Polakowska 2002).

Lecanora conizaeoides Nyl. ex Cromb.

On bark of trees, on wood. Collecting sites: 1, 2, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 38, 39, 41, 42, 44, 45, 47, 48, 49, 50, 52, 56.

Lecanora crenulata Hook.

Lecanora dispersa (Pers.) Sommerf.

Lecanora expallens Ach.
On bark of fir, willow, pear tree and sycamore. Collecting sites: 38, 44, 46, 50.

Lecanora hagenii (Ach.) Ach.

Lecanora glabrata (Ach.) Malme

Lecanora intricata (Ach.) Ach.
On sandstone boulders; Kornuty Reserve (EG-1969) (Sulma 1936).

Lecanora muralis (Schreb.) Rabenh.
On sandstone. Collecting site: 50.

Lecanora persimilis (Th. Fr.) Nyl.
On bark of sycamore. Collecting site: 58. (!)

Lecanora polytropa (Hoffm.) Rabenh.

Lecanora pulicaris (Pers.) Ach.
On bark of deciduous trees, pine and fir. Collecting sites: 1, 10, 15, 16, 17, 19, 22, 23, 26, 28, 33, 34, 35, 39, 53.

Lecanora rupicola (L.) Zahlbr.
On boulder; Diabli Kamięń Mt. (FG-1041), 1957, leg. T. Sulma (UGDA; Polakowska 2002).

Lecanora saligna (Schrad.) Zahlbr. s.l.

Historical data: Folusz – stream valley (FG-1041), Diabli Kamięń Mt. (FG-1041), 1954, leg. T. Sulma (UGDA; Polakowska 2002).

Lecanora semipallida H. Magn.
On sandstone and concrete. Collecting sites: 33, 42, 46, 50. (!)

Lecanora sulphurea (Hoffm.) Ach.
On boulder; Diabli Kamięń Mt. (FG-1041), 1936, leg. T. Sulma (UGDA; Polakowska 2002).

Lecanora symmicta (Ach.) Ach.
On wood and bark of deciduous trees. Collecting sites: 10, 11, 27, 39, 40.

Lecidella carpathica Körb.

Lecidella elaeochroma (Ach.) M. Choisy
On wood and bark of deciduous trees. Collecting sites: 10, 15, 16, 26, 34, 41, 46, 44, 47.

Historical data: Folusz – stream valley (FG-1041), 1957, leg. T. Sulma (UGDA; Polakowska 2002).

Lecidella flavosorediata (Vězda) Hertel & Leuckert
On bark of deciduous trees and fir. Collecting sites: 33, 44, 58.

Historical data: Diabli Kamięń Mt. (FG-1041), 1954, leg. T. Sulma (UGDA; Polakowska 2002); Świerzowa Ruska (FG-2003), Czarne near Nieznajowa (FG-2082), 1979, leg. J. Nowak (KRAM; Bielczyk 2003).

Note. A usually sterile, sorediate lichen, C+ orange due to the presence of xanthones (arthothelin, granulosin) in the thallus. It resembles some other species, often accompanying it, which show similar reactions (e.g., *Lecanora expallens*, *L. compallens*, *Lecidella subviridis*) but differs chemically (see, e.g., Purvis & James 2009). Sometimes it forms black, shimmering at least initially, margined apothecia. In the Polish Carpathians known from the Beskid Żywiecki Mts (Czarnota & Kukwa 2004), Gorce Mts (Czarnota 2010) and Tatras (Śliwa & Kukwa 2012), as well as the Góry Sanocko-Turczańskie Mts and Bieszczady Mts (Kościelniak & Kiszka 2003).
Certainly more frequent in this part of Poland than reported in the published data.

Lecidella scabra (Taylor) Hertel & Leuckert
On sandstone. Collecting site: 50. (!)

Lecidella stigmatea (Ach.) Hertel & Leuckert
On concrete, sandstone and granite post. Collecting sites: 41, 46, 50, 56.

Lecidella subviridis Tønsberg
On bark of sycamore and birch. Collecting sites: 1, 2. (!)

NOTE. A sorediate, yellowish-green lichen known in Poland only in its sterile form. The thallus contains xanthones (thiophanic acid, arthothelin, expallens unknown, which stain KC+ orange) and atranorin, which distinguish this species from several other species that are morphologically similar (e.g., *Lecidella flavosorediata*, *Lecanora compallens*, *Micarea viridileprosa*). Previously noted in the Polish Carpathians from the Gorce Mts, Babia Góra Massif and the Tatras (Czarnota & Kukwa 2004; Czarnota 2010, 2012; Śliwa & Kukwa 2012); definitely much more widespread. Also reported from the Eastern Carpathians in Romania (Ardelean *et al.* 2013).

Leimonis erratica (Körb.) R. C. Harris & Lendemer

Micarea erratica (Körb.) Hertel, Rambold & Pietschmann
On sandstone rocks. Collecting sites: 50, 51. (!)

Lepraria crassissima (Hue) Lettau

Lepraria eburnea J. R. Laundon
On concrete and bark of poplar. Collecting sites: 1, 50. (!)

Lepraria elobata Tønsberg
On bark of deciduous trees and fir, wood and sandstone boulders. Collecting sites: 1, 2, 5, 7, 8, 15, 17, 24, 27, 35, 38, 46, 42, 50, 52.

Lepraria finkii (de Lesd.) R. C. Harris
L. lobificans auct. non Nyl.
On bark of deciduous trees, epiphytic and epilithic bryophytes, wood, concrete and rock. Collecting sites: 1, 2, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 43, 44, 51, 53.

Lepraria incana (L.) Ach.
On bark of deciduous and coniferous trees, wood, rock and concrete. Collecting sites: 2, 6, 10, 13, 15, 17, 19, 25, 26, 29, 31, 34, 38.

