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Deep brain stimulation (DBS) is an internationally accepted form of treatment option for selected patients with Parkinson’s disease and 
dystonia. Intraoperative extracellular microelectrode recordings (MER) are considered as the standard electrophysiological method for the 
precise positioning of the DBS electrode into the target brain structure. Pre-processing of MERs is a key phase in clinical analysis, with 
intraoperative microelectrode recordings being prone to several artifact groups (up to 25 %). The aim of this methodological article is to 
provide a convolutional neural network (CNN) processing pipeline for the detection of artifacts in an MER. We applied continuous 
wavelet transform (CWT) to generate an over-complete time–frequency representation. We demonstrated that when attempting to find 
artifacts in an MER, the new CNN + CWT provides a high level of accuracy (ACC = 88.1 %), identifies individual classes of artifacts 
(ACC = 75.3 %) and also offers artifact time onset detail, which can lead to a reduction in false positives/negatives. In summary, the 
presented methodology is capable of identifying and removing various artifacts in a comprehensive database of MER and represents a 
substantial improvement over the existing methodology. We believe that this approach will assist in the proposal of interesting clinical 
hypotheses and will have neurologically relevant effects. 
 
Keywords: Artifacts detection, convolutional neural networks, Parkinson’s disease, deep brain stimulation, microrecording, wavelet 
analysis. 
 
 
 
 
1.  INTRODUCTION 

Major breakthroughs in the treatment of many 
neurological disorders have been made possible with 
miniature specialized electronic hardware devices that are 
implanted in the patient to compensate for impaired 
physiological functions [1]. In addition to pacemakers and 
cochlear implants, it is necessary to utilize electrodes used 
for deep brain stimulation (DBS), which is an effective 
alternative to the pharmacological treatment of Parkinson’s 
disease (PD) or heterogeneous dystonia [2]. The process of 
DBS implantation is demanding in terms of time, expertise, 
and finances. This invasive method is capable of significant 
symptom alleviation, which could dramatically improve the 
quality of life of patients with various movement disorders. 

The reliable electrophysiological technique to determine 
accurate DBS electrode placement is intraoperative 
extracellular   microrecording   (mEEG;  MER)  exploration.  

Despite advances in magnetic resonance imaging (MRI) 
technology and a better understanding of the relationship 
between an MRI and MER, MER evaluation remains the 
most widely used localization technique [3], [4]. The MER 
provides a high temporal resolution (< 1 ms) of the brain’s 
neural activity in the close vicinity to the microelectrode [5]. 

The potential of the development of beneficial medical 
diagnostic computer programs is enhanced by machine 
learning methods. In general, the application of deep 
learning in recent years is increasing and has been shown to 
be a more accurate and progressive technique in various 
fields of medical applications, e.g., in computer vision, 
natural language processing, electronic health record data or 
bioinformatics [6], [7]. In particular, many studies that deal 
with the analysis of biomedical signals can be documented. 

Bursa et al. applied a continuous wavelet transform 
(CWT) to a fetal heart rate signal processing with different 
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levels of time/frequency detail parameters and in two 
different resolutions. The output 2D structures are fed to a 
convolutional neural network (CNN) [8]. A CNN is one of 
the main design representatives of deep learning, which is 
inspired by the organization of the animal visual cortex. 
Many challenges for object classification, detection or 
semantic segmentation have been solved in the field of 
neuroscience [9]. The findings described in a paper titled 
CNN to Model Articulation Impairments in Patients with 
PD, presented new results in speech impairments using deep 
learning algorithms, the Fourier transform and a CWT 
deployed on a voiced and unvoiced segment for the 
classification of PD vs. healthy speakers [10]. Another 
clinical study demonstrated the feasibility of using deep 
learning as part of an electromyographic hand gesture signal 
classification system [11]. Furthermore, Acharya et al. 
designed and predicted normal, preictal, and seizure EEG 
signals, based on a 13-layer CNN [12]. 

Up-to-date research has uncovered findings on the many 
applications of deep learning in biosignal event detection, 
specifically in the field of cardiology [13]. For example, 
Yildirim et al. proposed an algorithm for arrhythmia 
detection [14]. Researchers found that the AI algorithm 
successfully predicted distinct diagnostic classes 
encompassing a normal sinus rhythm, pacemaker rhythm, 
and other rhythm disorders effectively from an analysis of 
10-s ECG signal fragments. In addition to the CNN, a 
recurrent long-short term memory network is suitable for an 
ECG classification [15]. However, there have not been any 
studies to address the potential benefits of MER-DBS 
processing via deep learning. 

