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In this study, an estimation algorithm based on a two-stage Kalman filter (TSKF) was developed for wind speed and Unmanned Aerial 

Vehicle (UAV) motion parameters. In the first stage, the wind speed estimation algorithm is used with the help of the Global Positioning 

System (GPS) and dynamic pressure measurements. Extended Kalman Filter (EKF) is applied to the system. The state vector is composed 

of the wind speed components and the pitot scale factor. In the second stage, in order to estimate the state parameters of the UAV, GPS, and 

Inertial Measurement Unit (IMU) measurements are considered in a Linear Kalman filter. The second stage filter uses the first stage EKF 

estimates of the wind speed values. Between these two stages, a sensor fault detection algorithm is placed. The sensor fault detection 

algorithm is based on the first stage EKF innovation process. After detecting the fault on the sensor measurements, the state parameters of 

the UAV are estimated via robust Kalman filter (RKF) against sensor faults. The robust Kalman filter algorithm, which brings the fault 

tolerance feature to the filter, secures accurate estimation results in case of a faulty measurement without affecting the remaining good 

estimation characteristics. In simulations, noise increment and bias type of sensor faults are considered.  

 

Keywords: Unmanned aerial vehicle, Kalman filter, fault detection, wind speed, GPS, pitot tube. 

 

 

 

 

1.  INTRODUCTION 

A popular approach to the estimation of the flight 

parameters of a small Unmanned Aerial Vehicle (UAV) 

includes the integration of sensor measurements from a 

Global Positioning System (GPS) with that of a low-cost 

Inertial Navigation System (INS). Various formulations of 

flight parameter estimation using GPS/INS sensor fusion 

exist in the literature [1]-[4], containing comparison studies 

evaluating different estimation algorithms. 

In this work, the wind field is estimated for both horizontal 

and vertical wind using GPS and pitot tube measurements. 

Estimation of the wind field is useful in UAV applications for 

various objectives such as dropping objects, target tracking, 

automatic control, trajectory optimization, and air traffic 

control [5]. There is some existing work in the area of wind 

estimation. A Kalman-like filter is derived in [6] for wind 

velocity estimation based on magnetic heading, true airspeed, 

and radar measurements. This filter is called the velocity bias 

filter for wind estimation. In [7], the problem of aircraft wind 

velocity estimation is performed using the aircraft dynamic 

response rather than the wind triangle relationship. In this 

method, it is assumed that the mathematical model of the 

aircraft is perfectly known. The primary limitation of these 

types of wind estimation methods is the requirement of a 

known aircraft model. This can be very limiting for some 

types of aircraft where the model has not yet been derived, or 

additional system uncertainties have been introduced. 

In [8], a pitot-tube-independent estimation for airspeed is 

presented using the Extended Kalman Filter (EKF). This 

paper focuses on developing an approach to fault detection 

for airspeed sensors in UAVs by using data from gyros, 

accelerometers, GPS, and wind vanes. Based on the 

kinematics model of the UAV, an estimator is proposed to 

provide analytical redundancy using information from the 

above-mentioned sensors. The χ2 test and cumulative sum 

detector are employed to detect the occurrence of airspeed 

measurement faults together.  

In [9], an estimator is proposed based on the kinematics 

model of the UAV in order to provide analytical redundancy 

using information from gyros, accelerometers, GPS, and 

wind vanes. This filter process is independent of the airspeed 

measurement and the aircraft dynamics model. The 

estimation of the wind velocity is necessary to relate ground 

velocity to airspeed, which is why the wind velocity 

components are considered as states. 

Aircraft are usually equipped with vanes or multi multi-port 

air data probes that, when properly calibrated, can be used to 

infer the wind velocity, angle-of-attack (AOA), and side-slip 
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angle (SSA). In this study the wind velocity, AOA and SSA 

are estimated using standard sensors. The standard sensor 

suite contains GPS, Inertial Measurement Unit (IMU), and a 

pitot-static tube. 

In this study, an estimation algorithm based on a two-stage 

Kalman filter (TSKF) was developed for wind speed and 

UAV motion parameters. In the first stage, the wind speed 

estimation EKF was developed by the usage of GPS 

measurements and dynamic pressure measurements. In the 

second stage, the estimation of the state parameters of the 

UAV was made based on the GPS and IMU measurements 

by using the Linear Kalman filter. The second stage filter uses 

the first stage EKF estimates of the wind speed values. 

