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Abstract – The calculation of the friction factor involved in the Darcy-Weisbach 

equation has a key role in the accurate assessment of distributed head losses. For the 

turbulent flow regime, this friction factor was mathematically expressed in the form 

of the Colebrook-White (C-W) equation, widely accepted by engineers and scientists. 

Nevertheless, the C-W equation is an implicit one and must be solved using numerical 

methods. This is a major disadvantage for the average engineer, who always prefers 

an explicit equation which could be easily integrated into his familiar spreadsheet 

environment. The present paper is investigating some of the most used explicit 

alternatives to the C-W equation, with respect to several case scenarios taken from 

typical Building Services hydraulic calculations. 
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1. INTRODUCTION 
 

Linear friction losses generated by fluid flow under pressure in closed pipes are 

calculated by the Darcy-Weisbach equation: 
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where hr - distributed friction losses, in m; λ - Darcy friction factor, dimensionless; D 

- internal diameter of the pipe, in m;  L - pipe length, in m; V - average velocity across the 

pipe section, in m/s; g - gravitational acceleration, in m/s
2
. 

The key issue here is the friction factor λ, which is a function of Reynolds number, 

relative roughness and flow regime: 
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where k / D - relative roughness of the pipe, dimensionless; Re - Reynolds number, 

dimensionless;  
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where υ - kinematic viscosity of the fluid, in m
2
/s. 
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The Colebrook-White (C-W) equation for the friction factor, published in 1939, was 

widely accepted by engineers and scientists as very appropriate for describing the measured 

data: 
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It is recommended to be used for the entire domain of turbulent flows, covering the 

whole range of Reynolds numbers and relative roughnesses. But there is a problem: this 

equation is implicit and must be solved by iterative methods. That was a major disadvantage 

and since the average engineer was not at all happy to apply numerical analysis techniques, 

the need for simple, explicit equations (to avoid C-W) was huge. As a result, over the years, 

the quest for C-W alternatives was intense. Tradition played an important role, though. For 

example, traditionally Romanian hydraulics books [1],[2],[4] recommended Altshul’s 

equation as an explicit, very simple way to compute the friction factor: 
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Is it the best solution? Why not investigate other alternatives? 

During the last decades, many authors have proposed their own explicit equations, 

more or less complicated [5], trying to obtain good approximations for C-W equation over 

the whole range of Reynolds numbers and relative roughnesses: 

 

 Wood (1966) - for 4000<Re<5·10
7
 and 0.00001<k/D<0.04 
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 Swamee-Jain (1976) - for 5000<Re<10
8
 and 0.000001<k/D<0.05 

2

9010

745

73
2





















.Re

.

.

D/k
log

                                                                                 (7) 

 

 Chen (1979) - for 4000<Re<4·10
8
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 Zigrang-Sylvester (1982) - for 4000<Re<10
8
 and 0.00004<k/D<0.05 
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 Haaland (1983) - for 4000<Re<10
8
 and 0.000001<k/D<0.05 
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 Manadilli (1997) - for 4000<Re<10
8
 and 0<k/D<0.05 
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 Fang (2011) - for 3000<Re<10
8
 and 0<k/D<0.05 
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 Papaevangelou, Evangelides, Tzimopoulos (2010) [3] - for 4000<Re<10
8
 

and 0.000001<k/D<0.05 
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This selection is definitely not exhaustive, there are more complex and elaborated 

approaches, involving more than one equation, but promising better accuracy. 

Many engineers are now facing a difficult choice and may ask themselves several 

questions about these alternatives: 

-What is the degree of precision of these equations? 

-Which is the most reliable?  

-Why are so many alternatives needed? 

-How difficult is to “invent” such a formula? 

-Which equation works best for a Building Services engineer, in his real-life projects 

and hydraulic calculations? 

 

2. METHOD DESCRIPTION 

 

In order to answer all these questions, it is first necessary to investigate the entire set 

of equations, i.e. from (5) to (13) in comparison with (4), over the whole range of Reynolds 

numbers and relative roughnesses. 

The relative error δ of all these approximate formulas with respect to the C-W 

equation will be calculated as follows: 

 

100
WC

WC 







           [%]                                                                                       (14) 

 

A total number of 645 testing points were used, generated by 15 relative 

roughness values combined with 43 Reynolds numbers (presented separately in Table 1 

and Table 2), covering a range 4000<Re<10
8
 and 0.000001<k/D<0.05: 

 

Table 1. Relative roughness values used to check the accuracy of various equations 

0.000001 0.00001 0.0001 0.001 0.01 

0.000003 0.00003 0.0003 0.003 0.03 

0.000007 0.00007 0.0007 0.007 0.05 
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Table 2. Reynolds number values used to check the accuracy of various equations 

 10000 100000 1000000 10000000 100000000 

 20000 200000 2000000 20000000  

 30000 300000 3000000 30000000  

4000 40000 400000 4000000 40000000  

5000 50000 500000 5000000 50000000  

6000 60000 600000 6000000 60000000  

7000 70000 700000 7000000 70000000  

8000 80000 800000 8000000 80000000  

9000 90000 900000 9000000 90000000  

 

For each of these 645 testing points, a λ value was calculated following each of the 9 

equations in discussion, then the relative error to C-W formula was determined, using (14). 

