
10.2478/v10048-008-0017-8
MEASUREMENT SCIENCE REVIEW, Volume 8, Section 3, No. 3, 2008

 65

Application of Wireless Sensor Networks to Automobiles

Jorge Tavares, Fernando J. Velez, João M. Ferro

Instituto de Telecomunicações, DEM - Universidade da Beira Interior, Calçada Fonte do Lameiro, 6201-001 Covilhã, Portugal

e-mail: jorgemstavares@gmail.com, fjv@ubi.pt, joaomferro@gmail.com

Some applications of Wireless Sensor Networks (WSNs) to the automobile are identified, and the use of Crossbow MICAz motes
operating at 2.4 GHz is considered together with TinyOS support. These WSNs are conceived in order to measure, process and supply
to the user diverse types of information during an automobile journey. Examples are acceleration and fuel consumption, identification
of incorrect tire pressure, verification of illumination, and evaluation of the vital signals of the driver. A brief survey on WSNs
concepts is presented, as well as the way the wireless sensor network itself was developed. Calibration curves were produced which
allowed for obtaining luminous intensity and temperature values in the appropriate units. Aspects of the definition of the architecture
and the choice/implementation of the protocols are identified. Security aspects are also addressed.

Keywords: wireless sensor networks, applications, MICAz motes, automobile, architectures, protocols

1. INTRODUCTION

OWADAYS, the need to collect, interpret and act on
real-time data gains increasing interest. However, to
collect data using typical wired sensor networks has

always been expensive, owing to installation and maintenance
costs, and is limited in its range.

Although past wireless measurement solutions have been
elusive, the spreading of the use of wireless sensor networks
(WSNs) is in fast development. WSN is a term used to
describe an emerging class of embedded communication
products that provide redundant, fault-tolerant wireless
connections between sensors, actuators and controllers. The
large amount of research projects in this area allows for the
existence of better tiny hardware devices with reduced
cost/size, and improvements in software performance. WSNs
are typically formed by groups of several sensor nodes, the so-
called motes, whose individual constitution is based on
actually combining sensor radios and CPUs into an effective
robust, secure and flexible network, with low power
consumption and advanced communication and computation
capabilities, one or more sensors, a communication device
(typically a radio), a microcontroller (with memory) and a
power supply (battery). Its applications include industry,
atmosphere monitoring, and defence, among others. Besides
instrumentation concepts, WSNs involve aspects of wireless
communications, networks architectures, and protocols.

Due to technological innovations in the area of wireless
communications, digital electronics, and personal micro-
electromechanical systems, a revolution is occurring in the
area of measurement with remote wireless sensors [1]. In
particular, WSNs are characterised by a high amount of sensor
nodes with multi-hop communication capabilities. These tiny
sensors can be spread inside the environment to be monitored
or close to it, with positions that are not pre-determined.
Indeed, they are set randomly as wireless sensors can be

dropped onto places with difficult access from helicopters or
airplanes [1]. These motes exchange messages among each
other in order to efficiently monitor an environment/process,
and operate while balancing the trade-off between low energy
consumption and the need to fulfil the assigned tasks.

The application of wireless sensor networks to the
automobile constitutes a challenge to be faced in this
endeavour; we conceived a wireless sensor system capable to
collect, process and supply several types of technical
information (to the user) during an automobile journey. The
examples are acceleration and fuel consumption, identification
of wrong tires pressure value, acknowledgment of
illumination failures (turn lights, brake lights, front lights, and
register plate lights), and determination of the vital signals of
the driver. We chose Crossbow MICAz sensors operating at
2.4GHz (IEEE 802.15.4), and supported by TinyOS. The
concepts and the wireless sensor network itself
(transmitter/receiver/ interface board) are explained, and
aspects of the architecture, and of the implementation of the
protocols itself are established. Security aspects are also
addressed, and the power consumption issues are discussed.

Section 2 discusses some characteristics of WSNs and
their applications to automobile industry, security services,
military, environment, and medicine. In Section 3, routing
protocols are briefly discussed, security aspects and
imperfections are presented, and energy consumption issues
are addressed. In Section 4 the use of TinyDB is discussed.
Section 5 presents the various components, e.g., flow, tyre
pressure, light, acceleration, temperature, heart beat
frequency, and blood pressure sensors. Relevant results are
presented, e.g., for luminous intensity, temperature and
arterial pressure, where the discussion includes the production
of the calibration curves. Finally, conclusions are presented in
Section 6.