Between these two stages, a sensor fault detection algorithm 

is designed. The innovation sequence of the wind speed 

estimation filter is used for fault detection purposes.  

A robust Kalman filter (RKF) algorithm, which makes the 

filter fault-tolerant and keeps giving accurate estimation 

results in case of faulty measurements, is proposed in this 

paper. This filter is designed in order to minimize the effects 

of sensor faults and to estimate the UAV flight parameters 

accurately. After detecting the fault on the sensor 

measurements, the state parameters of the UAV are estimated 

by using RKF against sensor faults.   

 

2.  STATEMENT OF THE PROBLEM 

This work aims to estimate aircraft body-axis velocity 

components ( ), ,u v w , Euler attitude angles ( ), ,φ θ ψ , and 

three-axis wind velocity components ( ), ,N E Dµ µ µ . This 

estimation is performed through the functional fusion of IMU 

measurements of attitude angles ( ), ,φ θ ψ , angular rates 

( ), ,p q r , GPS measurements of velocity components 

( ), ,
x y z

V V V , and the dynamic pressure measurements by the 

pitot-static tube (
d

P ). Due to the random nature of wind, e.g. 

turbulence, it is challenging to predict the behavior of the 
local wind field dynamics. Therefore, the wind velocity state 
dynamics are modeled as a random walk process [9], 
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where p
w  denotes the zero-mean Gaussian process noise 

vector with the covariance matrix p
Q . The UAV state 

equation is given in a discrete-time linear state-space format, 
 

( 1) ( ) ( ) ( )X k F X k B U k G W k+ = + +               (2) 

 

where ( )X k  is the vector of the system state, F  is the 

transition matrix of the system, B is the control distribution 

matrix, U is the control input vector, which comprises the 

control surface deflections and wind velocity, W  is the 

system noise vector with a covariance matrix Q , G is the 

transition matrix of system noise.  

The body-axis velocity components can be rotated into the 

Earth-fixed frame using the transformation matrix ( ), ,A φ θ ψ  
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and corrected for wind by [5], 
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As an Earth-fixed frame, the North-East-Down (NED) 

frame is used. This is a reference frame locally fixed to a point 

on the Earth's surface and its X-Y-Z axes pointing to North-

East-Down. The Z-axis aligns the Earth's ellipsoid normal 

direction. In (3) , ,GPS GPS GPS

N E D
V V V are the NED ground 

velocity measurement components by GPS,  GPSυ  is the zero-

mean Gaussian measurement noise vector of GPS. 

It is required to estimate the wind speed, Air Data System 

(ADS) scale factor and UAV states in the presence of sensor 

faults on the acquired information above. 

 

3.  TWO-STAGE ESTIMATION OF THE WIND SPEED AND UAV 

STATES 

A two-stage Kalman filter is proposed for wind speed and 

UAV state estimation purposes. In the first stage, the wind 

speed is estimated by the EKF using GPS and pitot tube 

measurements. Here, the wind speed components and pitot 

scale factor are considered as state vector variables. In the 

second stage, the estimation of the state parameters of the 

UAV was made based on the GPS and IMU measurements 

by using the Linear Kalman filter. The second stage filter uses 

the first stage EKF estimates of the wind speed values. 

Between these two stages, a sensor fault detection algorithm 

is designed. After detecting the fault in the sensor 

measurements, the state parameters of the UAV are estimated 

via the robust Kalman filter against sensor faults. Fault 

tolerance and accurate estimations are achieved by using the 

RKF algorithm in case of faulty measurements. The 

interaction of two filtering stages is shown in the structural 

diagram of Fig.1. 

