
 

 

 

MEASUREMENT SCIENCE REVIEW, 18, (2018), No. 5, 207-217 

_________________ 

DOI: 10.1515/msr-2018-0029 

207 

 

 
 

    

Pseudorandom Dynamic Test Power Signal Modeling  

and Electrical Energy Compressive Measurement Algorithm  

Xuewei Wang, Jing Wang 

Institute of Information Science and Technology, Beijing University of Chemical Technology, North Third Ring Road, No.15, 

100029, Beijing, China, wangxw@mail.buct.edu.cn 

 

With the rapid construction of smart grid, many applications of the new generation and the large power dynamic loads are revolutionizing 

the electrical energy measurement of electricity meters. The dynamic measurement errors produced by electricity meters are intolerable. In 

order to solve the dynamic error measurement of electrical energy, firstly, this paper proposes a three-phase pseudorandom dynamic test 

power signal model to reflect the main characteristics of dynamic loads. Secondly, a compressive measurement algorithm is proposed by 

the means of steady-state optimization to accurately measure the electrical energy. The experimental results confirm the effectiveness of 

the three-phase pseudorandom dynamic test signal model, the maximum errors of compressive measurement algorithm are superior to 

1×10-13, the high precision enables the algorithm to accurately measure the electrical energy under different dynamic conditions. 
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1.  INTRODUCTION 

During recent years, the electrical networks have been 

growing more and more complex, with the applications of 

distributed renewable electricity sources (such as 

photovoltaic power supply) and the use of dynamic loads 

(such as electric arc furnaces, high-speed railway train and 

electric vehicle charging station), the current amplitude 

fluctuations of the dynamic loads have shown complex 

random characteristics, such as the quick and random 

dynamic changes [1]-[4]. Under these dynamic conditions, 

the electrical energy measured by electricity meters may 

produce significant measurement errors, in some cases, the 

error can be as large as -37.7 % [5]. Therefore, in order to 

evaluate electrical energy measuring algorithm under 

dynamic conditions, dynamic test signal modeling and the 

investigation of electrical energy measuring algorithm have 

become two challenging scientific problems. 

The test signal modeling is important for reflecting the 

influence of dynamic load characteristics to electrical energy 

measuring algorithms. Last decades have witnessed 

significant contributions to this topic; they are essentially 

focused on the steady periodic test signal modeling, 

including sinusoidal and nonsinusoidal signals [6]-[9]. The 

standard IEEE 1459 clearly has defined the steady 

nonsinusoidal signal model with harmonics [10], [11]. In 

recent years, a few studies have started focusing on the 

dynamic test signal modeling. The authors in [12] and [13] 

have proposed two special amplitude modulation test signals 

with sine wave envelope or trapezoidal wave envelope to 

reflect the influence of current amplitude periodic 

fluctuation to the measuring algorithm in electricity meter. 

In [5], the on-off-keying (OOK) dynamic test power signal 

model has been proposed for evaluating the influence of 

current amplitude quickly changing to electrical energy 

measuring algorithm. The above proposed signal models are 

effective for solving the error evaluation of electrical energy 

measuring algorithm adopted in electricity meters under 

steady or periodical dynamic conditions. However, in 

electrical networks, the dynamic load current amplitude 

changes with random characteristics, obviously, the major 

drawbacks of these signal models are that they are 

deterministic and periodical, that is to say, they cannot 

reflect complex random dynamic test characteristics. 

Unfortunately, until now no suitable dynamic test signal 

models can be found in both literatures and standards. 

As for the electrical energy measuring algorithm, the 

conventional algorithms are in time domain or frequency 

domain. In the time domain, the electrical energy measuring 

algorithms, including asynchronous measuring algorithm 

[14], quasi-synchronous measuring algorithm [15] and in the 

frequency domain, the widely used electrical energy 

measuring algorithms, are based on cosine window discrete 

Fourier transform (DFT) algorithms [16], [17]. However, 

until now, the errors of the above energy measuring 

algorithms have not been clear under dynamic random 

conditions. 
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As for the random dynamic signal processes, the 

compressive sensing (CS) is a very efficient signal 

processing theory [18], [19], which states that if the 

observed signal is sparse in some transform domains, 

according to the restricted isometry property (RIP), it is 

possible to reconstruct the signal with high probability from 

many fewer samples by constructing sensing matrices. Up to 

now, the CS signal processing has been investigated in 

different fields and has mainly focused on signal 

compression, reconstruction, and sensing matrix 

construction [20]-[23]. 

