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Introduction 

A multiphase fl ow meter is a single standing device 
or a combination of various tools, which quanti-
fi es the volumetric fl ow rates of water, oil, and gas 
phases separately in a multiphase fl uid stream. In 
a multiphase fl uid pipeline, the pattern of fl ow is 
unknown; practically, we must deal with an indis-
tinctive pattern of a three-phase fl ow with varying 
volumetric fractions of the phases [1, 2]. Measuring 
the multiphase fl ow by means of phase separation 
is not always feasible [3]. Gamma densitometry is 
a helpful method in this context; however, as the 
fl uid fl ow regime becomes intermittent or annular, 
the measurement accuracy falls considerably. Tra-
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Abstract. Multiphase fl ow meters are used to measure the water-liquid ratio (WLR) and void fraction in a mul-
tiphase fl uid stream pipeline. In the present study, a system of multiphase fl ow measurement has been designed 
by application of three thallium-doped sodium iodide scintillators and a radioactive source of 133Ba simulated 
by Monte Carlo N-particle (MCNP) transport code. In order to capture radiations passing across the pipe, two 
direct detectors have been installed on opposite sides of the radioactive source. Another detector has been placed 
perpendicular to the transmission beam emitted from the 133Ba source to receive radiations scattered from the fl uid 
fl ow. Simulation was done by the MCNP code for different volumetric fractions of water, oil, and gas phases for 
two types of fl ow regimes, namely, homogeneous and annular; training and validation data have been provided 
for the artifi cial neural network (ANN) to develop a computation model for pattern recognition. Depending 
on applications of the neural system, several structures of ANNs are used in the current paper to model the 
fl ow measurement relations, while the detector outputs are considered as the input parameters of the neural 
networks. The fi rst, second, and third structures benefi t from two, three, and fi ve multilayer perceptron neural 
networks, respectively. Increasing the number of ANNs makes the system more complicated and decreases the 
available data; however, it increases the accuracy of estimation of WLR and gas void fraction. According to the 
results, the maximum relative difference was observed in the scattering detector. It was clear that transmission 
detectors would demonstrate the difference between the fl ow regimes as well. It is necessary to note that the 
error calculated by the MCNP simulator is <0.5% for the direct detectors (TR1 and TR2). Due to the difference 
between the data of the two fl ow regimes and the errors of data in the simulation codes of the MCNP, it was 
possible to separate these fl ow regimes. The effect of changing WLR on the effi ciency for a constant void fraction 
confi rms a considerable variance in the results of annular and homogeneous fl ows occurring in the scattering 
detector. There is a similar trend for the void fraction; hence, one can easily distinguish changes in effi ciency 
due to the WLR. Analysis of the simulation results revealed that in the proposed structure of the multiphase 
fl ow meter and the computation model used for simulation, the two fl ow regimes are simply distinguishable. 
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ditional gamma densitometry includes inserting 
a detector opposite a high-energy source (cesium) 
to measure the volumetric fractions. Furthermore, 
it is necessary to use double- or multiple-energy 
sources, which requires sensitive detectors. Another 
method described involves installing multiple detec-
tors opposite the source so that volumetric fractions 
of the phases and the fl ow regime are evaluated by 
measuring the attenuation rates at each individual 
detector. This is done by placing a collimator oppo-
site the source and the detectors so that they only 
capture the attenuated energies, not the dispersed 
ones. The main phenomena occurring during gamma 
attenuation are the photoelectric and Compton ef-
fects. The Compton effect is a function of the fl uid 
density, and the photoelectric phenomenon, which 
is dominant at lower energy levels, strongly depends 
on the atomic number of the material, so that gamma 
ray attenuation is exponentially proportional to four 
or fi ve times the atomic number of the material; 
hence, as water salinity increases, chlorine – with 
its high atomic number – intensifi es the attenuation 
rate and leads to signifi cant errors in estimations. 