Currently, there is a wide variety of powerful deep 
learning frameworks including, e.g., MATLAB for Deep 
Learning [16], TensorFlow [17] with Keras [18], PyTorch 
[19], and Caffe2 [20]. Most of them support interoperability 
with open source deep learning frameworks using ONNX 
import and export capabilities. 

Intraoperative microelectrode recordings are prone to 
several artifacts (up to 25 %). Essentially, the three most 
common classes of artifacts that can be identified [21] are: 

•  A mechanical movement artifact, manifested by short-
time, high-power signal peaks, usually spread across the 
whole frequency spectrum. 

•  Low-frequency interference below the mains frequency 
(50 Hz), causing visible variation in the signal offset or in 
the baseline. 

•  Electromagnetic interference at one or multiple stable 
frequencies, well localized in a narrow band(s) in the 
frequency spectrum and stable over time. The frequency of 
the observed long-term interference often differs from the 
expected odd harmonics of the mains frequency (50 Hz, 
150 Hz, 250 Hz, etc.). 

Detection of these artifacts is not straightforward, potential 
artifacts emerge from several sources and may not be 
present in all signals. Detection of artifacts is an essential 
phase of MER processing and can have a significant 
influence on spike sorting [21], and subsequently the 
determination of clinically interesting biomarkers. 
Therefore, prior to spike detection, artifacts should 

automatically be removed from the signal in order to prevent 
spike-dependent statistics (i.e., compound firing rate) and 
spectral measures from being biased [22]. In clinical 
practice, sensors containing the artifacts are typically 
manually curated and artifacts are removed after visual 
inspection. 

Artifact detection in MER signals is an area with few 
objectively validated methods [21], [23]-[26] acting as 
change-point detection or detectors of significant changes 
compared to the clean signal spectrum. Many researchers 
use their own (semi)automatic methods, ranging from 
simple amplitude thresholding [27] through statistical 
testing of the amplitude distribution in short signal windows 
[28]. 

A distinction has to be made between the externally 
induced artifacts (i.e., the scope of this paper) and 
"background noise" in MER, which commonly refers to the 
recorded activity of neurons further away from the electrode 
in single/multiunit activity processing [29]. 

The main goal of this article is to develop an algorithm 
capable of detecting individual classes of artifacts, 
corresponding artifacts onset times and localization of the 
area in the MER in which artifacts originate. In this paper, 
we present a novel CNN approach to microelectrode activity 
artifact detection by means of neural networks in 
biomeasurement. Fig.1. schematically shows the network 
architecture and the main task presented in this article. 

 

 
 

Fig.1.  A deep learning workflow. For example, images are passed 
to the CNN, which automatically learns features and classifies 
MER segments. Conceptual illustration adapted with quoting [30]. 

 
2.  SUBJECTS & METHODS 

Patients 

We evaluated all the proposed methods on a manually 
annotated database [21] of thousands of ten-second MER 
signals from 58 PD patients. The majority of them did not 
contain any contamination (about 75 %). The study was 
conducted in compliance with the Declaration of Helsinki 
and was approved by the Ethics Committee of the 
Department of Neurology, 1st Faculty of Medicine and 
General University Hospital in Prague. DBS electrodes were 
bilaterally implanted using standard stereotactic methods 
and incorporating intraoperative microelectrode recordings. 
Every participant signed an informed consent before 
enrolment in the study. 
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The sampling rate was 12 kHz and the signals were 
recorded with a Medtronic LeadPoint System (Medtronic, 
Minn., MN, USA). Internally, the signals were upsampled 
by a factor of 2. Digitized data was retrieved via the 
Leadpoint Export Utility (Medtronic, Minn., MN, USA). 
Band-pass filtering was applied (Butterworth 2nd order) in 
the 0.5–5 kHz band prior to artifact detection. The 
implantation procedure and domain-specific methodological 
details can be found in [31]. The preprocessed dataset 
consisted of approximately 100,000 one-second signal 
segments. 