In CS, the sensing matrix construction is an important part 

for signal measurement. The proposed sensing matrices can 

be divided into three main classes: random matrices [24]-

[26], deterministic matrices [27]-[29], and optimal sensing 

matrices for particular signal processing problems, such as 

the matrix with enhanced ratio of signal-to-interference [30] 

and the matrix with the minimal relevance to sparse bases 

[31]. 

In order to solve signal detection problems and to avoid 

the high computational complexity of signal reconstruction, 

there is a growing interest to investigate a novel signal 

processing method that directly deals with compressive 

measurements, which is called the CM method. In [32], a 

novel CM algorithm has been proposed based on the 

Gaussian matrix for signal detection, classification and 

estimation. After that, the authors in [23] have investigated a 

CM algorithm for detecting machine fault features by using 

the Walsh-Hadamard sensing matrix. The authors in [33] 

have proposed a CM algorithm for state detection of 

vibration signal. However, the existing CM algorithms have 

mainly focused on the detection or estimation of random 

signal feature and state. But little attention has been paid to 

the algorithm for accurately measuring electrical energy 

value under random dynamic conditions.  

In this paper, we have the motivations to estimate a novel 

pseudorandom dynamic test signal model for evaluating 

errors of the cosine window-based electrical energy 

measuring algorithms and investigate a novel CM algorithm 

for accurately measuring the electrical energy value under 

random dynamic conditions. The main contributions in this 

paper are as follows: 

� A three-phase pseudorandom dynamic test signal model 

is proposed to reflect the main random characteristics of 

dynamic loads. 

� A keying implementation scheme is established to 

generate dynamic test current and power. 

� A novel non-reconstructed CM algorithm is proposed for 

accurate electrical energy measurement. 

� An optimal sensing matrix with minimum error is 

constructed for CM algorithm. 

The rest of this paper is organized as follows: In Section 2, 

three-phase pseudorandom dynamic test current and power 

signals are proposed and generated. In Section 3, the 

sparseness of dynamic test power is proved. In Section 4, 

the CM algorithm is proposed for measuring electrical 

energy and an optimal sensing matrix is constructed. In 

Section 5, simulations are carried out to prove the accuracy 

of the CM algorithm and a discussion is also presented. 

Finally, Section 6 concludes this paper. 

2.  PSEUDORANDOM DYNAMIC TEST SIGNAL MODELING AND 

IMPLEMENTATION SCHEME 

A.  Main characteristics of dynamic loads 

Under dynamic load conditions, the voltage is basically 

stable and periodical [34]. As far as the current and power 

signals are concerned, the main characteristics are as 

follows: 

1)  Amplitude random fluctuation: This characteristic is 

caused by the load operations [35], as shown in Fig.1. In this 

paper, a typical dynamic load of high-speed railway train 

(HSRT) is taken as an example. 

2)  Quasi-periodical fluctuation: As for the majority of 

dynamic loads, the current amplitudes fluctuate quasi-

periodically (hour to hour, day to day) due to the operation 

period of load equipment [36], [37]. 

3)  Approximate Gaussian distribution [38], [39]: Through 

analyzing the statistic distributions of dynamic loads, the 

current and power probability density functions of HSRT 

are shown in Fig.2. Obviously, the probability density 

functions are similar to the Gaussian distribution. 

 

 
 

Fig.1.  Current and power amplitude fluctuations of HSRT. 
 

 
 

Fig.2.  Current and power probability density functions of HSRT. 

 

B.  Dynamic test signal modeling 

m-Sequence forms a family of binary pseudorandom 

sequences with excellent correlation property, approximate 

Gaussian distribution characteristics, amplitude random 

change and quasi-periodical fluctuation [40]. It is worth 

noting that the m-sequence has similar characteristics as the 

current and power signals of dynamic loads, therefore, the 

m-sequence is suitable for generating dynamic test signals. 

The voltage signal is kept in sinusoidal, a three-phase m-

sequence dynamic test current and power signals are 

deduced, which can be seen as three-phase m-sequence 

Amplitude-Shift-Keying (ASK) signals. 

The three-phase steady test voltage signal and dynamic 

test current signal can be expressed as: 

 

1
( ) sin( )s

k k k
u t U t= Ω +ϕ                       (1) 

 

1( ) ( ) ( ) ( ) sin( )
d s

k k k ki t m t i t I m t t φ= = Ω +           (2) 
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where , ,k a b c= represents the A-phase, B-phase, and C-

phase, respectively. ( )
s

ku t  and ( )s

ki t  are the steady voltage 

and current signal, respectively, ( )d

ki t is the dynamic test 

current signal, kU  is the amplitude of voltage, ( )kI m t is the 

amplitude of dynamic current, kϕ  and kφ  are the initial 

phases of steady voltage and dynamic current, respectively. 