In two-phase fl ux measurement systems, the 
pipeline wall and the fl owing fl uid would absorb 
gamma rays. The source and the detectors are placed 
on opposite sides of the cross section of the pipe. 
The collimator rectifi es the beams alongside the 
diameter of the pipe. Figure 1 illustrates the layout 
of the source and the detector [4]. 

The problems with the size, as well as the in-
stallation and maintenance costs, of conventional 
multiphase flow meters – which measure each 
single-phase fl ow after separation of the phases by 
multiphase separators – increase the attention given 
to new methods of fl ow metering. In this regard, the 
fl ow-metering method called gamma ray densitom-
etry, which is based on gamma ray attenuation, has 
become very popular recently. Gamma ray densitom-
etry has been used successfully in multiphase fl ow 
measurement and well-monitoring applications in 
the oil and gas industry [5, 6]. The degree of gamma 
ray attenuation in multiphase fl ow metering depends 
on the density and the adsorption coeffi cient as the 
inherent characteristics of the material through 
which the gamma ray passes, the distance that the 
gamma ray passes, and the gamma ray wavelength. 

Precise multiphase flow measurement using 
gamma ray densitometry depends on accurate fl ow 
regime identifi cation. Identifi cation of fl ow regimes 
in operational conditions is a diffi cult task in the 

fl ow measurement process. On the other hand, 
identifying the fl ow regimes has a great importance 
in multiphase transportation, especially in offshore 
petroleum exploitation. Thus, fi nding a system that 
can reduce the complication of fl ow regime identifi -
cation and provide precise prediction of the volume 
fraction of each phase has been one of the major 
concerns of researchers in recent years [7]. 

Nazemi et al. [8] applied the radial basis function 
(RBF), the artifi cial neural network (ANN), and the 
broad beam gamma ray attenuation technique for the 
identifi cation of the fl ow regime and measurement 
of the void fraction (VF) under two-phase fl ow con-
dition. They used Monte Carlo simulation to provide 
training and test data for the neural network. The 
results of their study indicate that ANN can be used 
for precise prediction of the volume fraction and 
identifi cation of the fl ow regime in a two-phase fl ow. 

Collimators are used basically to prevent the ab-
sorption of unfavourable radiations at the detectors. 
Nevertheless, complete prevention is not practicable 
[2]. Johansen and Jackson used a detector Dt and 
a receiver Ds in their assembly to measure and 
compare the absorbed energy for their volumetric 
analysis. Formerly, the gas void fraction (GVF) was 
evaluated by placing a detector opposite a high-
-energy source such as Cs and recording the ab-
sorbed energy [9]. 

(1)

where Imix is the energy intensity of the multiphase 
fl uid, Igas and Iliquid are the energy intensities when 
the pipe’s cross-sectional area is full of gas and water, 
respectively. Later, they combined two detectors in a 
model called dual densitometer (DMD) (Fig. 2) [9]. 

Detector Ds is set somewhere between the source 
and Dt. In order to see the Compton effect at detec-
tor Ds, a source in which both the Compton effect 
and the photoelectric phenomenon are dominant 
must be used; hence, it is not practical to use Cs as 
the source because its energy is very high and the 
effect of the photoelectric phenomenon is very weak. 
Therefore, americium of 122 millicurie (mCi) radia-
tion level was used as the source, in which both the 
Compton effect and the photoelectric phenomenon 
are dominant. To measure the intensity at the de-
tectors, they used an apparatus containing multiple 
receivers at various angles (Fig. 3). 

A collimator was used for the detector Dt to 
reduce the buildup factor. For the detector Ds, 
two methods could be applied: either ignoring 

Fig. 1. Schematics of the source and the detector. Fig. 2. DMD with two detectors. 