Our data collection process was administered by a group 
of trained specialists (manual). Overall, there was quite a bit 
of noise in the annotations (the raters did not match, there 
were no exact beginnings and endings of the artifacts). If an 
artifact emerged within 1 second, considering a fixed 
segmentation of the signal, the segment was marked as an 
artifact (+ its putative class) and each segment was ranked 
from one up to five raters. With more than two judges, the 
majority opinion was chosen (consensus). This methodology 
has already been described in [21]. 

 
Time-frequency representation 

Feature extraction from the data could help improve the 
training and testing accuracies of the classifier. We 
considered a time-frequency representation that extracts 
information from the 1D MER segment (Fig.2.). Namely, 
using the continuous wavelet transform. A scalogram is then 
the absolute value of the CWT coefficients of a signal. Our 
requirements for the 2D representation were met by the 
Matlab implementation, which sets the default analytical 
Morse (3, 60) wavelet, where the symmetry is 3 and the 
time-bandwidth product is 60 [32]. The Morlet wavelet 
analysis has already shown appropriate properties for 
intracranial EEG [33], [34]. Each color JPEG image was 
saved to the size of 227-by-227-by-3 pixels. 

 

 
 

Fig.2.  A one-second filtered signal segment and its corresponding 
2D representation with an obvious short-living power artifact. 
Artifact activity is often accompanied by an increase of signal 
energy in particular frequency bands. 

CNN architecture and settings 

We employed deep transfer learning with a convolutional 
neural network based on AlexNet [35]. AlexNet is a CNN 
that is trained on more than a million images from the 
ImageNet database [36]. We reused the network architecture 
of the CNN to classify microelectrode signal segments 
based on images from the CWT of the time series data. 
Currently, the best performing neural networks were 
originally designed to classify images into 1000 categories. 
This creates major advantages for medical imaging. We 
were able to train the networks on smaller datasets because 
we were able to use pretrained models. Then, only a small 
weight update was needed for our specific task. 

Training a deep CNN from scratch is computationally 
expensive and requires a large amount of training data. In 
various applications, a sufficient amount of training data is 
not available, and synthesizing new realistic training 
examples is not feasible. In these cases, leveraging existing 
neural networks that have been trained on large data sets for 
conceptually similar tasks is desirable. This leveraging of 
existing neural networks is called transfer learning. The 
assumption that you can train an initial model on large 
relevant data and transfer the hidden layers of that model to 
a new one, which will be developed with less focused data, 
is valid as we suppose that low level features are the same 
for all types of images. Thus, the CNN design consisted of 
the following steps: 

•  Create (taken from AlexNet) and add a new twenty-third 
layer including weight initialization and activation. 

•  Compile models including loss function (1), 
optimization method (2), and metrics (3), (4). 

•  Fit models to include learning rate, epochs, and batch 
size. 

Essentially, the widely used optimization stochastic 
gradient descent algorithm might oscillate along the path of 
steepest descent towards the optimum. Adding a momentum 
term to the parameter update is a way to reduce this 
oscillation [37]. The stochastic gradient descent with a 
momentum update algorithm is employed to optimize the 
loss function (1): 

 
���� � 	�� � �	
���� 
 ���� � �����																				(1) 

 
where � stands for the iteration number, � � 0	is the 
learning rate, � is the parameter vector, 
���� is the loss 
function, and γ determines the contribution of the previous 
gradient step to the current iteration. 

The optimization algorithm finds weights and bias values 
that minimize the loss function (2): 

 

 � 	�∑ �� log ���

��� 																																		(2) 

 
where � is the number of target classes, �� indicates that 

example � has label �, and �� indicates predicted probability 
of class � for image �. We used the supervised method, thus 
we had to divide the dataset into a training, validation, and 
test subset, where the validation set was also used for over-
fitting evaluation. 
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Networks were implemented in Deep Learning Toolbox 
environment of the Matlab 2018b. We accelerated the 
training processes by setting the option to run on the GPU 
(NVIDIA GeForce GTX 1060 6GB). 
 
Baseline 

For CNN performance benchmarking, we annotated an 
available in-house database with two state-of-the-art 
methods proposed by Bakstein et al., including default 
thresholds and settings [21]. Two methods, COV 
(autocorrelation-based approach) and MaxDiffPSD 
(maximum spectral difference method), were specifically 
reimplemented and optimized for the automatic detection of 
artifacts in microelectrode recordings [21], [26]. 