N

MEASUREMENT SCIENCE REVIEW, Volume 8, Section 3, No. 3, 2008

66

2. CHARACTERISTICS AND APPLICATIONS

At the University of California, Berkeley, an open code
operative system was developed for WSNs with the support of
Intel, called TinyOS, which demands little memory (about
8 kb). As an example of the application of TinyOS, it is a
worth noting that it is already being used by Crossbow to trace
automobile parts in industrial environment [1]. Some
examples of possible applications of WSNs follow:

Automobile applications – a modern automobile has about
8km of cables to connect hundreds of sensors [1]. WSNs
allow not only to reduce the volume and weight required by
the cabling, but also the deployment of sensors with more
freedom.

Safety applications - one of the applications sought for
domestic use falls in the area of safety. The distribution of
temperature and movement sensors along the house allows the
detection of fires and intrusions. Besides, it can supervise and
control children's and elderly people’s movements within the
house.

Industrial applications - WSNs can be designed and
implemented by taking the specificities of each type of
industry into account, and several applications can be
identified in this framework. WSNs are capable to monitor the
quality of the air, and the temperature of a building or on an
oven. Besides, it controls the produced goods, the complex
machinery set, and the conditions of the production system of
a certain factory or a group of factories.

Military applications – nowadays, military applications of
wireless sensors are quite common, mainly because it is
difficult to deploy a communication infrastructure in the
theatre of operation, e.g., in a battlefield. The installation of a
centralised infrastructure, apart from being time consuming,
would become a vulnerable network solution (because the
destruction of the central node would totally put an end to the
entire network).

Medical applications – WSNs are used to form a so called
Body Area Network (BAN), which consists of several sensors
placed close to the human body measuring signals such as
heart beat rate or breathe rate.

3. ROUTING, SECURITY AND ENERGY CONSUMPTION

There are several protocols in the context of TinyOS. As
an example, the TinyOS Beaconing is a protocol used in Mica
Motes (wireless sensor nodes) at the University of Berkeley,
and operates within networks with restricted hardware [1].
The protocol periodically builds the Minimum Spanning Tree
starting from the Base Station. The Base Station propagates
the message (beacon call) that is spread through the network
with the objective of creating the routing tree. As it is a simple
and general protocol, its performance is lower than the one of
protocols developed for specific applications.

In terms of security, spoofing is the attempt to change or
repeat the direction of information by a malicious node [1]. As

a consequence, the information may enter into a loop, and
never arrive to the sink, because it will continuously be routed
through the same set of nodes, causing energy wasting (to
send and to receive data).

TinySec is the TinyOS cryptography layer, and offers
authenticity, integrity and confidence [1]. Actually, TinySec
just offers the cryptography of symmetrical keys, and the
secret key is distributed while programming sensor nodes. The
algorithm to produce messages can be any symmetrical one
(that can be implemented in TinyOS).

In TinySec there are three operation modes:
SendMsgCRC, SendMsg, SendMsgEncryptAndAuth; it can
operate both in TOSSIM (a simulator for TinyOS networks),
in the MICA, and in the MICA2 platforms but, until the
moment the work was performed, it was not yet prepared to
work with MICAz. An architecture typically used in WSNs is
the Mica Motes of Crossbow one [1].

Among its components, the one with the highest energy
consumption is the flash memory. However, in spite of the
high consumption of energy during the writing and reading
cycles, the use of the memory flash is not essential for link
maintenance in the constitution of a WSN. Hence, from the
essential hardware components needed, the transmitter is the
largest power consumer. Transmitting is costly and receiving
can be as costly as transmitting. Even in the idle mode the
transceiver wastes energy and so it must be put into sleep
mode for as much time as possible. Even when it is in the
sleep or idle modes, the transmitter wastes energy. This is
done by an appropriate power management scheme.