 

 
 

Fig.1.  General block diagram of the proposed two-stage estimation 

procedure. 
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A.  Design of the Kalman filter for wind velocity estimation 

Nonlinear state-space formulations of wind velocity 

estimation problems of the unmanned aerial vehicle are 

discussed in this section. As the formulations use the 

relationship of the wind triangle, it is necessary to have the 

knowledge of both the ground and airspeed. The formulations 

use the pitot-static tube airspeed and the GPS velocity 

estimates. Here, the state vector includes north ( )Nµ , east 

( )Eµ , down ( )Dµ  components of the wind velocity and the 

ADS scale factor ( )ζ . The effects of the sideslip angle, 

angle-of-attack and the air density parameters can be 

estimated by using the scale factor. The state-space system is 

composed of the state vector x [10], 
 

[ ]T

N E Dx µ µ µ ζ=                         (4) 

 

The dynamic pressure measurements by the pitot-static tube 

d
P  are presented as output. As there is no information on the 

state dynamics, dynamic equations are expressed by random 

walk process, 
 

( ) ( 1) ( 1)
p

x k x k w k= − + −                         (5) 

 

where 
pw  is the zero-mean Gaussian system noise vector 

with the process covariance matrix 
pQ . Output vector can be 

composed by using the wind triangle relationship 
 

air ground wind
V V V= −
r r r

                            (6) 

 

where , ,
air ground wind

V V V
r r r

 are the air, ground, and wind velocity 

vectors in the NED coordinate system, respectively. After 

taking the square of each side of the equation (6) it can be 

obtained [10] 
 

( ) ( ) ( )2 2 22

air N N E E D DV V V Vµ µ µ= − + − + −           (7) 

 

The airspeed of the pitot-static tube ( )pitot
V  can be 

expressed in terms of total airspeed ( )airV , angle-of-attack 

( )α , and sideslip angle ( )β , 

 

cos cos
pitot air

V V α β=                          (8) 

 

Dynamic pressure can be written considering the Bernoulli 

equation as: 

2

2
d pitotP V

ρ
=                              (9) 

 

where ρ represents the air density. So, the scale factor ( )ζ  

can be written as: 
 

( ) ( )2 2
cos cos

2

ρ
ζ α β=                         (10) 

If all of these are combined, the output vector equation 

becomes: 
 

( ) ( ) ( )2 2 2

d N N E E D D pP V V V vζ µ µ µ = − + − + − +      (11) 

 

where p
v  is the zero-mean Gaussian measurement noise with 

the variance p
R . 

The ground speed components are measured by GPS and 

therefore the equations for the ground speed are 
 

GPS

N N

GPS GPS

E E

GPS

D D

V V

V V

V V

υ

   
   = +   
     

                         (12) 

 

The linear state model can be written in the following form 

[11], 

( 1) ( ) ( )
p

x k Ax k Gw k+ = +                         (13) 

 

where A and G are 4x4 unit matrices. 

The measurement equation (11) is nonlinear and can be 

written in the form: 
 

[ ]( ) ( ), ( )pz k h x k k v k= +                          (14) 

 

where [ ]h ⋅  is the nonlinear measurement function, ( )x k  is 

4-dimensional state vector at time k. It is assumed that both 

noise vectors ( )
p

w k  and ( )
p

v k  are Gaussian white noise with 

zeroing, 

( ) ( ) 0,    
p p

E w k E v k k   = = ∀                   (15) 

 

Filter algorithm based on the described system and 

measurements in (13)-(14) can be given. The estimation of 

states (4) can be found based on the EKF. The estimation 

value is, 
 

[ ]{ }ˆ ˆ ˆ( / ) ( / 1) ( ) ( ) ( / 1, )x k k x k k K k z k h x k k k= − + − −    (16) 

 

The extrapolation value from the dynamic function can be 

found as, 
 

ˆ ˆ( / 1) ( 1 / 1)x k k A x k k− = − −                     (17) 

 

Filter-gain of the EKF is, 

 

[ ]

[ ] [ ]{ } 1

ˆ( ) ( / 1) ( / 1),

ˆ ˆ( / 1), ( / 1) ( / 1), ( )
−

= − ∇ − ×

∇ − − ∇ − +

T

T

p

K k P k k h x k k k

h x k k k P k k h x k k k R k

 

(18) 
 

where [ ] ˆ[ ( / 1), ]
ˆ( / 1),

ˆ( / 1)

h x k k k
h x k k k

x k k

∂ −
∇ − =

∂ −
 is the partial 

derivative of the measurement function with respect to the 

states.  

The covariance matrix of the extrapolation error is,   
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( / 1) ( 1 / 1) ( 1)− = − − + −T T

pP k k AP k k A GQ k G (19) 

 

The covariance matrix of the filtering error is, 

 

[ ]ˆ( / ) ( ) ( / 1), ( / 1)P k k I K k h x k k k P k k = − ∇ − −       (20) 

 

where I  is the identity matrix. 