 
 

mix liquid

gas liquid

ln /
GVF

ln /

I I

I I




21Design and simulation of a multienergy gamma ray absorptiometry system for multiphase fl ow...

the collimator to optimize the numeration, or us-
ing collimators to reduce the scattering effects. In 
order to conduct the experiment, the source was 
irradiated under 15° and 54°, called narrow and 
wide radiations, respectively [9]. CdZnTe (CZT) 
detectors with dimensions of 12 × 12 × 12 mm 
are strong deterrents to measure energy intensity. 
The Ds detectors were held at 45°, 90°, and 135° 
angles. Two fl ow regimes were investigated, namely, 

homogeneous and annular fl ows. As was expected, 
at 135° angle, the detectors Dt and Ds showed the 
maximum and minimum sensitivities, respectively. 
Using a wide radiation range increased the measure-
ment area at the pipe and provided helpful informa-
tion about the fl ow regime. The authors defi ned a 
correlation to calculate the ratio of energy intensity 
at detector Dt to that at detector Ds; it becomes a 
constant ratio, R. 

(2) 

where R is a function of the gas volumetric fraction 
and is independent of water salinity. The value of 
n is approximately 0.55; however, it depends on 
the geometrical confi guration [9]. In a research in 
1993, a single-energy 137Cs source and a sodium 
iodide detector were used in a 9.525 mm two-phase 
(liquid-gas) pipeline to determine the fl ow regimes. 
For multiphase fl ow analysis, a Ge-Li detector and 
multiple-energy gamma ray sources of cobalt-57 
(122 keV) and barium-133 (365 keV) were set 
on a pipeline of 0.1 m diameter [2]. Later, in 
another research project, two sources of 137Cs 

(662 keV) and americium-241 (59.5 keV), as well 
as a sodium iodide detector, were used [9]. A 
research project was conducted at the University 
of Bergen (Norway), in which the arrangements 
shown in Figs. 4 and 5 were used to evaluate 
the phase fractions [10]. A CZT semiconduc-
tor detector was used in that research. The area 
of each of the detectors of this array was 1 cm2. 
A CsI (Na) two-phase detector, with dimensions of 
13 × 38 mm, was used for fl ow regime determina-
tion. Americium-241 was set as the source (Fig. 4). 

The geometry of the system comprises the fol-
lowing (Fig. 6):
 – a radioactive barium-133 source of 10 mCi ra-

dioactivity; 
 – three 1-inch NaI(Tl) horizontally installed scintil-

lation detectors on the pipe’s cross-sectional plane; 
 – a 2 inch vertically aligned pipeline carrying water, 

oil, and gas. 

s
n
T

I
R

I
Fig. 3. DMD densitometry: multiple receivers at various 

angles. 

Fig. 4. Schematics of the measurement system at the 
University of Bergen. 

Fig. 6. The general geometry of the measurement system: hydrocarbon content inside tube (red section), tube steel wall 
(green narrow ring surrounding hydrocarbon section), epoxy wall (blue ring surrounding steel wall), NaI cylindrical 
scintillation detectors (blue sections), as well as lead shields and collimators (orange sections). 

Fig. 5. Two-detector array of the University of Bergen. 
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Materials and methods 

Conventional fl ow patterns

In the present project, two conventional fl ow pat-
terns, namely, homogeneous and annular fl ows, 
were simulated. Densities of water, oil, and gas 
were assumed to be 1.1, 0.85, and 0.05 g/cm3. The 
gas phase was CH4, and water was pure H2O. 
The constitutive elements of the oil phase were 
hydrogen, carbon, oxygen, nitrogen, and sulphur. 
 – Homogeneous pattern: the three phases (water, 

oil, and gas) were mixed homogeneously. 
 – Annular pattern: the gas was assumed to be the 

carrier phase passing axially through the middle 
of the pipeline. Oil and water formed a homoge-
neous thin fi lm around the perimeter of the pipe, 
surrounding the gas phase. 

Estimation of fl ow type and the WLR fraction using 
ANNs 

Artifi cial neural networks (ANNs) constitute a con-
ventional technique for the classifi cation and analysis 
of data. Processing various data in the ANNs may 
yield helpful information about the system; hence, 
data adjustment plays a signifi cant role in their ap-
plication [11–14]. An ANN is defi ned as an input-
-output system in which hidden layers do the re-
quired processes. Therefore, all of the output systems 
with an ANN structure are composed of the following 
constituents: 
 – input layer: including independent variables 

vector; 
 – hidden layers: including operator functions, input 

data processing neurons; 
 – output layer: including estimation of the target 

variable vector. 
Figure 7 illustrates a simple ANN with a single 

hidden layer. 
Training refers to evaluation of the coeffi cients 

or setting their weights in the networks. The goal 
is to minimize the sum of the squared errors, i.e., 
minimizing the difference between the real data and 
the calculated output of the ANNs. 