4. TINYDB

To use TinyDB, it is first important to create an executable
file by executing the command make in the directory of the
program:

cd /opt/tinyos-1.x/tools/java/net/tinyos /tinydb;make
This command works in any version of TinyOS. After

successfully running it, it is fundamental to load the
executable of the application TinyDBApp to each of the
MICAz motes. For this purpose, the interface board should be
“off”, while MICAz has to be “on”. The executable is created
with the following command:

cd opt/tinyos-1.x/apps/TinyDBApp; make micaz
followed by a connection from the MICAz to the interface

board, and the execution of the following command:
MIB510=/dev/ttyS0 make micaz install
However, it does not work properly in version 1.0 of

TinyOS. In this case, the ProgramMote that comes with
MoteConfig of Crossbow should be used to load the
executable main.exe into the directory TinyDBApp (inside
build\micaz). The subsequent commands are the following:

export CLASSPATH=$CLASSPATH:
/opt/tinyos1.x/tools/ java/jars

cd /opt/tinyos-1.x/tools/java /
java net.tinyos.tinydb.TinyDBMain

MEASUREMENT SCIENCE REVIEW, Volume 8, Section 3, No. 3, 2008

 67

Afterwards, one should wait until the graphic interface of
TinyDB shows up. Then, one is able to select which of the
registers one intends to visualize by pressing on “>> >”, and
by choosing “Send Query”. After some seconds needed for
network configuration purposes and for the initialisation of the
measurement process, the chart will be visualized and it is
possible to monitor those values.

In our work, TinyDB was used for reading data from
external sensors attached to the sensorial board, e.g., from the
flow meter, the tire pressure sensor, and the blood pressure
sensor. In these cases we used the Digi-Key H2163-ND
connector. By consulting the datasheet of the sensorial board,
it is possible to verify how internal sensors are connected, as
well as to know how to read some information. In this work,
the option was to connect the external sensors to terminals 42
and 51 (Ground), corresponding to the light sensor in the
sensorial board.

5. HARDWARE COMPONENTS AND RESULTS

For the transmission and processing of the signals we have
selected the MICAz ZigBee (MPR2400) from Crossbow. This
module uses an ATMega 128L to collect the data from the
network, and to program MICAz motes. The MIB510
interface board was connected to a computer by using the
serial port, and the MICAz MTS310 sensor node was then
used to connect the sensors that are not on the board via the
Digi-Key H2163-ND connector, Fig.1.

Flow sensor - We chose a flow sensor with the technical,
economical, and weight specifications closest to the
requirements. The choice was the RS 508-270, which allows
to measure a wide range of flows, from 0.05 to 10 [l/min].

Fig.1 MIB510 Interface board and related components, and
differential amplifier for the pressure sensor

Its sensibility is not high enough to measure small values
of fuel flow, as is in those involved in the low fuel
consumption cars from Shell ECO-MARATHON, the
scenario we used as an initial motivation to our work, i.e.,
~0.0054 l/min. However, they are useful in the context of
competition cars with higher fuel consumption flows. As a
possible scenario, two or three cars of the same team, and a
central node in the team box were considered; each car can
serve as a relay for the other nodes. As the output of the flow
sensor is proportional to frequency, we used the frequency to
voltage converter LM2917N whose output varies 1 V for each
variation of 67Hz in frequency. We had to select the nodeId
related to the sensor of light because of TinyDB functioning,
which uses the terminal from the sensor of light for data
acquisition when MICAz is connected to the MTS310
sensorial board.

Tire pressure sensor - The pressure sensor included in
tire pressure reader Sensor Monza 2 in 1, is the one that was
used. As the sensor does not have any identification, it was
not possible to find its datasheet. However, the sensor has four
terminals, which indicates that its internal circuit should be a
Wheatstone bridge. To have access to the output of this sensor
it is thus necessary to measure the voltage in each of its four
terminals, in two different cases: sensor reading the ambient
pressure, and sensor under pressure (close to the limit is the
ideal). We had to remove the pressure sensor from the Monza
2 in 1 kit in order to connect it to the MICAz. To monitor the
pressure value we used TinyDB, and the sensor node executes
the TinyDBApp program available in the directory
/opt/tinyos-1.x/apps/TinyDBApp. Fig.1 presents the scheme
of the amplifier used between the MICAz and the sensor. E0
is the output voltage amplifier circuit, and is connected to the
input of MICAz; E1 is a reference voltage of 0.2V, which is
used to calibrate the sensor; E2 is the voltage at the output of
the pressure sensor; R1=1500Ω, and R0=10Ω.

Light Sensor - To verify the state of the automobile lights,

a light sensor has been used close to each lamp. In our case,
we opted for the light sensor already included into the
MTS310 sensorial board, Fig.2. To collect data from this
sensor, the mote is programmed with OscilloscopeRF
application, while being placed onto the zone to be monitored.