Lepraria jackii Tønsberg
On bark of deciduous trees, fir and pine, on wood and boulder. Collecting sites: 6, 16, 17, 21, 31, 34, 38.

Lepraria membranacea (Dicks.) Vain.

Lepraria neglecta (Nyl.) Lettau

Lepraria caesioalba (B. de Lesd.) J. R. Laundon
On rock and on bark of fir. Collecting site: 2.

Lepraria rigida (B. de Lesd.) Tønsberg
On bark of deciduous trees and fir, on wood. Collecting sites: 10, 35, 42, 50.

Lepraria vouauxii (Hue) R. C. Harris
On bark of deciduous trees, on rock. Collecting sites: 2, 7, 10, 11, 27, 44, 46. (!)

Licea parasitica (Zukal) Martin

Biatora epixanthoides growing on bark of beech. Collecting site: 15. (!)

NOTE. A facultatively lichenicolous myxomycete. It is known from a few lowland sites in Poland (Czyżewska & Kukwa 2009) and was also
recorded from the Polish Carpathians but only in the Kotlina Orawsko-Nowotarska basin (Kukwa & Jabłońska 2008).

Lichenoconium erodens M. S. Christ. & D. Hawksw.

On *Lecanora conizaeoides* (thalli and apothecia) and on thalli of *Hypocenomyce scalaris*, *Hypogymnia physodes* and *Pseudevernia furfuracea* growing on bark of trees and on wood. Collecting sites: 2, 6, 8, 12, 37.

Lichenoconium lecanorae (Jaap) D. Hawksw.

On apothecia of *Lecanora conizaeoides* growing on bark of trees. Collecting sites: 1, 2, 6, 9, 10, 25, 34, 38.

Lichenodiplis lecanorae (Vouaux) Dyko & D. Hawksw.

On *Caloplaca* sp. growing on concrete. Collecting site: 50. (!)

Loxospora elatina (Ach.) A. Massal.

On bark of sycamore and pine. Collecting sites: 29, 34, (!)

Melanelixia glabratula (Lamy) Sandler & Arup

Melanohalea elegantula (Zahlbr.) O. Blanco, A. Crespo, Divakar, Essl., D. Hawksw. & Lumbsch

On bark of apple tree. Collecting site: 10.

Melanelixia exasperatula (Nyl.) O. Blanco, A. Crespo, Divakar, Essl., D. Hawksw. & Lumbsch

On bark of deciduous trees. Collecting sites: 26, 27, 28, 29, 30, 31, 33, 34, 56.

Menegazzia terebrata (Hoffm.) Körb.

Micarea botryoides (Nyl.) Coppins

On wood and in one locality on rock. Collecting sites: 2, 7, 8, 21, 29. (!)

Micarea denigrata (Fr.) Hedl.

Micarea lithinella (Nyl.) Hedl.

On small sandstone rocks and on boulder in forest. Collecting sites: 12, 38, 46, 47, 48. (!)

Micarea micrococa (Körb.) Gams ex Coppins

On bark of deciduous trees and fir, on wood. Collecting sites: 2, 7, 6, 8, 15, 17, 19, 21, 24, 26, 29, 48, 53, 54. (!)

Micarea misella (Nyl.) Hedl.

On wood. Collecting sites: 15, 51.

Historical data: Nieznajowa (FG-2073), 1979, leg. J. Nowak (KRAM; Czarnota 2007).

Micarea nitschkeana (Lahm ex Rabenh.) Harm.

On bark of ash. Collecting site: 53.

On small sandstone rocks and on larger rock. Collecting sites: 2, 47.

Micarea prasina Fr. s.l.

incl. *M. prasina* Fr. *s.str.*
On wood and bark of pine, on decayed fir. Collecting sites: 1, 2, 5, 6, 7, 9, 8, 15, 17, 19, 21, 24, 34, 35, 38, 47, 51, 52, 54.

Historical data: Cyrła Mt. NE slope (FG-2057), 1979, leg. J. Nowak (KRAM; Czarnota 2007).

Note. Because the majority of data come from notes taken in the field, the taxon is treated *sensu lato.*

Micarea viridileprosa Coppins & van den Boom
On sandstone rock. Collecting site: 2. (!)

Note. A sterile, sorediate species characterized by the presence of gyrophoric acid, the thallus of which gives a C+ red reaction. The species is widespread in Western Europe. So far recorded in the Polish Carpathians only in their western part, but in the Polish lowlands it is locally frequent at the base of pines in coniferous forests (Czarnota 2007). Recently also found in the Eastern Carpathians in Romania (Ardelean et al. 2013).

Monodictys epilepraria Kukwa & Diederich
On *Lepraria* cf. *incana* growing on sycamore. Collecting site: 38. (!)

Note. A representative of the lichenicolous hyphomycetes characterized by its small, brown, muriform, smooth-walled conidia developing on discolored patches of the host (*Lepraria* spp.). The species is relatively widespread in Poland, recorded from numerous lowland sites (Kukwa & Diederich 2005; Czyżewska & Kukwa 2009; Schievelbein et al. 2012; Kowalewska & Kukwa 2013; Kukwa et al. 2013) and mountain ranges including the Karkonosze Mts, Beskid Sądecki Mts, Gorce Mts, Babia Góra Massif and the Bieszczady Mts (Kukwa & Diederich 2005; Kukwa & Flakus 2009; Kukwa et al. 2010).

Montanelia disjuncta (Erichsen) Divakar, A. Crespo, Wedin & Essl.
Melanelia disjuncta (Erichsen) Essl.

Historical data: Diabli Kamięń Mt. (FG-1041), 1954, leg. T. Sulma (UGDA; Sulma, Faltynowicz 1988; Polakowska 2002).

Ochrolechia arborea (Kreyer) Almb.

Ochrolechia androgyna (Hoffm.) Arnold

Ochrolechia mucida (Pers.) R. H. Petersen
On decaying wood of fir. Collecting site: 47. (!)