Data p oints are classifi ed into three categories. 
The fi rst class of data is used for training the network. 
The second class is a measure of the validation. Pro-
vided that the ANN verifi es the validation steps, the 
third class of data is used to assess the performance 
of the network and calculate its error [15]. 

For fl ow metering purposes, multilayer percep-
tron neural networks are being mostly used. This 

type of networks is composed of neurons in mul-
tiple layers usually correlated with a feed-forward 
algorithm. Often a sigmoid function is used as the 
transfer function. It has a continuous derivative, al-
lows for a backpropagation algorithm, and is simply 
differentiable. 

(3) 

(4) 

There are various well-known methods for train-
ing the ANNs. The backpropagation algorithm is 
a popular practical training technique to minimize 
errors [16]. 

In the current paper, the multilayer perceptron 
and Levenberg-Marquardt (1978) training algo-
rithms were used [17]. Depending on the number 
of ANNs and their corresponding structures, differ-
ent operations were followed. The following would 
represent the three main structures and their simula-
tion results (Fig. 8). All of the three structures use 
a single independent ANN to recognize the fl ow 
regime [14]. Results confi rmed that this ANN was 
capable of making estimations with 100% accuracy. 

Different structures of the ANNs 

The fi rst structure consisted of an ANN for fl ow 
regime identifi cation and another network for esti-
mation of the GVF and the water-liquid ratio (WLR). 

g

Fig. 7. Simple ANNs with a single hidden layer.
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Fig. 8. Schematic representation of (a) fi rst structure, (b) 
second structure, and (c) third structure of the ANNs for 
fl ow regime identifi cation and VF and WLR estimation. 
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The second structure was made up of an ANN 
for determination of the fl ow regime, a network for 
estimation of the GVF, and another one for evalu-
ation of WLR. 

The third structure consisted of five ANNs. 
One for fl ow regime recognition; then, for each of 
the fl ow regimes, there were two ANNs for evalua-
tion of the VF and WLR, respectively. 

There were 209 data points generated by the 
Monte Carlo N-particle (MCNP) transport simula-
tor software. In the fi rst structure, 147 data points 
(70%) were used for training the ANNs and 31 (15%) 
for validation purpose to avoid overfi tting. Further, 
31 data points (15%) were used for evaluation of the 
network performance and calculation of errors. For 
the other structures, 167 data points (80%) were taken 
for training and 21 (10%) for validation to avoid over-
fi tting problems. Finally, 21 data points (10%) were 
used to analyse the results and fi nd the estimation 
errors. It is important to note that patterns contain-
ing only one material (e.g., 100% air) were removed 
from the training set because they represent the same 
fl ow regime and might expose the ANNs to deviation. 

Inputs to the ANNs w ere the following: 
1. The number of counts at the fi rst detector (TR1) 

for four different ranges of energy. 
2.  The number of counts at the second detector 

(TR2) for four different ranges of energy. 
3.  The total number of counts at the scattering 

detector (total SCA). 
Outputs of the ANNs were as follows: 

1.  For the ANN th  at recognizes the fl ow regime, 
the output could be either zero or one. 

2.  For ANNs that evaluate the VF and WLR, the 
outputs are equal to the estimates of the target 
value for the corresponding input data. 
Overall, nine inputs are given to each of the 

networks. The outputs of the ANNs for fl ow regime 
identifi cation are simply a single digit: either ‘1’ if 
the fl ow is annular, or ‘0’ if the fl ow is homogeneous. 

Mean squared error (MSE) and/or root mean 
squared error (RMSE) was used to evaluate the 
simulation accuracy of the networks. 