The innovation sequence is presented as, 

 

[ ]ˆ( ) ( ) ( / 1),k z k h x k k k∆ = − −                      (21) 

 

The innovation covariance is, 

 

[ ] [ ]ˆ ˆ( ) ( / 1), ( / 1) ( / 1), ( )∆ =∇ − − ∇ − +T

pP k h x k k k P k k h x k k k R k    

(22) 
 

EKF that estimates the state vector of the system is 

expressed with the formulas (16) - (22). 

 

B.  Design of the Kalman filter for UAV state estimation  

Let us consider the UAV flight dynamics described by the 

linear state equation (2) using the trim condition and 

measurement equation 
 

( ) ( ) ( ) ( )Z k H k X k V k= + ,                   (23) 

 

where ( )Z k  is the measurement vector, ( )H k  is the 

measurement matrix, ( )V k is the random vector of 

measurement noise. Assume that the random vectors ( )W k

and ( )V k  are Gaussian white noise with zero mean. Note 

that { }( )W k and { }( )V k  are assumed mutually uncorrelated. 

The UAV state vector is 

 

[ ]TX u v w p q rφ θ ψ=            (24) 

 

The measurement vector is expressed as 

 
T

GPS GPS GPS

N E D m m m m m mZ V V V p q rφ θ ψ =    (25) 

 

As seen from equation (3), the ground velocity 

measurement components , ,GPS GPS GPS

N E D
V V V are nonlinear with 

respect to the UAV states. Through converting, we can also 

change the measurements to be 

 

[ ]Tm m m m m mZ u v w p q rφ θ ψ=        (26) 

 

where 

( )1
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m m m E E
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D D

u V

v A V

w V

µ
φ θ ψ µ

µ

−

 − 
   = −  
   −   

                 (27) 

In this case, the measurement noise variances of the indirect 

measurements ( , , )u v w  should be calculated. As a result, the 

measurement nonlinearities are eliminated and for estimation 

of the UAV state vector (24), the linear KF can be used. The 

input vector is 

 

ˆ ˆ ˆδ δ δ δ
T

c t w p N E DU µ µ µ =                    (28) 

 

The first four elements of the input vector (28) represent the 

control surface deflections (column, throttle, wheel, and 

pedal, respectively) and the last three elements of the wind 

velocity estimations. For estimation of the state vector of 

UAV (24), the linear Kalman filter can be used [11]. 

Using the second stage estimation results ( )ˆ ˆ ˆ, ,u v w , the 

airspeed (
airV ), angle-of-attack (α ), and sideslip angle (β)  

can be calculated 

 

2 2 2ˆ ˆ ˆ ˆ
air

V u v w= + +                            (29) 

 

ˆ
ˆ arctan

ˆ

w

u
α  =  

 
                             (30) 

 

2 2 2

ˆˆ arcsin
ˆ ˆ ˆ

v

u w v
β

 
=   + + 

                  (31) 

 

C.  Sensor fault detection 

A sensor fault detection algorithm is considered based on 

the normalized innovation squared [12] 

 

( ) ( )2
k kβ = ∆%                              (32) 

 

where ( )k∆%  is the normalized innovation sequence of the 

Kalman filter. This statistical function (32) has 
2χ   

distribution with 1s =  degree of freedom, where s is the 

dimension of the innovation vector. Now consider the 

following two hypotheses: 

              
0

H  : Sensor fault occurs                                 (33a) 

              
1

H  :  No sensor faults.                                   (33b)  

If the level of significance, α , is selected as, 

{ }2 2

,
;   0 1

s
P α αχ αχ> = < <                     (34) 

 

the threshold value 
2

,sαχ  can be found. Hence, when the 

hypothesis
1H  is true, the value of the statistical function  

( )kβ  will be greater than the threshold value 
2

,sαχ  i.e.: 

 

0H  : 
2

,( ) sk αβ χ≤    k∀                         (35) 

 

1H  : ( )kβ > 
2

,sαχ    k∃ .                       (36) 

 

 



 

 

 

MEASUREMENT SCIENCE REVIEW, 20, (2020), No. 1, 35-42 
 

39 

4.  ROBUST KALMAN FILTER FOR UAV STATE ESTIMATION 

In normal operation conditions, the Kalman filter gives 

sufficiently good estimation results where any kind of 

measurement malfunction is not observed. However, when 

the measurements are faulty, filter estimation outputs become 

inaccurate. Therefore, a robust Kalman filter algorithm, 

which has the ability to be fault-tolerant with accurate 

estimation results in case of a faulty measurement with no 

effect on the remaining good estimation characteristics, is 

introduced. 