COV is a stationary segmentation method based on the 
variance of the signal autocorrelation function. The signal 
was first divided into short fixed-length segments. 
Subsequently, the variance ratio of the statistics of 
neighboring signal segments was computed. The method 
computes the distance matrix between all possible segment 
pairs and searches for the largest available component, 
connected by a sub-threshold path. Assuming higher 
stationarity in the clean signal segments, rather than in the 
artifact segments, the largest component is then marked as a 
clean signal, while the remaining signal sections are marked 
as artifacts. In terms of implementation, the COV 
classification was calculated for the entire ten-second signal 
and then divided into one-second segments. 

MaxDiffPSD is a simpler detection method, based on the 
power spectral density of MER signals. The basic 
assumption is that the power spectral density (PSD) of a 
clean band-pass filtered MER signal is smooth, unlike most 
signals with artifacts, which commonly contain high peaks 
and other disturbances. In terms of implementation, 
MaxDiffPSD works natively with a single one-second 
window without the context of the entire signal. 

 
Evaluation metrics and statistical methods 

The performance of the detector was determined by a 
parameter that is based on the comparison of the judgment 
of an expert (manual) and the artifact detection results. 
Although expert assessment is considered as a reference 
gold standard, infallibility in artifact labeling cannot be 
expected and evaluations are strongly subjective and 
influenced by many factors, e.g., due to the general 
description of multi-trajectories of recordings, difficult 
differentiation of clean and neural activity with artifacts, 
subjective criteria of the evaluator and many more. One 
would expect the possibility of an expert ignoring clear 
artifacts or even labelling an activity that does not fully meet 
the criteria for the artifact. Therefore, consistent results 
cannot be expected, but the detectors performance should 
approximate the reference and also bring novelty value [38], 
[39]. 

Receiver operating characteristic (ROC) curve analysis 
was performed to assess diagnostic accuracy. We 
incorporated the R statistical software environment and 
pROC package [40], that is a set of tools to visualize, 

smooth and compare receiver operating characteristic (ROC 
curves). Areas under the curve (AUC) can be compared 
between individual machine learning models with statistical 
tests based on U-statistics (DeLong’s test for two correlated 
ROC curves) or bootstrap. Statistical tests of the hypotheses 
were considered significant at α = 0.05. 

The overall accuracy of the binary models was determined 
from the confusion matrix using the following formula (3): 

 

accuracy	 � 	 %&�'(

�%&�'&�%(�'(�
                             (3) 

 
This formula represents the ratio of correctly classified 

segments to all the segments in the dataset (TP: True 
Positive, FN: False Negative, TN: True Negative, FP: False 
Positive). 

In extending a binary metric to a multiclass problem, the 
data was treated as a collection of binary problems, one for 
each class. There are several ways to average binary metric 
calculations across the set of classes, each of which may be 
useful in some scenarios [41]. We simply calculated the 
macro mean of the binary metrics, giving equal weight to 
each class. 

The proportion of correct predictions may not be useful 
when the two classes are of very different sizes. In addition 
to the accuracy and AUC-ROC, and due to the fact that the 
previous methods were optimized on real imbalanced data 
[21] we employed the Matthews Correlation Coefficient 
(MCC) metrics. MCC serves as a description of the optimal 
classifier for imbalanced data. The MCC returns value in the 
interval [�1, 1], with 1 showing a complete agreement, -1 
with a complete disagreement, and 0 showing that the 
prediction was uncorrelated with the ground truth [42]. 
MCC scores (4) were calculated via the R mccr package 
[43]: 

 

MCC � %&	×	%(�'&	×	'(

0�%&�'&��%&�'(��%(�'&��%(�'(�
               (4) 

 
We have also further assessed the Precision-Recall (PR) 

curves. PR is a useful way to measure the success of the 
prediction when the classes are very imbalanced. These 
quantities are related to the F1 score, which is defined as the 
harmonic mean of precision and recall [41]. 
 