(5) 

(6) 

As was mentioned formerly, one could observe 
that ANNs having those nine inputs were able to 
recognize the flow regime with 100% accuracy 
(Fig. 9). The structures and their results are de-
scribed in the “Results and discussion” section. 

Results and discussion 

Effects of fl ow regime on results

The variances in the results for homogeneous and 
annular fl ows with 10% VF and 0% WLR are given 
in Table 1. 

According to Table 1, the maximum relative dif-
ference was observed in the scattering detector. It 
was clear that other detectors would demonstrate 
the difference between the fl ow regimes as well. It 
is necessary to note that the error calculated by the 
MCNP simulator is <0.5% for the direct detectors 
(TR1 and TR2). Due to the difference between 
the data of the two fl ow regimes and the errors of 
the data in the simulation codes of the MCNP, it was 
possible to separate these fl ow regimes. 

The effect of change in the WLR on the effi ciency 
for a constant VF of 10% is shown in Fig. 10. The 
numbers confi rm a considerable variance in the re-
sults of annular and homogeneous fl ows occurring 
in the scattering detector. There is a similar trend for 
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Fig. 9. The confusion matrix for fl ow regime recognition. 

Table 1. Variance in the results 

% Variance in different regimes (VF  10%, WLR  0%)

Energy (keV) TR1 TR2 SCA
  81 17.96632 3.729679 –
276 12.45799 2.988704 –
303 11.80512 2.783990 –
356 11.36379 2.321706 –
384 10.52108 1.992711 –
  20–60     9.413337 4.399542 –
  60–100 14.52055 4.014705 –
100–300     8.135009 4.181744 –
Above 300 10.70055 2.209990 –
Total 10.02833 3.550210 9.234494

Fig. 10. Effect of changing fl ow regimes on effi ciency due 
to variations of WLR for VF  10%. 
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other VFs; hence, one can easily distinguish changes 
in effi ciency due to the WLR. 

Analysis of the simulation results revealed that 
the two fl ow regimes are simply detectable. Furthera-
more, there is a considerable variance in the results, 
which simplifi es fl ow regime recognition. 

First structure 

For ANNs with the fi rst structure, there were two 
outputs. One of them showed the VF and another 
one showed the WLR, indicating that two neurons 
were established at the output layer and nine at the 
input layer. 

Simulation results of the fi rst structure are given 
in Figs. 11 and 12. 

Based on the fi gures, RMSE on the test data set 
for VF estimation is about 0.54. The correlation 
between the outputs of the ANNs and the targets 
is very close.

Diagrams of the WLR measurements are pre-
sented in Fig. 12. 

As shown in the diagrams, the RMSE value for 
the test data used in the estimation of the WLR is 
about 2.8. The outputs of the ANN and the target 
values are compared in Table 2. 

Second structure 

In the second structure, three ANNs were consid-
ered for making estimations. A network was set 
in charge of the fl ow regime determination; the 
other two networks with nine input neurons and 
one output neuron were organized to calculate the 
volumetric fractions and WLR values. 

Fig. 12. First structure: (a) total data for estimation of 
WLR; (b) validation data for estimation of WLR. 

(b) 

Fig. 11. First structure: (a) total data for estimation of 
VF; (b) validation data for VF estimation; (c) test data 
for VF estimation. 

(a)

(b)

(c)

(a) 
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Results of the simulation for VF calculation are 
shown in Fig. 13 and Table 3. 

According to the diagrams of the test data, the 
RMSE is equal to 0.29, and in the worst case, the 
error value approaches 1%. Meanwhile, the cor-
relation between the inputs and the outputs is very 
close to unity. In a histogram of accuracy, the error 
is negligible; in fact, it approaches zero. Results 
confi rmed the generalized and effi cient performance 
of the ANNs. 

Simulation results of the estimation of WLR are 
illustrated in Fig. 14 and Table 3. 