Note. A lichenized fungus of the Basidiomycota, with an inconspicuous, thin, membrane-like thallus and club-shaped, white-cream basidiocarps up to ca 1 cm high. The fruiting bodies are ephemeral; probably this is why its distribution is poorly known. Reported from one locality in the Polish lowland (Czyżewska et al. 2005) and three localities in the Bieszczady Mts (Kościelniak 2013). Known from the Western Carpathians in Slovakia (Guttová & Palice 1999; Lisická 2005; Guttová et al. 2012) and the Eastern Carpathians in Ukraine (Vondrák et al. 2010a; Dymytrova et al. 2013).

Myccolacium subtile (Pers.) Szatala
On wood of fir. Collecting sites: 7, 24, 34.

Historical data: Nieznajowa (FG-2063), 1979, leg. J. Nowak (KRAM; Bielczyk 2003).

Mycomicrothelia confusa D. Hawksw.
On bark of alder. Collecting site: 35. (!)

Note. A species reported from a few localities in Europe (e.g., Hawksworth & Orange 2009). Although known from the Sudetes Mts from historical records (Faltynowicz 2003), it is new for the Polish Carpathians.

Nephroma parile (Ach.) Ach.
Habitat not given; Folusz – stream valley (FG-1041), 1955, leg. T. Sulma (UGDA; Polakowska 2002).

Normandina pulchella (Borrer) Nyl.
On bark of apple tree in abandoned orchard and on bark of willow by river. Collecting sites: 20, 44.

Historical data: Folusz – stream valley (FG-1041), 1955, leg. T. Sulma (UGDA; Faltynowicz 1999).

Ochrolechia androgyna (Hoffm.) Arnold

Ochrolechia arborea (Kreyer) Almb.
Ochrolechia microstictoides Räsänen

Opegrapha niveoatra (Borrer) J. R. Laundon
O. vulgata var. subsiderella Nyl.
On bark of sycamore. Collecting site: 38.

Opegrapha vermecellifera (Kunze) J. R. Laundon
On bark of beech and hornbeam; Nieznajowa (FG-2063), Las Słodki FG-2068, 1979, leg. J. Nowak (KRAM; Bielczyk 2003).

Parmelia omphalodes (L.) Ach.
On boulder. Collecting site: 2.

Parmelia saxatilis (L.) Ach. s.l.
On bark of deciduous trees, fir and pine, on rock. Collecting sites: 2, 10, 15, 16, 28, 31, 39.

Parmelia submontana Nádv. ex Hale
On bark of sycamore and beech, on boulder. Collecting site: 16.

Parmelia sulcata Taylor
Mainly on bark of deciduous trees and fir, rarely on wood and boulder. Collecting sites: 10, 11, 15, 16, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 50, 56, 58.

Peltigera didactyla (With.) J. R. Laundon
On soil; Folusz – stream valley (FG-1041), Diabli Kamień Mt. (FG-1041), 1936; leg. T. Sulma (UGDA; Polakowska 2002); Nieznajowa (FG-2073), 1985; leg. M. Choisy & Werner (KRAM; Bielczyk & Kozik 2009).

Parmelia tiliacea (Hoffm.) Hale
On bark of willow, beech and ash. Collecting site: 44.

Parmeliopsis ambiguа (Wulfen) Nyl.
On bark of deciduous trees, fir and pine. Collecting sites: 2, 10, 15, 16, 21, 34, 50, 56.

Peltigerid didactyla (Sommerf.) Zopf
On bryophytes growing on sandstone boulder. Collecting site: 54.

Peltigera praetextata (Sommerf.) Zopf
On soil; Folusz – stream valley (FG-1041), 1936; leg. T. Sulma (UGDA; Polakowska 2002).

Pertusaria albenscens (Huds.) M. Choisy & Werner
On bark of deciduous trees and fir. Collecting sites: 10, 15, 16, 17, 18, 33, 41.

Pertusaria amara (Ach.) Nyl.
On bark of deciduous trees and fir. Collecting sites: 9, 15, 16, 17, 18, 33, 41.

Pertusaria aspergilla (Ach.) J. R. Laundon
P. dealbescens auct.
On boulder; Diabli Kamię Mt. (FG-1041), 1955; leg. T. Sulma (UGDA; Polakowska 2002).
Pertusaria coccodes (Ach.) Nyl.

Pertusaria coronata (Ach.) Th. Fr.

Pertusaria leioplaca DC.
On bark of beech. Collecting sites: 22, 54.

Pertusaria ocellata Körb.
Substrate not given; Diabli Kamię Mt. (FG-1041), 1962, leg. T. Sulma (UGDA; Polakowska 2002).

Pertusaria pertusa (Weigel) Tuck.
On bark of beech and sycamore. Collecting sites: 16, 17, 19, 34.

Pertusaria pupillaris (Nyl.) Th. Fr.
On bark of fir; Diabli Kamię Mt. (FG-1041), 1962, leg. T. Sulma (UGDA; Polakowska 2002).

Phaeophyscia nigricans (Flörke) Moberg

Phaeophyscia orbicularis (Necker) Moberg

Phlyctis argena (Spreng.) Flot.
On bark of deciduous trees. Collecting sites: 10, 14, 15, 16, 17, 18, 19, 27, 31, 33, 34, 38, 39, 41, 44, 46, 50, 53, 56, 57, 58.

Physcia adscendens (Fr.) H. Olivier
On bark of deciduous trees, on wood and concrete. Collecting sites: 1, 10, 28, 33, 39, 41, 42, 46, 50, 56, 58.

Physcia aipolia (Ehrh. ex Humb.) Fümb.

Physcia caesia (Hoffm.) Fürnr.
On wood and concrete. Collecting sites: 33, 42.

Physcia dubia (Hoffm.) Lettau
On sandstone, on bark of deciduous trees. Collecting sites: 33, 34, 41, 56.