CNN MER validation methodology 

In this study, we implemented two CNNs with the 
corresponding learning split-validation strategies: 

•  The imbalanced case for comparison among different 

algorithms. This model assumes that we classified only 2 
distinct categories (clean – 0 vs. contaminated segment – 1). 
5340 images were used for the training and 4930 for neural 
network testing, therefore 3560 images were reserved for 
validation and hyperparameter settings. 

•  The multiclass balanced case for detection of different 

artifacts classes (a finite set of species such as “power”, 
“freq” and “baseline”). We had to redefine the last AlexNet 
CNN layer for 3 output classes. 567 images were used for 
training and 227 for neural network testing, therefore 340 
images were reserved for validation and hyperparameter 
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settings. 378 images were available for each class 
representative. 

In both cases, the hyperparameters finally used for 
offering the best results were set to 0.001 for learning rate, 
0.9 for momentum, 50 training epochs and batch size of 50 
samples. To finally determine what the actual classes are, 
the AlexNet layer has the categories of classification. Soft-
labels were converted for each input as the maximum 
probability value. 

Because of computer memory limitations, we used a 
subsampling of our in-house database using random 
selection (uniformly distributed to avoid a bias) and we 
covered representatives across the database for all the 
specific requirements for two split-validation strategies. The 
training phases ended after a significant decrease in 
validation accuracy. 
 
3.  RESULTS 

In order to illustrate the performance of the deep learning 
framework on MER data, a series of experiments were 
carried out. 
 
CNN is successful in detecting artifacts 

First, we tested imbalanced benchmarking—optimized for 
real MERs with many clean segments. By running some 
benchmarking on existing models with binary predictions to 
see how feasible our CNN approach is (AUC-ROC = 0.75; 
MCC = 0.59; F1 = 0.64), we obtained a substantial 
performance increase (DeLong’s test for two correlated 
ROC curves) against the results of the COV (AUC-ROC = 
0.58; MCC = 0.2; F1 = 0.31) method (p < 0.001) and then 
we revealed a statistically significant improvement in 
comparison with MaxDiffPSD (AUC-ROC = 0.73; MCC = 
0.54; F1 = 0.60; p = 0.0497). In all the benchmarks, CNN 
reported performances that were comparable and even 
superior to other state-of-the-art methods. The MCC metrics 
reflect a strong positive relationship with ground truth (+.40 
to +.69) and a weak positive relationship (+.20 to +.29), 
respectively. 

 

 
 
Fig.3.  Preview of the learning process. Plot of model accuracy on 
training and validation dataset. From the plots of accuracy and loss 
it is evident that the model has a comparable performance on both 
training and validation datasets. The final total learning time of the 
network was very fast (in minutes). Herein it was manually 
stopped. 

Fig.3. shows an example of the evolution of the accuracy 
achieved during the training phase of the AlexNet network 
using the validation images of our dataset. 

The results from the testing datasets are shown as a 
confusion matrix for all the artifact detectors (Fig.4.). The 
CNN based approach was shown to have an accuracy of 
88.1 %. 

 

 
 

 
 

 
 
Fig.4.  Confusion matrices for imbalanced cases show the 
distribution of the test segments into false/true positives/negatives. 
A summary of the statistics is given in the last rows/columns. A: 
CNN. The neural network can identify candidates for artifacts 
which could have been missed (red box). B: COV. C: 
MaxDiffPSD. 



 
 
 

MEASUREMENT SCIENCE REVIEW, 19, (2019), No. 5, 222-231 
 

227 

Figures of ROC and PR curves and their areas including 
probabilistic CNN soft-labels are presented in Fig.5. and 
Fig.6. 
 

 
 

Fig.5.  ROC curves for individual models to evaluate output 
quality. Binary inputs give one point on the ROC curve while the 
probabilistic CNN returns a smooth curve where an optimal point 
could be found. 

 

 
 

Fig.6.  Precision-Recall curves. Unlike the ROC curve, PR curves 
are very sensitive to imbalance. A classifier optimized for good 
AUC-ROC on an unbalanced data is likely to obtain poor PR 
results. 
 

Although a high computational cost is typical for deep 
learning architectures during training, the evaluation phase 
is very quick and efficient. Processing of 1-s MER segment 
took on average 0.885 (std. 0.039) seconds for the CWT 
computation and 0.005 (std. 0.0004) seconds for the CNN 
evaluation on a standard i5 2.8 GHz PC with 8 GB RAM 
(Table 1.). 