Based on the diagrams, the RMSE for the test 
data in the estimation of WLR is 1.8, and the er-
ror is <5% in the worst scenario. There is a very 
strong correlation between input and output data; 
meanwhile, in the histogram, the error is very close 
to zero. It was expected that the estimation error 
in the evaluation of WLR will be higher than that 
for VFs because the densities of water and oil are 
much closer compared with a water-air two-phase 
system; hence, the capability for generalization of 
the networks was diminished. 

Figures 13 and 14 show the outputs of ANNs 
and the target values. 

Third structure 

As was formerly described, fi ve ANNs are used 
in the third structure: one ANN is used to recognize 
the fl ow regime, and the others are used to evalu-

 Table 2. Comparison of test outputs (ANN results) with 
test targets (MCNP results) during VF and WLR estima-
tion in the fi rst structure of ANNs 

WLRVF

Test outputs 
(2)

Test targets 
(2)

Test outputs 
(1)

Test targets 
(1)

–0.86  070.2270
    0.07  089.7090
    9.01  530.8130
    8.97  550.3650
    9.281039.9840

18.191550.1350
16.601560.1660
15.001579.9380
20.782020.0820
20.202079.9280
29.103019.8020
28.493029.8730
36.113510.5210
35.493570.2770
35.403580.2980
40.454039.9440
41.234070.2370
39.294080.1680
44.904529.9530
45.954550.3850
46.424560.2060
45.154590.2290
48.4850  8.7110

–10.37  0–0.44  0
    0.24  070.2470
    2.09  080.2380

20.972569.6370
35.2030  0.52  0
44.354050.7350
51.3550  7.9110
45.995080.2180

Fig. 13. Second structure: (a) total data for estimation of 
VF; (b) validation data for estimation of the VF; (c) test 
data for estimation of the VF.

(a)

(b)

(c)
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ate the VF and WLR for either of the fl ow patterns 
(homogeneous or annular). 

For the homogeneous fl ow regime, there were 
totally 110 data points: 10% (11 data points) were 
used for validation, 10% for test, and 80% (88 data 
points) for training. 

Results of the simulation for estimation of the VF 
in homogeneous fl ow conditions are shown in Fig. 15. 

(a)

(b)

(c)

Fig. 14 . Second structure: (a) total data for estimation of 
WLR; (b) validation data for estimation of WLR; (c) test 
data for estimation of WLR. 

Table 3. Comparison of test outputs (ANN results) and 
test targets (MCNP results) for VF and WLR estimation 
in the second structure of ANNs 

  WLRVF

Test outputsTest targetsTest outputsTest targets
  9.171070.7570
15.751579.9980
20.9620  9.8910
30.183050.0250
36.2735  9.6110
39.184019.8120
40.014059.9960
45.154590.0790
  0.61  049.8750
  8.10  570.1170
  6.20  580.1380
  9.8610  9.7910
14.391559.8460
14.781549.7850
24.192049.8350
23.422589.8790
24.892549.7750
36.703570.0570
47.035040.9140
45.785079.8980
47.255059.8560

 Table 4. Comparison of test outputs (ANN results) and 
test targets (MCNP results) for estimation of the VF 
and the WLR for a homogeneous fl ow regime in the third 
structure of ANNs 

WLRVF

Test outputsTest targetsTest outputsTest targets
–0.05  070.0670
–0.62  050.0350
10.00  559.8960
19.582059.8860
20.902090.2290
19.3820–0.69  0
24.052521.1820
29.7530  9.3810
46.104529.3130
49.155049.3850
49.335089.9290

Table 5. Comparison of test outputs (ANN results) and 
test targets (MCNP results) for estimation of the VF 
and the WLR for annular fl ow regime in the third structure 
of ANNs 

WLRVF

Test outputsTest targetsTest outputsTest targets
  3.68  560.1960
  9.721090.0690
25.702550.0850
34.673530.0330
33.423580.0080
35.523520.1020
39.774050.0250
40.074060.0860
49.9350  9.9710
46.975039.9540
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According to the diagrams, the RMSE for the 
test data is about 0.54; the total error would be 1.5 
in the worst conditions. As was described formerly, 
an independent ANN is set to estimate the WLR in 
the system. 