Historical data: Świerzowa Ruska (FG-2003), Wilsznia village (FG-2291), 1979, leg. J. Nowak (KRAM; Nowak 1993).

Physcia stellaris (L.) Nyl.
On bark of willow and poplar. Collecting site: 33.

Physcia tenella (Scop.) DC.
On bark of deciduous trees, on concrete. Collecting sites: 10, 20, 27, 28, 29, 33, 36, 38, 39, 41, 42, 50, 56, 57, 58.

Physconia distorta (With.) J. R. Laundon

Physconia enteroxantha (Nyl.) Poelt
On bark of deciduous trees. Collecting sites: 41, 50.

Physconia grisea (Lam.) Poelt

Physconia perisidiosa (Erichsen) Moberg
On bark of old willow; Nieznajowa (FG-2073), 1979, leg. J. Nowak (KRAM; Bielczyk & Kozik 2009).

Placynthiella dasaea (Stirt.) Tønsberg
On wood, humus and bark of trees. Collecting sites: 1, 2, 6, 7, 8, 15, 21, 27, 31, 35, 40, 41, 48, 51, 50.

Placynthiella icmalea (Ach.) Coppins & P. James
On wood, humus and bark of trees. Collecting sites: 2, 8, 14, 15, 16, 21, 31, 38, 40, 50, 56.
Historical data: Diabli Kamień Mt. (FG-1041), 1955, leg. T. Sulma (UGDA; Polakowska 2002).

Placynthiella uliginosa (Schrad.) Coppins & P. James
On decaying stumps; Diabli Kamień Mt. (FG-1041), 1955, leg. T. Sulma (UGDA; Polakowska 2002).

Platismatia glauca (L.) W. L. Culb. & C. F. Culb. On bark of pine, birch, ash and sycamore. Collecting sites: 15, 44.

Polycauliona candelaria (L.) Frödén, Arup & Söchting
Xanthoria candelaria (L.) Th. Fr.
On bark of ash. Collecting site: 41.

Polycauliona polycarpa (Hoffm.) Frödén, Arup & Söchting
Xanthoria polycarpa (Hoffm.) Rieber
On bark of deciduous trees, on wood. Collecting sites: 29, 33, 41, 44, 56, 57.

Polysporina simplex (Davies) Vězda
On sandstone boulder. Collecting site: 50.

Polysporina subfuscescens (Nyl.) K. Knudsen & Kocourk.

Polysporina lapponica auct. non (Schaer.) Degel
On sandstone boulder; Wilsznia village (FG-2291), 1979, leg. J. Nowak (KRAM).

Porina aenea (Wallr.) Zahlbr.
Pseudosagedia aenea (Wallr.) Hafellner & Kalb
On bark of deciduous trees and fir, on wood, in one locality on sandstone. Collecting sites: 2, 5, 7, 9, 12, 15, 16, 17, 18, 19, 22, 23, 24, 28, 34, 35, 38, 50, 52, 54.
Historical data: Krempna (FG-2151), 1979, leg. J. Nowak (KRAM; Bielczyk & Kozik 2009).

Porina chlorotica (Ach.) Müll. Arg.
Pseudosagedia chlorotica (Ach.) Hafellner & Kalb
On wet rocks and boulders. Collecting sites: 1, 3, 7, 9, 35, 50. (!)

Porpidia crustulata (Ach.) Hertel & Knoph
On sandstone rocks, boulders and pebbles. Collecting sites: 5, 10, 11, 17, 20, 33, 34, 47, 48, 51, 56, 57.
Historical data: Diabli Kamięń Mt. (FG-1041), 1954, leg. T. Sulma (UGDA; Polakowska 2002); Majdan Mt. (FG-1093), Krempna (FG-2140, 2151, 2152), 1979, leg. J. Nowak (KRAM; Bielczyk & Kozik 2009).

Porpidia macrocarpa (DC.) Hertel & A. J. Schwab.
On sandstone. Collecting sites: 5, 33.
Historical data: Kornuty Reserve (EG-1969) (Sulma 1936).

Porpidia soredizodes (Lamy ex Nyl.) J. R. Laundon
On sandstone. Collecting sites: 2, 6, 7, 12, 15, 40.
Historical data: Diabli Kamięń Mt. (FG-1041), 1954, leg. T. Sulma (UGDA; Polakowska 2002).

Porpidia tuberculosa (Sm.) Hertel & Knoph
On sandstone; Rostajne (FG-2074), 1979, leg. J. Nowak (KRAM; Bielczyk 2003; Bielczyk & Kozik 2009).
Protoblastenia rupestris (Scop.) J. Steiner

Protoparmelia badia (Hoffm.) Hafellner

Pseudevernia furfuracea (L.) Zopf
On bark of deciduous trees, pine and fir, less often on wood, on rock in one locality. Collecting sites: 2, 15, 16, 18, 19, 27, 29, 37, 39.

Pseudevernia rufescens (Pers.) Ertz & Tehler
On bark of beech; Kornuty Reserve (EG-1969) (Sulma 1936).

Psilolechia lucida (Ach.) M. Choisy
On sandstone boulder. Collecting site: 15. (!)

Punctelia jeckeri (Roum.) Kalb.
On willows by stream. Collecting site: 32. (!)

Punctelia subruducta (Nyl.) Krog

Pyrenula nitida (Weigel) Ach.
On bark of beech, hornbeam and sycamore. Collecting sites: 8, 9, 12, 15, 18, 19, 22, 23, 31, 34, 38, 46, 47, 52, 54.

Ramalina farinacea (L.) Ach.

Ramalina fastigiata (Pers.) Ach.

Ramalina fraxinea (L.) Ach.
On bark of sycamore. Collecting site: 41.

Ramalina obtusata (Arnold) Bitter

Ramalina pollinaria (Westr.) Ach.
On bark of beech; Diabli Kamięń Mt. (FG-1041), Kornuty Reserve (EG-1969), 1954, leg. T. Sulma (UGDA; Sulma 1936; Polakowska 2002).