 
Table 1.  Descriptive statistics that summarize the speed of 

computation in seconds (4930 images). 
 

Statistic CWT CNN CWT+CNN 

mean 0.8850 0.0048 0.8897 
standard deviation 0.0385 0.0004 0.0385 

min 0.7978 0.0045 0.8025 
50% percentile 0.8863 0.0047 0.8910 

max 2.3352 0.0126 2.3399 

CNN can distinguish among classes of artifacts 

As a second result, we determined balanced-data 
multiclass CNN results with a prediction accuracy of 
75.3 %, which is a noticeably good level and clearly reveals 
the effectiveness of the proposed method as presented in 
Fig.7. It was observed that both power and baseline groups 
had comparable accuracy values. The biggest difference was 
given for the frequency label. Frequency and baseline 
artifacts were incorrectly labelled as a power contamination 
several times. By accessing “soft-labels”, the user can adjust 
the sensitivity for each type of artifact, so that there is a 
higher sensitivity for the types that are more troublesome. 

 

 
 

Fig.7.  Multiclass classification using a CNN detector on the 
testing set. 

 
Detailed focus on artifacts 

Each layer of a CNN produces a response, or activation, to 
an input image. However, there are only a few layers within 
the CNN that are suitable for image feature extraction. The 
layers at the beginning of the network capture basic image 
features, such as edges and blobs. We examined the 
activations and discovered which features AlexNet learned 
by comparing areas of activation with the original image. 
Our method detected artifacts and focused on the most 
activated areas (Fig.8.). 

 
Table 2.  Example measurements for the set of properties for each 

recognized artifact object in the binary image. 
 

Feature Value (mostly pixel-based) 

Centroid [71.94 83.45] 
BoundingBox [43.50 16.50 64 115] 

MajorAxisLength 115.59 
MinorAxisLength 57.14 

Area 4622 
Eccentricity 0.87 
Orientation -85.03 
ConvexArea 5055 

Perimeter 285.60 
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Fig.8.  Our methodology was able to find the strongest channel for 
a particular MER segment and mark the exact artifact onset time. 
Herein, we compared the strongest channel with the original image. 
Information retrieval was performed on the strongest channel in the 
5th Convolutional Layer. Using the automatic Otsu’s global 
threshold segmentation, image parameters are extracted (red box) 
from the artifact (Table 2.). 
 
4.  DISCUSSION 

This paper applies deep learning strategy to classifying 
artifacts in Parkinson’s disease microelectrode recordings. 
This method could be of potential interest not only for 
invasive recordings but also for noninvasive ones (e.g., 
electroencephalography). The data was first preprocessed 
via wavelet transformation and then analyzed using 
convolutional neural network. 

Evaluation criteria showed that the proposed algorithms 
obtained the following knowledge: 

1)  CNN results are at least comparable to the previous 
simple methods (Fig.4., Fig.5., and Fig.6.). 

2)  Individual classes of artifacts are recognizable (Fig.7.). 
3)  Our method implemented the active layer highlighting 

as feedback so that an expert can make better decision 
(Fig.8.). 

Our novel approach is benchmarked on a gold-standard 
dataset and is supported by experimental validation. The 
performance of the CNN algorithm was compared with 
existing methods (MaxDiffPSD, COV) and relevant 
statistics are given (e.g., AUC-ROC, AUC-PR, accuracy, 
MCC). The results indicated that all metrics were highest for 
CNN. Indeed, the simplest method MaxDiffPSD achieved 
almost the same performance as the deep learning (CNN) 
method. But, in addition to the ability to successfully 
classify, our network can also decide which class of artifact 
is present (multiclass problem). This is a respectable result if 
one considers that the task was quite complex. In this 
regard, only artifact classes of interest can be 
selected/classified, which is a real new feature and 
advantage over the state-of-the art methods and the article 
[21]. 