Based on the fi gures, the RMSE of the test data 
is 1.65; the error would be not >5 in the worst case. 
Table 4 demonstrates the test outputs and the target 
outputs. 

As was described formerly, two independent 
ANNs were organized to estimate the VF and the 
WLR. There were a total of 99 data points; 10% 
(10 inputs) were taken for validation, 10% for the 
test, and 80% (79 data) for training. 

Results of the simulation for annular fl ow are 
shown in Fig. 16. 

According to the diagrams, the RMSE for test 
data in annular fl ow is 0.08. The correlation between 
outputs and targets is very close to one. The error 
approaches 2.0 for the worst case. 

Results of the simulation for estimation of the 
WLR in annular fl ow are shown in Fig. 16. 

According to the fi gures, the RMSE of the test 
data for estimation of the WLR in annular fl ow is 
1.2; the error is <3% in the worst scenario. The 
histogram of accuracy illustrates that the error is 
very much close to zero over a wide range of data. 
The results are given in Table 5. 

Conclusion 

The values of WLR and VF are key parameters in 
multiphase fl ow meters. Designing and manufactur-
ing a multiphase fl ow meter requires complex com-
putation models to measure these parameters from 
among a set of parameters obtained from measure-
ment sensors and gages. Nuclear multiphase fl ow 
meters are the most effi cient types of fl ow meters 
utilized in petroleum industries for oil/water/gas 
fl ows. A system of multiphase fl ow measurement 
was designed by application of three thallium-doped 
sodium iodide scintillators and a radioactive source 
of 133Ba installed on a plane spanning the cross sec-
tion of a vertically aligned pipe carrying the three 
phases of oil, water, and gas. The proposed setup 
was simulated using the MCNP code. Transmission 
and scattering detectors gather data from the irra-
diation of the cross section of a pipe for different 
volumetric fractions of water, oil, and gas phases 
for the two most commonly occurring types of 
fl ow regimes, namely, homogeneous and annular; 
different structures of ANNs were developed to 
receive detector data as input parameters and give 
the fl ow regime, VF, and WLR as outputs. The mul-
tilayer perceptron neural network was selected to 
be trained by the Levenberg-Marquardt algorithm 
due to its effi ciency. 

The results showed that increasing the number 
of ANNs makes the system more complicated and 

Fig. 15. Third structure/homogeneous fl ow regime: (a) validation data for estimation of the VF; (b) test data for esti-
mation of the VFs; (c) validation data for estimation of WLR; (d) test data for estimation of WLR. 

(a)

(c)

(b)

(d)
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decreases the available data; however, this increases 
the accuracy of estimation of the WLR and the GVF 
(see Table 6). According to the results, the maximum 
relative difference was observed in the scattering 
detector. It was clear that transmission detectors 
would demonstrate the difference between the fl ow 
regimes as well. It is necessary to note that the er-
ror calculated by the MCNP simulator is <0.5% 
for the direct detectors (TR1 and TR2). Due to the 
difference between the data of the two fl ow regimes 
and the errors of data in the simulation codes of 
the MCNP, it was possible to separate these fl ow 
regimes. The effect of changing WLR on the ef-
fi ciency for a constant VF confi rms a considerable 
variance in the results for annular and homogeneous 
fl ows occurring in the scattering detector. There is a 
similar trend for the VF; hence, one can easily dis-
tinguish the changes in effi ciency due to the WLR. 
Analysis of the simulation results revealed that in 
the proposed structure of the multiphase fl ow meter 

and the computation model used for simulation, the 
two fl ow regimes are simply distinguishable. 

Since the available data are limited, we would 
have fewer data points to train each network, which, 
in fact, is harmful to the training process and affects 
the generalization capability of the system. Although 
the fi rst structure provided lower accuracy, it gener-
ally was more reliable. It was trained by much more 
variant data. Other structures benefi ted from extra 
layers to reduce relative errors, but it led to the 
lack of training data, and hence, the generalization 
capability decreased. Each of the structures should 
be used depending on the application. 
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