Rhizocarpon badioatrum (Flörke ex Spreng.) Th. Fr.
On stones. Collecting sites: 33, 56.

Rhizocarpon geographicum (L.) DC.
On sandstone. Collecting site: 56.

Rhizocarpon grande (Flörke) Arnold
On boulder; Diabli Kamięń Mt. (FG-1041), 1954, leg. T. Sulma (UGDA; Polakowska 2002).

Rhizocarpon reductum Th. Fr.
Rhizocarpon obscuratum auct.
On sandstone. Collecting site: 56.

Rinodina exigua (Ach.) Gray
On bark of willow and alder. Collecting sites: 33, 56.

Rinodina griseosoralifera Coppins
On bark of apple tree. Collecting site: 39. (!)
Note. A corticolous, sterile species characterized by its blue-grey soralia and the presence of atranorin and zeorin in the thallus. *Buellia griseovirens* is another common corticolous species with a similar tinge of the soralia, but they appear yellowish when abraded and its thallus contains atranorin and norstictic acid as major secondary compounds (Coppins 1989). In Poland *Rinodina griseosoralifera* is known from the Gorce Mts (Czarnota & Kukwa 2007). Besides the Polish localities, for the whole Carpathian range it was recorded only in the Eastern Carpathians in Ukraine (Coppins et al. 2005).

Rinodina oleae Bagl.
R. gennarii Bagl.

Rusavskia elegans (Link) S. Y. Kondr. & Kärnefelt.
Xanthoria elegans (Link.) Th.Fr.

Sarcogyne regularis Körb.
On concrete and stones. Collecting sites: 4, 37, 41. (!)

Sarcosagium campestre var. *macrosporum* Coppins & P. James
On bark of elm and decaying stump of fir. Collecting site: 38.
HISTORICAL DATA: Świętwarzowa Mt. (FG-1074); Nieznajowa (FG-2073), 1979, *leg. J. Nowak* (KRAM; Bielczyk 2003).

Starea difformis (Fr.) Fr.
On resin on bark of larch. Collecting site: 1. (!)

Schaereria fuscocinerea (Nyl.) Clauzade & Cl. Roux
On rock. Collecting site: 2. (!)

Sclerophora nivea (Hoffm) Tibell

Scoliciosporum chlorococcum (Graewe ex Stenh.) Vězda
On bark of trees and bushes, rarely on wood. Collecting sites: 1, 2, 6, 10, 15, 16, 18, 21, 26, 27, 28, 31, 33, 34, 38, 41.

Scoliciosporum sarothamni (Vain.) Vězda
On bark of deciduous trees and larch. Collecting sites: 1, 5, 10, 36, 38, 44, 53. (!)

Scoliciosporum umbrinum (Ach.) Arnold
On sandstone. Collecting sites: 2, 17, 20, 50.

Stereocaulon vesuvianum Pers.

Stigmidium fuscae (Arnold) R. Sant.

Strangospora pinicola (A. Massal.) Körb.
On bark of sycamore and wood of pine. Collecting sites: 39, 40, 58. (!)

Tephromela atra (Huds.) Hafellner

Thelidium minutulum Körb.
On stone sprinkled with water. Collecting site: 40. (!)

Thelocarpon epibolum Nyl.
HISTORICAL DATA: Niedźwiedzie (FG-2180), 1979, *leg. J. Nowak* (KRAM; Bielczyk 2003).

Thelocarpon lichenicola (Fuckel) Poelt & Hafellner

Note. This species is known from the Western Beskid Mts (Bielczyk 2003) and Góry Sanocko-Turczańskie Mts (Kościelniak 2004). In the Beskid Niski Mts (but outside MNP) it was found in the vicinity of Jaśliska (KRAM, Bielczyk 2003).
Thelocarpon magnussonii G. Salisb.

Thelocarpon robustum Eitner

Thelopsis rubella Nyl.

Trapelia coarctata (Sm.) M. Choisy
On rock and sandstone. Collecting sites: 4, 5, 6, 7, 9, 13, 15, 17, 24, 31, 34, 36, 50, 51.

Trapelia glebulosa (Sm.) J. R. Laudon
Trapelia involuta (Taylor) Hertel
Historical data: Diabli Kamięń Mt. (FG-1041), 1955, *leg. T. Sulma* (UGDA; Polakowska 2002).

Trapelia obtegens (Th. Fr.) Hertel
On boulder in forest. Collecting site: 40. (!)

Trapelia placodioides Coppins & P. James
On rock, boulders, stones and gravestone. Collecting sites: 2, 7, 6, 5, 1, 9, 12, 17, 50.
Historical data: Żydowskie (FG-2089), 1979; *leg. J. Nowak* (KRAM; Bielczyk & Kozik 2009).

Trapeliopsis flexuosa (Fr.) Coppins & P. James
On wood and bark of trees, in one locality on boulder. Collecting sites: 1, 2, 13, 14, 15, 16, 26, 31, 34, 35, 36, 39, 50.
Historical data: Diabli Kamięń Mt. (FG-1041), 1957, *leg. T. Sulma* (UGDA; Polakowska 2002).

Trapeliopsis granulosa (Hoffm.) Lumbsch
On soil, bark of pine, wood. Collecting sites: 15, 19, 56.

Trapeliopsis pseudogranulosa Coppins & P. James
On soil, humus and rock waste. Collecting sites: 14, 15.

Trapeliopsis viridescens (Schrad.) Coppins & P. James

Tremella cladoniae Diederich & M. S. Christ.
On thalli of Cladonia coniocraea growing on bark of hawthorn, on Cladonia chlorophaea on bark of ash. Collecting site: 10. (!)

Tremella phaeophysciae Diederich & M. S. Christ.

Umbilicaria deusta (L.) Baumg.