Fig.2 Placement of the light sensor on the MTS310

MEASUREMENT SCIENCE REVIEW, Volume 8, Section 3, No. 3, 2008

 68

Another node running the TosBase application is placed
on the interface board connected to the computer. The
programming board is switched off while the nodes are
switched on. To generate the executable files one has to type:

cd /opt/tinyos-1.x/apps/OscilloscopeRF; make micaz
To send the generated files to the motes, the MoteConfig

executable file can be used, or alternatively the following
command can be used:

MIB510=/dev/ttyS0 make micaz install
To compile the Java directory one has to type:
cd /opt/tinyos-1.x/tools/java;make
For every new session we need to select the frequency of

the communication through the serial port connection (which
is 57600Hz for MICAz and MICA2, and 19200Hz for MICA
and MICA2DOT) by typing the following command line
(example for 57600Hz)

export MOTECOM=serial@COM1:57600
The received data can be easily visualised by typing:
java net.tinyos.oscope.oscilloscope
Then, we can watch live the variation of the light

brightness on the photovoltaic sensor of the mote, Fig.3. This
allows to know what the state of lamp is. The experimental
results presented in Table 1 allowed for obtaining the
calibration curve presented in Fig.4. The raw value 545
corresponds to a luminous intensity of 0 lux. The curve is
piecewise and presents two linear regions with different
slopes. One linear region is from 0 to 50 lux whereas for the
other the luminous intensity varies from approximately 180
lux to 450 lux.

Acceleration sensor - The acceleration sensor is
incorporated into the MTS310 board of sensors. The signal
acquisition is performed by using TinyDB, as the TinyDBApp
program is very slow. In the future, this aspect should be
improved.

Fig.3 Graphical representation of the luminous intensity

extracted from the mote sensor by using OscilloscopeRF

Temperature sensor - The temperature sensor should be
installed in contact with the driver's body in order to monitor
his/her temperature. As the sensorial board already has a built-
in temperature sensor, it is considered that this sensor, whose
data is read by TinyDB, serves our initial objectives.

Table 1 Experimental results for the calibration of the light sensor

Node value [raw units] Luminous intensity [lux]
545 1.14
605 15.3
730 45.8
730 45.8
805 85.6
820 100.0
845 125.0
890 182.0
910 293.0
925 384.0
935 445.0
982 633.0

0

100

200

300

400

500

600

700

500 600 700 800 900 1000
Mote Light Sensor Output [raw units]

Lu
m

in
ou

s
in

te
ns

ity
 [l

ux
]

Fig.4 Calibration curve for the mote light sensor

An example of the variation of the temperature with time

is presented in Fig.5. The corresponding calibration curve
obtained from the measurements presented in Table 2 is
sketched in Fig.6. We moved one of the temperature sensors
within the laboratory and also in the corridor whilst keeping
the other one static. For calibration purposes, we collected the
temperature variation near and far from a heating system in a
multimeter while comparing the instantaneous values with the
curve obtained with TinyDBApp. By using the calibration
curve we concluded that the temperature measured in mote 2
is approximately 31ºC.

Heart frequency and arterial pressure - The equipment
selected to measure the heart frequency and the diastolic and
systolic blood pressure is a prototype for testing and
monitoring biomedical signals, developed in the Department
of Computer Science of University of Beira Interior by Prof.
Pedro Araújo and his student Pedro Ussman, Fig.7.

MEASUREMENT SCIENCE REVIEW, Volume 8, Section 3, No. 3, 2008

 69

Fig.5 Measurement of the temperature with the TinyDBApp

application installed in two MICAz sensor motes

Table 2 - Experiences for the calibration of the temperature sensor

Node value [raw units] Temperature [ºC]

412 20

467 22

577 31

665 34

20

23

26

29

32

35

400 450 500 550 600 650 700
Mote Temperature Sensor Output [raw units]

Te
m

pe
ra

tu
re

 [º
C

]

Fig.6 Calibration curve for the mote temperature sensor

Fig.7 Arterial pressure monitoring prototype placed on the human
pulse, and circuit for signal amplification

This prototype uses an inner tube placed under pressure.
During its emptying process the pressure is measured through
a sensor. This signal is amplified, Fig.7, and sent to the
computer that runs the software to interpret the signal while
extracting the blood pressure and the heart beating frequency
values.