The base of the RKF is the comparison of real and 

theoretical values of the covariance of the innovation 

sequence [12]. When the operational condition of the 

measurement system mismatches with the models used in the 

synthesis of the filter, then the Kalman filter gain changes 

according to the differentiation in the covariance matrix of 

the innovation sequence. Under these circumstances, the 

covariance matrix of the innovation sequence differs as: 

 

( ) ( ) ( / 1) ( ) ( ) ( )TP k H k P k k H k S k R k∆ = − +          (37) 

 

and the Kalman gain becomes 
 

( ) ( ) ( )

( ) ( ) ( ) ( )
1

/ 1

/ 1 ( )

T

T

K k P k k H k

H k P k k H k S k R k
−

= − ×

 − + 
          (38) 

 

where ( / 1)P k k − is the covariance matrix of the 

extrapolation error, ( )R k is the covariance matrix of the 

measurement noise, ( )S k is the measurement noise scale 

factor. ( )S k can be written as 

 

{ }
{ }

( ) ( ) ( ) ( / 1) ( )
( )

( )

T Tk k tr H k P k k H k
S k

tr R k

∆ ∆ − −
=        (39) 

 

Here {}tr ⋅ denotes the trace of the related matrix. In the 

case of malfunction in the measurement system, the 

adaptation of the Kalman filter is performed by correcting the 

Kalman gain automatically. If there is a sensor fault in the 

system, it brings an increase in the scale factor ( )S k . Higher 

( )S k  causes a smaller Kalman gain because of the 

covariance of the innovation sequence which is also increased 

in the robust case. Consequently, small Kalman gain value 

reduces the effect of the faulty innovation sequence on the 

state estimation process. In all other cases, where sensors 

operate normally, scale factor takes the value of ( ) 1S k =  

and the filter runs conventionally. 

 

5.  TSKF SIMULATION RESULTS 

The wind speed and longitudinal and lateral motion 

parameters of UAV are estimated using the proposed TSKF. 

In order to test the algorithm, the GPS receiver and pitot tube 

faults are examined. In simulations two types of faults are 

taken into consideration: noise increment and continuous 

bias. 

 

A.  GPS fault case 

First, noise increment type of fault was adopted and the 

measurement equation was redefined for the interval between 

300 and 500 seconds as 

 

( ) ( ) ( )5 GPSGPSV k V k kυ+=                    (40) 

 

Simulation results are given in Fig.2. to Fig.4. Estimation 

results of the wind speed are given in Fig.2. In this figure, the 

blue line shows the actual values and the red line - estimated 

values. The obtained results show that the wind speed 

estimations converge to their actual values except for the 

faulty period and UAV states can be estimated with high 

accuracy. 

The fault detection algorithm works using the statistic (32). 

The level of significance in the sensor fault detection is 

chosen as 0.05. The threshold value, 
2

,sαχ  for  0.05α =  and 

1s=  is found as 
2

, 2.71sαχ = . By using the algorithm, the 

faulty period is detected between 300 and 500 seconds as seen 

in Fig.3. by using ( )kβ , fault detection statistics.  

Second, continuous bias type of GPS measurement fault is 

considered and the measurement equation is redefined for the 

interval between 300 and 500 seconds as 

 

( ) ( ) ( ) 4PGPS G SV k V k kυ+= +                    (41) 

 

Estimation errors of wind speed are presented in Fig.4. As 

seen from the figure, the estimation errors of the proposed 

TSKF are small except for the faulty period.  

 

 

 
 
Fig.2.  Wind speed and scale factor estimation results: actual 

value - blue line; estimated value - red line (GPS noise increment 

case). 
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Fig.3.  Fault detecting statistics (GPS noise increment case). 

 

 
Fig.4.  Wind speed and scale factor estimation errors (GPS bias 

case). 