Umbilicaria hirsuta (Sw. ex Westr.) Hoffm.

Usnea fulvoreagens (Räsänen) Räsänen

Usnea hirta (L.) Weber ex F. H. Wigg.
On wooden fence. Collecting site: 41.

Usnea intermedia (A. Massal.) Jatta
U. faginea Mot.

Usnea sp.
On bark of linden. Collecting site: 42.
Note. Identification of the species requires laboratory studies but the genus is legally protected; a sample could not be taken.

Usnea wasmuthii Räsänen

Varicellaria hemisphaerica (Flörke) Schmitt & Lumbsch

Pertusaria hemisphaerica (Flörke) Erichsen

On bark of fir, sycamore and beech. Collecting sites: 29, 31, 34.

Varicellaria lactea (L.) Schmitt & Lumbsch

Pertusaria lactea (L.) Arnold

Verrucaria acrotella Ach.

On boulder. Collecting site: 20. (!)

Note. This species is poorly distinguished due to its uncertain systematic status (Krzewicka 2012); so far it is unrecorded in the Polish Carpathians. It is known from the Western Carpathians in Slovakia (Bielczyk et al. 2004) and the Eastern Carpathians in Ukraine and Romania (Kondratyuk et al. 2003).

Verrucaria aquatilis Mudd

On boulder sprinkled with water. Collecting site: 40.

Historical data: Świerzowa Ruska (FG-2003), Nieznajowa (FG-2063); Rostajne (FG-2075); Czarne near Nieznajowa (FG-2082); Żydowskie (FG-2099); Krempna, by Wisłoka (FG-2152); Ostryszne near Krempna (FG-2153); Huta Krempska (FG-2162); Polany (FG-2186); Olchowiec, by Wilsznia river (FG-2199), 1979, *leg. J. Nowak* (KRAM; Krzewicka 2009).

Verrucaria dolosa Hepp

On stones and concrete. Collecting sites: 33, 57.

Verrucaria elaeina Borrer

Verrucaria elaeomelaena (A. Massal.) Arnold

Historical data: Huta Krempska (FG-2162), 1979, *leg. J. Nowak* (KRAM; Krzewicka 2009).

Verrucaria hydrophila Orange

V. denudata Zschacke, *V. hydrela* auct.

On rock by water and on wet stones. Collecting sites: 7, 50.

Verrucaria latebrosa Körb.

Verrucaria margacea (Wahlenb.) Wahlenb.

Verrucaria muralis Ach.

On concrete and boulder. Collecting sites: 5, 15, 33, 46.

Verrucaria murina Leight.

V. myriocarpa Hepp.

Historical data: Huta Krempska (FG-2162), Ciechania (FG-3121), 1979, *leg. J. Nowak* (KRAM; Krzewicka 2009).

Verrucaria nigrescens Pers.

On concrete and stones. Collecting sites: 33, 43.
Historical data: Ciechania (FG-3121), 1979, leg. J. Nowak (KRAM; Krzewicka 2009).

Verrucaria obfuscans Nyl.

Verrucaria policensis Servít
On stone by road. Collecting site: 33. (!)

Note. A species poorly known in Europe, reported only from the Czech Republic and Poland (Wyżyna Krakowsko-Częstochowska and Wyżyna Woźnicko-Wieluńska uplands) (Krzewicka 2012). The species is new for the Carpathians.

Verrucaria praetemissae (Trevisan) Anzi
On sandstone rock and boulder by stream, on wet stones and concrete. Collecting sites: 1, 4, 7, 12, 20, 40, 46, 50, 53.

Verrucaria sublobulata Eitner ex Servít
On wet sandstone and concrete. Collecting site: 35.

Historical data: Żydowskie (FG-2097), 1979, leg. J. Nowak (KRAM; Krzewicka 2009).

Verrucaria submersella Servít
On stones in stream, on boulder and concrete. Collecting sites: 1, 11, 46.

Verrucaria tectorum (A. Massal.) Körb.
On concrete. Collecting site: 33. (!)

Verrucaria viridula (Schrad.) Ach.
On stone. Collecting site: 5.

Violella fucata (Stirt.) T. Sprib.
Mycoblastus fucatus (Stirt.) Zahlbr.
On bark of maple and sycamore. Collecting sites: 31, 34, 58.

Historical data: on bark of fir; Diabli Kamię Mt. (FG-1041), 1957, leg. T. Sulma (UGDA; Polakowska 2002).

Vouauxiella lichenicola (Linds.) Petr. & Syd.
On *Lecanora pulicaris* (thallus and apothecia) growing on apple tree. Collecting site: 39. (!)

Vouauxiomyces truncatus (B. de Lesd.) Dyko & D. Hawksw.

Vulpicida pinastris (Scop.) J.-E. Mattsson & M. J. Lai

Xanthoparmelia conspersa (Ach.) Hale
On sandstone. Collecting site: 2.

Historical data: Diabli Kamię Mt. (FG-1041), 1955, leg. T. Sulma (UGDA; Polakowska 2002); Rostajne (FG-2074), 1979, leg. J. Nowak (KRAM; Bielczyk & Kozik 2009).

Xanthoparmelia loxodes (Nyl.) O. Blanco, A. Crespo, Elix, D. Hawksw. & Lumbsch
Neofuscelia loxodes (Nyl.) Essl.

Xanthoria parietina (L.) Th. Fr.
On bark of deciduous trees and on concrete. Collecting sites: 11, 27, 28, 29, 46.

Xylographa parallela (Ach.: Fr.) Behlen & Desberger
X. abietina (Pers.) Zahlbr.
On decaying stump; Rostajne (FG-2074), 1979, leg. J. Nowak (KRAM).

Xylopsora caradocensis (Leight. ex Nyl.) Bendiksby & Timdal
Hypocenomyce caradocensis (Leight. ex Nyl.) P. James & Goth. Schneid.
On bark of fir and beech, on wood. Collecting sites: 15, 16, 17, 44.