The monitor of arterial pressure is formed by a motor that
insufflates air into the inner tube, by a Metrodyn MPS-1001
pressure sensor, by an inductor, and by exhaust valves for the
inner tube (fast and slow ones). The connections from the
circuit amplifier to the MICAz are the following:
• White wire - analogue signal of the absolute pressure, -

connected to the terminal 42 of the MICAz;
• Green wire - analogue output signal of the relative

pressure, - connected to the terminal 42 of another
MICAz;

• Yellow/blue wire - digital output signal to turn the motor
that inflates the arm brace on/off, - connected directly to a
relay that is commanded by the terminal 9 of MICAz;

• White/blue wire - digital output signal that closes/opens
the valve, - connects to the relay that is commanded by the
terminal 10 of MICAz.

These processes were controlled by running the
SimpleLedCmd application, followed by the execution of the
following MICAz command:

java net.tinyos.tools.BcastInject <parameter>
where the parameter can have the following values: led_on -
closes the valve; led_off - opens the valve; led_A_on -
activates the pump; led_A_off - turns the pump off.

6. CONCLUSIONS

This work addressed the conception of a WSN capable of
measuring, processing and supplying diverse types of
information to the user during an automobile journey. The
examples are acceleration and fuel consumption, identification
of incorrect tire pressure, failures of illumination, and
evaluation of the vital signals of the driver. Beside a survey on
the concepts, the wireless sensor network itself (transmitter/
receiver/control board) was configured, and aspects of the
architecture and protocols were addressed. By using the
calibration curves for the light and temperature sensors,
precise experimental values were extracted. Security aspects
were also identified, and the difficulties and solutions were
discussed. Competition cars in a controlled environment
constitute a suitable scenario for experimental work. Besides,
the evolutions in this field promise a lot in the automobile
industry, e.g., for cooperation among cars for road safety
purposes.

ACKNOWLEDGMENT

This work was partially funded by MobileMAN (an internal
project from Instituto de Telecomunicações/LA), by IST-

MEASUREMENT SCIENCE REVIEW, Volume 8, Section 3, No. 3, 2008

 70

UNITE, by CROSSNET (a POSC project with FEDER
funding), by the PhD FCT (Fundação para a Ciência e
Tecnologia) grant SFRH/BD/36742/2007, and by “Projecto de
Re-equipamento Científico”.

REFERENCES

[1] GTA/UFRJ Grupo de Teleinformática e Automação
(2004, June). Redes de Sensores Sem Fio,
Características. Retrieved July, 2006 from
http://www.gta.ufrj.br/

 ~rezende/cursos/eel879/trabalhos/rssf1/caracteristicas.htm
[2] Teixeira, I. (2005) Roteamento com Balanceamento de

Consumo de Energia para Redes de Sensores Sem Fio.
Rio de Janeiro, Brasil: Universidade Federal do Rio de
Janeiro. (http://www.gta.ufrj.br/ftp/gta/TechReports/

 Ingrid05/tese.pdf)
[3] Akingbehin, K., Patel, N., Richardson, P., Yoon, D.,

Chen, J., Abdu, H. (2003) Proposal for a hybrid wireless

harness for automotive applications. Michigan: Institute
for advanced Vehicle Studies, University of Michigan-
Dearborn.

[4] Luz, G.D. (2004) Roteamento em Redes de Sensores. São
Paulo, Brasil: Instituto de Matemática e Estatística,
Universidade de São Paulo. (http://grenoble.ime.usp.br/
movel/roteamentosensores.pdf)

[5] Araújo, R.C. (2004) Um Estudo do Impacto do Uso de
Criptografia em redes de Sensores Sem Fio (RSSFs).
Recife, Brasil: Centro de Informática, Universidade
Federal de Pernambuco. (http://hantuanne.com.br/
faculdade/7semestre/redes/criptografia.doc).

[6] Correia, L.H.A., Macedo, D.F., Santos, A.L., Nogueira,
J.M.S., Loureiro, A.A.F. (2005) Uma Taxonomia para
Protocolos de controle de Acesso ao Meio em Redes de
Sensores Sem Fio. Belo Horizonte: Departamento de
Ciência da Computação, Universidade Federal de Minas
Gerais. (http://www.dcc.ufla.br/~lcorreia/bibtex/

 rt0505.pdf).