 

B.  Pitot-tube fault case 

The same two fault cases are applied to the pitot-tube 

measurements. Noise increment type of fault was adopted and 

the measurement equation was redefined for the interval 

between 300 and 500 seconds as, 
 

[ ]( ) ( ), 5 ( )pz k h x k k v k= + ×                       (42) 

 

In Fig.5., wind speed components and scale factor 

estimation errors are shown, while Fig.6. represents the fault 

detection statistics. As can be seen, the faulty pitot-tube 

measurements are detected by the algorithm just like GPS. 

The faulty period can be seen clearly in both figures, which 

means that the estimations of the conventional filter were 

deteriorated, but the fault detection algorithm comes into play 

and detects the whole period of the fault. 

Second, continuous bias type of measurement fault is 

considered and the measurement equation is redefined for the 

interval between 300 and 500 seconds as, 
 

[ ]( ) ( ), ( ) 3pz k h x k k v k= + +                      (43) 

Similar results are found for the pitot-tube faults as shown 

in Fig.7. with wind estimations. 
 

 
Fig.5.  Wind speed and scale factor estimation results: actual value 

- blue line; estimated value - red line (Pitot-tube noise increment 

case). 

 
 

Fig.6.  Fault detecting statistics (Pitot-tube noise increment case). 

 

 
 

Fig.7.  Wind speed and scale factor estimation results: actual value 

- blue line; estimated value - red line (Pitot-tube bias case). 
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C.  Robust TSKF simulation results 

The wind speed and longitudinal and lateral motion 

parameters of UAV are also estimated via presented robust 

TSKF in case of the defined faulty conditions. In order to test 

the algorithm, all types of faults are applied to the GPS and 

the pitot-tube measurements between 300 and 500 seconds. 

Estimation errors of wind speed and UAV’s velocity 

components in the presence of noise increment fault on GPS 

measurements are presented in Fig.8. and Fig.9., respectively. 

As seen from the figures, the estimation errors of the 

proposed robust TSKF are significantly better than the results 

of non-robust TSKF. Similar results were obtained for each 

scenario (Table 1.). In Table 1., mean errors of the TSKF and 

robust TSKF estimations are presented in terms of wind 

velocity components for each case. As can be seen from the 

table, the adaptive structure of the robust filter improves the 

accuracy of the results in every scenario. 

 

 
 

Fig.8.  Wind speed estimation errors (robust - noise increment). 

 

 
 

Fig.9.  Estimation errors of the velocity components (robust - noise 

increment). 

Table 1.  Wind estimation mean errors for the sensor faults. 

 

Sensor 

Type 

Type of 

Fault 

TSKF Robust TSKF 

N
µ  

E
µ  

D
µ  

N
µ  

E
µ  

D
µ  

GPS  

Noise 

Increment 
3.06 2.91 5.63 0.06 1.68 0.82 

Bias 3.26 4.12 2.12 2.67 3.86 1.65 

Pitot-

Tube  

Noise 

Increment 
0.28 0.18 0.40 0.04 0.07 0.12 

Bias 0.70 1.42 1.83 0.06 0.54 0.24 

 

6.  CONCLUSIONS 

In this work a two-stage Kalman filter was developed for 

wind speed and UAV state estimation. In the first stage, the 

wind speed estimation algorithm is developed by the usage of 

GPS and dynamic pressure measurements. For this purpose, 

the Extended Kalman Filter based on nonlinear 

measurements was designed. The wind speed components 

and pitot scale factor are estimated by EKF using GPS and 

pitot tube measurements. In the second stage, the estimation 

of the state parameters of the UAV dynamic model was done 

by using the Conventional Linear KF based on the GPS and 

IMU measurements and the first stage EKF estimates of the 

wind speed values.  

The fault detection algorithm using the first stage filter’s 

innovation sequence is put between these two stages in order 

to give information about the faults to the second filter and if 

any fault occurs then the filter should switch to a robust 

TSKF. By implementing this sub-step, fault tolerance is 

achieved by mitigating the fault effects and improving the 

estimation results in case of a fault. The proposed method also 

allows calculating air velocity, angle-of-attack, and the side-

slip angle. These parameters are estimated using only 

standard sensors (GPS, IMU, and pitot-static tube).  

In simulations, two types of sensor faults are considered: 

noise increment and continuous bias. Simulation results show 

that the proposed robust TSKF mitigates the effects of sensor 

faults and estimates the wind speed and UAV flight 

parameters accurately. 
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