Historical data: Skarpoty (FG-2079), 1979, leg.
J. Nowak (KRAM; Biełczyk 2003; Biełczyk & Kozik 2009).

Zwackhia viridis (Ach.) Poetsch & Schied.
Opegrapha viridis (Ach.) Beihlen & Desberger
On bark of beech; Folusz – stream valley (FG-1041), 1957, leg. T. Sulma (UGDA; Polakowska 2002).

DISCUSSION

The number of species of lichens and allied fungi reported from Magurski National Park, 337, is significant though lower than in other Carpathian national parks, for example Gorce National Park (Czarnota 2010) or Bieszczady National Park (Kościelniak 2013). The lower diversity of the lichen biota there is connected with natural conditions such as the low elevation of the hills and the low variability of geological substrate, including the absence of limestone. It should be noted, however, that lichenological research in the Beskid Niski Mts was not as comprehensive as in the two national parks mentioned.

As a result of the 2009 fieldwork, 112 species were reported as new for MNP, including 75 new for the Beskid Niski range; these include (1) species recently described as new to science, (2) rather inconspicuous species easily overlooked in the field, and (3) species that require the application of modern methods for their identification. Of the newly reported taxa, 15 species are fungi allied with lichens, which in recent years have been a subject of more intensive lichenological research.

The presented results enrich our knowledge of the species diversity and distribution of lichens not only in the Carpathians but also in Poland. Two lichenicolous fungi, Intralichen lichenicola and Burgoa angulosa, are reported here as new for Poland and indeed for the Carpathians; both species are known from only a few localities in Europe (Hawksworth & Cole 2002; Diederich & Lawrey 2007). The record of Verrucaria policensis from the vicinity of Nieznajowa is new for the Carpathians; it is poorly known in Europe and recorded only from the Czech Republic and Poland (Wyżyna Woźnicka and Wyżyna Olkuska uplands) (Krzewicka 2012). Fuscidea arboricola is new for the Western Carpathians; it is known from a few localities in the Eastern Carpathians in Slovakia, Ukraine (Kondratyuk et al. 2003; Coppins et al. 2005) and Romania (Ardelean et al. 2013), so its locality on Kamień Mt. extends its western range. Halecántia viridescens, a species so far reported only from the north of Poland (Kukwa & Jabłońska 2009; Schiefelbein et al. 2012), is newly recorded for the Polish Carpathians, as is Mycomicrothelia confusa, a species known in Poland only from 19th-century reports from the Sudetes (Fältynowicz 2003). Epigloeá urosperma, a lichenicolous fungus, has its second locality in the Carpathians, in addition to Babia Góra Massif (Czarnota & Hernik 2013). Rinodina griseosoralifera is a species known in Poland only from the Gorce Mts (Czarnota & Kukwa 2007) and in the Carpathians only from its eastern part situated in Ukraine (Coppins et al. 2005). Other very rare species in Poland recorded for the second time in the Polish Carpathians are Absconditella pauxilla, a species found in one locality in the Tatras (Czarnota 2012); Collema crispum, known from the Góry Słonne Mts (Kiszka & Piórecki 1992); and Licea parasitica, collected in the Kotlina Orawsko-Nowotarska basin (Kukwa & Jabłońska 2008).

Two species of a small group of lichenicolous basidiomycetes deserve attention. Dictyocatenulata alba was found in a shady Dentario glandulosae-Fagetum community in two localities: stream valleys of Baranie and Olchowczyk. Previously it was known only from the Gorce Mts in Poland, besides the Western Carpathians in Slovakia and the Eastern Carpathians in Slovakia and Ukraine (Diederich et al. 2008). The other species, Multiclavula mucida, had been reported from only one locality in the Polish lowland (Czyżewska et al. 2005) and three localities in the Bieszczady Mts (Kościelniak 2013).

The lichenological importance of Magurski National Park is emphasized by the presence of some rare and interesting species, eight of which are under strict legal protection (Montanellia disjuncta, Normandina pulchella, Parmelia omphalodes, P. submontana, Parmelina tiliaecea, Peltigera praetextata, Punctelia jeckeri, Ramalina fraxinea) and four of which are under partial
The process of nature protection adopted in MNP (Szafranski 2009) gives some positive perspective for the development of favorable conditions for lichens in the future. Unfortunately, the process of lichen impoverishment which has intensified since the mid 20th century can also be observed in MNP. At present, 94 species reported by T. Sulma from MNP in the 1930s, 1950s and 1960s and by J. Nowak in the 1960s and 1970s have not been refound. The number includes species with tiny, inconspicuous thalli, which may have been overlooked, but mainly these are rare species, such as Cryptodiscus gloeocapsa, Thelopsis rubella, Thelocarpon magnussonii and lichenicolous fungi. The fact that others were not refound may be due to confusion resulting from their external similarity to other