A MS Excel spreadsheet was used in order to make all the friction factor calculations, 

comparisons and finally draw the conclusions. The implicit C-W equation was solved using 

the Newton-Raphson numerical method, implemented into a dedicated Visual Basic for 

Applications macro. 

 

3. RESULTS AND SIGNIFICANCES 

 

3.1. Main comparison 

 

The obtained results are very interesting and are subject to raise more questions and 

investigation. Table 3 shows the results in a concise form, based on maximum (positive and 

negative) relative error for the 9 explicit approximations of the C-W equation. 

 

Table 3. Maximum (+/-) relative error for the 9 explicit equations  

compared to the C-W formula in 645 points 

Number/name 

of the explicit equation 

Max. positive 

relative error 

[%] 

Max. negative 

relative error 

[%] 

(5) Altshul 38.424 -2.673 

(6) Wood 28.234 -6.241 

(7) Swamee-Jain 0.703 -3.412 

(8) Chen 0.315 -0.360 

(9) Zigrang-Sylvester 3.189 -0.125 

(10) Haaland 1.403 -1.291 

(11) Manadilli - -2.812 

(12) Fang 0.411 -0.600 

(13) Papaevangelou et al. 0.697 -0.616 

 

It can be seen that Altshul and Wood equations have obtained poor results and can be 

eliminated from the competition. 

Chen has surprisingly good results for such an old equation, Fang is performing 

excellent too, Manadilli is constantly overestimating C-W (the relative error is never 

positive) and finally, Haaland is not too bad for such a simple equation. 

The winner seems to be (8) Chen, at least based on the 645 testing points… 
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Is this verdict rock solid? 

Not really, because it seems that each equation has a “weak spot” where unexpected 

things can happen, i.e. locally the relative error can present a dangerous spike, even though 

in the rest of the range the results remain good. Relative error interpretation shows that 

these abnormal regions are found for some equations at low Re and small k/D values, but 

for others in the middle ranges, so there is no general rule to follow. 

 

3.2. Testing some real-life hydraulic calculations for Building Services projects 

 

As mentioned before, for a Building Services engineer it is important to know what 

equation will give the best results in the case of the usual, daily-basis pipe hydraulic 

calculations. 

In order to select the best equation, several scenarios were investigated: 

 

a) Copper pipe, small diameters ranging from 10x1 to 267x3 mm, cold water, fluid 

velocity of 0.7 m/s (Table 4) 

 

Table 4. Maximum (+/-) relative error for the 9 explicit equations  

compared to the C-W formula –scenario a) 

Number/name 

of the explicit equation 

Max. positive 

relative error 

[%] 

Max. negative 

relative error 

[%] 

(5) Altshul 2.506 -2.514 

(6) Wood 2.054 -1.514 

(7) Swamee-Jain 0.598 -1.697 

(8) Chen 0.179 -0.153 

(9) Zigrang-Sylvester 0.752 - 

(10) Haaland 1.121 -0.755 

(11) Manadilli - -0.276 

(12) Fang 0.114 -0.117 

(13) Papaevangelou et al. 0.107 -0.226 

 

It seems that Altshul and Wood are still performing bad and take last places, but their 

performance is technically acceptable if we consider a 5% relative error in Building 

Services Engineering design projects as common. 

Fang is the winner here, closely followed by Chen and Papaevangelou et al. 

Zigrang-Sylvester is constantly underestimating C-W in this situation. 

 

b) Copper pipe, small diameters ranging from 10x1 to 267x3 mm, cold water, fluid 

velocity of 2 m/s (Table 5) 

Changing only water velocity from the previous case is quickly affecting the results: 

the winner is (13). 

Chen and Manadilli are overestimating, while Haaland and Fang are underestimating 

C-W by a small margin. Altshul is going worse than before, but Wood has better results. 
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Table 5. Maximum (+/-) relative error for the 9 explicit equations  

compared to the C-W formula – scenario b) 

Number/name  

of the explicit equation 

Max. positive 

relative error 

[%] 

Max. negative 

relative error 

[%] 

(5) Altshul 7.476 -2.201 

(6) Wood 1.169 -0.077 

(7) Swamee-Jain 0.426 -0.579 

(8) Chen - -0.223 

(9) Zigrang-Sylvester 1.187 0.473 

(10) Haaland 1.295 - 

(11) Manadilli - -0.493 

(12) Fang 0.213 - 

(13) Papaevangelou et al. 0.062 -0.154 

 

c) Glassfiber reinforced plastic (GRP) pipe, big diameters ranging from 168x6 to 

2555x57 mm, cold water, fluid velocity of 1 m/s (Table 6) 

 

Table 6. Maximum (+/-) relative error for the 9 explicit equations  

compared to the C-W formula – scenario c) 