Subsequently, we confirmed our hypothesis of its capacity 
to report the most activated layer and to localize the area of 
the MER in which artifacts originate. The authors of the 
AlexNet stated in their original paper that their model is 
capable of identifying the region of interest on the image 
[44]. Therefore, we have adapted this proven model for our 
problem. Our approach uniquely allows for targeting the 
time location of the artifact in a one-second segment, which 
has not been previously designed and implemented. To 
accurately evaluate the onset/offset of each identified 
artifact, we do not have labeled data for objective validation, 
nor a means to aggregate the 2D binary matrix into one 
dimension. So, this feature cannot be compared with 
identification based on state-of-the-art methods (e.g., 
MaxDiffPSD). Moreover, this is even beyond the capacity 
of state-of-the-art methods. 

The one type of existing state-of-the-art methods for 
artifact detection in single-channel MER that has been 
rigorously tested is unsupervised change-point detection 
[23]-[25]. The authors presented the extremely high 
detection accuracies of change-point detection, which were 
almost 100 % on simulated data. We show that real-world 
validation performance may not be as robust when the 
problem is evaluated as supervised (COV accuracy = 
78.5 %). Among others, the COV method typically labels a 
segment as an artifact when an artifact was not present (a 
common case for a large sudden spike). Such problems can 
be overcome by a CNN. 

Offline analysis is of no use to neurosurgeons. A quick 
(within 0.5-1.0 second) result of the calculation is desirable 
during the MER recording in the surgery room. Our solution 
meets these requirements with processing speeds below 0.9 
seconds (Table 1.). A time analysis was performed on all 
test data (4930 images) and classification by the saved 
model for the new image was very fast. As shown, it takes 
nearly 1 second to calculate the CWT and resize the image. 
The proposed techniques could be implemented during 
surgery for near real-time applications of detecting artifact 
classes or potential biomarkers. CWT + CNN seems to be an 
effective way to extract hidden information from a MER in 
DBS. 

Research in the field of DBS-MER processing has 
historically been limited due to low volumes of annotated 
data. Despite this fact, we have a large and comprehensive 
dataset, gathered from electrodes implanted in the brain, 
offering a lot of randomly selected trajectories of ten-second 
long brain activity recordings. In the presented problem, we 
have thousands of training samples and there were no 
obvious effects of overfitting. This method appears to be 
transferable to other datasets and we plan to apply it in 
dystonia [31]. 

This paper presents several evident advances but also 
contains limitations. We have evaluated several 
combinations of the hyperparameters of the CNN to be 
tuned, but we have not systematically performed the 
hyperparameter optimization. In this regard, we have only 
retrained AlexNet for 2 resp. 3 output classes in the last 
layer. This has allowed for a small subset of weights to be 
changed, while the majority of the initially optimized core 
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AlexNet weights were retained, so we leveraged the 
AlexNet optimization process. We would rather refer to how 
the hyperparameters were systematically optimized in the 
original architecture [44]. Nevertheless, a deeper analysis of 
the hyperparameters can lead to even better results [45]. It is 
apparent that the loss functions decreased during training 
and we captured the artifact patterns successfully. 

AlexNet is already dated architecture. For further research, 
we would consider novel deep learning architectures such as 
Inception [46], residual networks [47], or dense-net [48] to 
improve the results. It has been shown that other 
architecture and resizing of the input image may have a 
significant effect on the accuracy of the classification and 
the current satisfactory accuracy could increase by more 
than 10 % [49]. 

In the future, we offer a semi-supervised principle, namely 
submitting vague images for re-evaluation by the rater. We 
identified the active learning approach as a viable route for 
further research [50]. 
 
5.  CONCLUSION 

Currently, there is a variety of software methods that can 
enable detection of DBS biomarkers. Such software will 
enable spike sorting, spike clustering, and network 
synchronization analysis. Therefore, the concept of 
microrecording seems very attractive and promising in the 
tailoring of individual patient therapy. This article illustrates 
an innovative approach to microelectrode recordings 
processing. The main result is the implementation of an 
artifact detector based on the convolutional neural network. 
To our knowledge, deep learning in the field of DBS has not 
been studied yet. This automatic approach can lead to 
improved DBS diagnostic procedures and can improve DBS 
effectiveness. The results suggest that the presented 
methodology is promising for DBS signal processing 
evaluation and is able to capture more hidden patterns in 
MER data, specifically not only artifacts, but also, for 
example, some other characteristic features (neuronal firing 
or even identifying potential candidates for biomarkers). It 
can be applied to any movement disorders in deep brain 
stimulation procedure implantation. Models, source codes 
and anonymized mock data are available upon request. 
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