<table>
<thead>
<tr>
<th>Threat category</th>
<th>Name of species</th>
<th>Number of species</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Present</td>
<td>Bacidina egenula</td>
</tr>
<tr>
<td></td>
<td>Not confirmed</td>
<td>Bryoria capillaris, Chrysobothrix candelaris, Evernia divaricata, E. mesomorpha, Gyrolea ulmi, Menegazzia terebrata, Nephroma parile, Usnea fulvareagens, U. intermedia, U. wasmannii</td>
</tr>
<tr>
<td>EN</td>
<td>Present</td>
<td>Arthoniaatra, Bacidia subincompta, Chaenotheca brunncolea, Ch. phaeocephala, Ch. stemonea, Cladonia caespiticia, Cl. parasitica, Loxospora elatina, Normandinapulchella, Parmelia omphalodes, Ramalina fraxinea</td>
</tr>
<tr>
<td></td>
<td>Not confirmed</td>
<td>Anaptychia ciliaria, Caloplaeca cerinella, Flavoparmelia caperata, Lecanora albella, Opegrapha vermicellifera, Physconia distorta, Ramalina fastigiata, R. obtusata, R. strigillosa, Thelopsis aquatilis, V. hydrophila, V. viridula</td>
</tr>
<tr>
<td>VU</td>
<td>Present</td>
<td>Acrocodia gemmata, Bacidia rubella, Biatora efflorescens, Calicium viride, Chaenothecaxylloena, Hydropunctaria rhetrophicola, Melanohalea eleganta, Montanelladisjuncta, Ochrolechia androgynea, Opegrapha niveoatra, Parmelia submontana, Parmelina tiliaeae, Peltigera praetextata, Pyrenula nitida, Rhizocarponhadioatrum, Rinodina exigua, Umbilicarhiirsuta, Usnea hirta, Varicellaria hemisphaerica, Verrucaria aquatilis, V. hydrophila, V. viridula</td>
</tr>
<tr>
<td></td>
<td>Not confirmed</td>
<td>Aspicilla laevata, Caloplaeca cerinella, Cetraria chlorophylla, C. islandica, Cladoniamacroceras, Cryptodictus gloeocapsa, Diploschistes gypsaceus, Lecanora sulphurea, Ochrolechia arborescens, Opegrapha rufescens, Pertusaria aspergilla, P. coronata, P. pertusa, Punctelia subrubredacta, Ramalina farinacea, R. pollinaria, Stereocaulon vesuvianum, Verrucaria margacea, Zwackhia viridis</td>
</tr>
<tr>
<td>NT</td>
<td>Present</td>
<td>Alyssoria varia, Arthothelium ruanum, Bacidina arnoldiana, Chaenotheca furfuracea, Ch. trichialis, Dibaeis baeomyces Evernia prunastri, Graphis scripta, Hypogymnia tubulosa, Lecidella scavra, Leimoniaerratica, Thelidium minutulum, T. praetemissaria, Valpicipasini</td>
</tr>
<tr>
<td></td>
<td>Not confirmed</td>
<td>Acaeospora umbilicata, Pertusaria cocodes, P. leioplaca, P. pupillaris, Physcia aipolia, Polysporina subsufuscens, Protoparmelia badia, Tephromelaatra, Thelopsis viridescens</td>
</tr>
<tr>
<td>LC</td>
<td>Present</td>
<td>Porpidia macrourca, Psilolechia lucida, Strangospora pinicola, Thelocarpon epibulum</td>
</tr>
<tr>
<td></td>
<td>Not confirmed</td>
<td>Umbilicaria deusta, Varicellaria lactea</td>
</tr>
<tr>
<td>DD</td>
<td>Present</td>
<td>Lecanora persimilis, Punctelia jeckeri, Schaeria fuscoscineae, Verrucaria murina, V. subhobulata</td>
</tr>
<tr>
<td></td>
<td>Not confirmed</td>
<td>Cladonia macrophyllodes, Ionaspis ceracea, Thelocarpon robustum, Thelopsis rubella</td>
</tr>
</tbody>
</table>
species, as in the case of *Verrucaria elaeina*, which is likely to be confused with *V. muralis*. However, many previously reported lichens, especially epiphytic and wood-inhabiting species, should now be considered extinct or at least very rare; 56 of them are red-listed in Poland (e.g., *Anaptychia ciliaris*, *Bryoria capillaris*, *Chrysothrix candelaris*, *Evernia divaricata*, *E. mesomorpha*, *Flavoparmelia caperata*, *Lecanora albella*, *Menegazzia terebrata*, *Nephroma parile*, *Punctelia subrudecta*, *Usnea fulvoreagens*, *U. intermedia*, *U. wasmuthii*) (Table 1). These species are particularly sensitive to all kinds of habitat disturbances, especially air pollution, which is considered the main reason for their extinction. Another factor responsible for the elimination of some species could be changed light conditions in localities formerly rich in lichens, as for example Diabli Kamień rock, where two saxicolous species, *Stereocaulon vesuvianum* and *Umbilicaria deusta*, became extinct.

Anthropogenic factors do not always have a negative impact on lichen biota. Many species in MNP occur frequently or exclusively in secondary habitats such as abandoned villages where epiphytic lichens grow on walls of old churches, graveyards, outbuildings and old bridges. This group includes *Acarospora moenium*, *Lecanora crenulata*, *L. hagenii*, *Lecidella stigmatic*, *Rinodina oleae*, *Rusavskia elagans* and *Trapelia placodioides*, as well as representatives of the genera *Caloplaca* and *Verrucaria*. Among the numerous epiphytes recorded on single trees, the following are worth mentioning: *Alyxia varia*, *Artotheca atrata*, *Biatora chrysanthina* and *Normandina pulchella*. These species are usually confined to forest habitats but they are also found in old orchards or groves in churchyards, etc. Colonization of forest lichen species in anthropogenic habitats as a result of habitat restoration is well documented in the Bieszczady Mts, a region neighboring the Beskid Niski Mts (Kościelniak 2004, 2013).

On the basis of the presented results, we conclude that Magurski National Park is of great lichenological importance and worthy of protection. Its incorporation into the European Natura 2000 network as the Ostroja Magurska habitat refuge contributes to the preservation of lichen diversity and protection of critical species, especially those sensitive to human impacts. As a consequence of environmental improvement, some species that have disappeared from MNP can be expected to return.

Acknowledgements. We are grateful to the management and staff of Magurski National Park for their kind assistance and involvement in the organization of the 24th Meeting of Polish Lichenologists, as well as their help with the field research, Mark R. D. Seaward and the anonymous reviewer for helpful comments and corrections of the manuscript, and Paul Diedrich (Luxembourg) for identifying *Burgora angulosa*. The study was supported from statutory fund of the W. Szafer Institute of Botany, Polish Academy of Sciences.

References