Number/name 

of the explicit equation 

Max. positive 

relative error 

[%] 

Max. negative 

relative error 

[%] 

(5) Altshul 16.857 - 

(6) Wood 1.984 -0.860 

(7) Swamee-Jain 0.294 -0.053 

(8) Chen - -0.232 

(9) Zigrang-Sylvester 0.832 - 

(10) Haaland 1.356 - 

(11) Manadilli - -0.349 

(12) Fang 0.207 - 

(13) Papaevangelou et al. 0.048 -0.097 

 

Modifying pipe material and going to big diameters in water distribution networks 

brought some rank changes: Papaevangelou et al. is the absolute leader now, followed by 

Fang and Chen, then Swamee-Jain and Manadilli. Zigrang-Sylvester, Haaland and Wood 

are still good below 2%, but Altshul is performing unexpectedly bad. 

 

d) Glassfiber reinforced plastic (GRP) pipe, big diameters ranging from 168x6 to 

2555x57 mm, cold water, fluid velocity of 4 m/s (Table 7) 

 

Table 7. Maximum (+/-) relative error for the 9 explicit equations  

compared to the C-W formula – scenario d) 

Number/name 

of the explicit equation 

Max. positive 

relative error 

[%] 

Max. negative 

relative error 

[%] 

(5) Altshul 22.991 - 

(6) Wood - -4.129 
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(7) Swamee-Jain - -0.613 

(8) Chen - -0.309 

(9) Zigrang-Sylvester 0.969 - 

(10) Haaland 1.147 - 

(11) Manadilli - -0.637 

(12) Fang 0.366 - 

(13) Papaevangelou et al. - -0.326 

 

This time the results are providing two different sets of equations: the underestimating 

set, where the leader is Fang, and the overestimating set, where the leader is Chen, closely 

followed by (13). Both sets give very good results, excepting Wood and Altshul. Altshul 

performs very badly and is clearly the last again. 

 

3.3. Is the quest over? 

 

No, not at all. It seems that the appetite for discovering new formulas is still present. 

So, after all, how difficult can be to propose a new explicit equation as a viable 

alternative to C-W? 

From a mathematical point of view, it is necessary to find a function of two 

independent variables, applying a nonlinear regression over a very large number of points, 

in order to increase precision. In fact, the friction factor equation spatially represents a 

surface covering the entire range of Re and k/D values. Therefore, having available 645 

testing points, why not use a software to perform the two variable nonlinear regression? 

The good news is that nowadays such software is freely available. And sometimes 

even online, for example at zunzun.com. This site offers surface fitting for 3D data, with a 

rich set of statistics and plots, generating PDF file output and even source code in various 

programming languages. 

After loading all the 645 3D points as an ASCII file, the pyeq3 genetic algorithm 

behind the Python-powered site suggested the following best fitting formula (a 

Polyfunctional), with a correlation coefficient of 0.99132: 

 

   ln(Re)D/kbln(Re)a  2                                                                            (15) 

where a = 2.4573190804602487E+00 and b = 1.7806050776768417E-02.  

 

But the joy was short-lived when the relative error plot was examined (Fig. 1), as 

extreme +20% and -13% relative errors are not acceptable. It may be noticed that a huge 

cloud of δ points is situated outside the ±5% limits; therefore this equation is not a winner. 
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Fig. 1. Relative error distribution for the best ranked by ZunZun fitting equation 

 

If the automatic Function Finder is not able to find something better from the existing 

database of implemented equations, it is possible to try a user-defined equation. This is a 

tempting option, so the next attempt was to propose the finding of an equation with a 

structure very close to Haaland’s: 
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where the calculated constants (by ZunZun) were a = 1.8013979695915863E+00 and 

b = 6.9374584478235786E+00, which are very close to the “original” values from (10). 

The correlation coefficient is a very good one, 0.9999707 and the relative error distribution 

is consistent with the values from Table 3. 

 

4. CONCLUSIONS 

 

This paper is making an overview of the most used alternatives to the Colebrook-

White equation, analyzing their mathematical accuracy along the whole range of Reynolds 

numbers and relative roughnesses. Testing these equations within the framework of some 

specific Building Services hydraulic calculations demonstrated that there is no absolute 

“winner” for all scenarios. The good news is that all explicit equations performed quite 

well, with the exception of Altshul’s, which was a real dissapointment and should be 

avoided (despite the tradition). Wood’s behaviour was not at all remarkable, either. 

While the discussed scenarios are by no means exhaustive, these results may however 

be used by Building Services engineers as guidance if they want to avoid iterative 

calculations. 

Furthermore, it was demonstrated that using the latest available free software tools, an 

engineer can invent or propose an empirical explicit equation based on a sufficient large 
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number of points. However, those “out of the hat” equations should be carefully checked 

and fine-tuned in order to have a chance to challenge the “classics” in terms of precision. 

Well-preparing a user-defined function may bring some new and precise equations in 

the future, so the quest is still on. 
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