1f  is the fundamental frequency and 1f =50 Hz. 1Ω  is the 

angular frequency and 1 12 fΩ = π . ( )m t  is the m-sequence 

binary modulation signal, which is: 
 

1 1

( ) ( ) ( ) { ( )(mod 2)} ( )
N N n

z

r n z

m t m r g t rT C m r z g t rT
′

= =

= − = − −∑ ∑ ∑      (3) 

 

1

( ) ( )(mod 2) [ ]: {1 2 1}
n

n

z

z

m r C m r z r N
′

′

=

= − ∈ = −∑ L          (4) 

 

[ ]
[ ]

1, , ( 1)
( )

0, , ( 1)

t rT r T
g t rT

t rT r T

 ∈ +− = 
∉ +

                      (5) 

 

where (4) is the m-sequence recursive formula, T  is the 

fundamental period and 11/T f= , 'n is the level of m-

sequence, N  is the maximum length in a period of m-

sequence and 2 1
n

N
′= − , mT is the period time of m-

sequence and m
T TN= , r is an integer number. zC  is 1 or 0. 

Based on the above analysis, the modulation model of the 

dynamic test current signal is shown in Fig.3. 
 

( )m t

( )s

ki t ( )d

k
i t

 

 
Fig.3.  Modulation model of dynamic test current signal. 

 

According to circuit theory, the mathematical expression 

for the calculation of the dynamic test power signal ( )d

kp t is: 

 

1

( ) ( ) ( ) ( ) ( )

      ( )[ cos( ) cos(2 )]
2

d d s s

k k k k

k k
k k k k

p t i t u t m t p t

I U
m t tϕ φ ϕ φ

= ⋅ = ⋅

= − − Ω + +
      (6) 

 

where ( ) ( ) ( )s s s

k k kp t i t u t= ⋅ , which is the steady test power. 

 

C.  Implementation scheme of dynamic test power signal 

According to (1), (2), and (6), a keying implementation 

scheme is established to generate the m-sequence dynamic 

test current and power as shown in Fig.4. 

Based on the scheme, in actual experiments, using Fluke 

6100A as the steady power source to generate the steady 

voltage and current, the m-sequence is used to control a 

silicon-controlled rectifier switch to ON or OFF to generate 

dynamic test current, as shown in Fig.5. Meanwhile, the 

dynamic test power is given from the multiplication of 

voltage ( )
s

ku t  and current ( )d

ki t , as shown in Fig.6. 

( )s

k
u t

( )s

ki t ( )d

ki t

( )d

kp t

( )m t

( )g t rT− ( )m r

t

t

t

t

 
 

Fig.4.  Keying implementation scheme of m-sequence dynamic 

test current and power. 

 

A-phase steady 

test current

A-phase dynamic 

test current

B-phase dynamic 

test current

C-phase dynamic 

test current

 
 

Fig.5.  Waveforms of three-phase dynamic test current. 

 

 
 

Fig.6.  Waveforms of A-phase dynamic test current and power.  

 
Fig.4. shows the simplicity of the keying implementation 

scheme. Fig.5. and Fig.6. illustrate that the m-sequence 

dynamic test signals can be generated effectively. 

 

3.  SPARSENESS ANALYSIS OF PSEUDORANDOM DYNAMIC 

TEST POWER 

Based on the CM theory, the processed signal must satisfy 

the prerequisite of sparseness. In this section, the sparseness 

of m-sequence dynamic test power is proved as follows. 

As shown in (6), the steady test power ( )s

kp t  can be 

rewritten as 

 

1
( ) ( ) ( ) [ cos( ) cos(2 )]

2

s s s k k
k k k k k

I U
p t i t u t t θ= ⋅ = ∆ − Ω +        (7) 

 

where k k k
ϕ φ∆ = −  and k k k

θ ϕ φ= + . 
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The autocorrelation function of  ( )s

kp t  is calculated as (see 

(A1) in Appendix) 
 

2 2 2 2
2

1
0

1
( ) ( ) ( ) cos ( ) cos( )

4 8

mT
s s s k k k k
k k k k

m

I U I U
R p t p t dt

T
τ τ τ= + = ∆ + Ω∫ 2 (8) 

 

Therefore, the autocorrelation function of ( )d

kp t  is (see 

(B1) in Appendix)  
 

0

0

2 2 2 2
2

1
0

1
( ) ( ) ( )

1
( ) ( ) ( ) ( )

1
cos ( ) cos( ) ( ) ( )

4 8

( ) ( )

m

m

m

T
d d d

k k k

m

T
s s

k k

m

T
k k k k

k

m

s

k m

R p t p t dt
T

m t m t p t p t dt
T

I U I U
m t m t dt

T

R R

τ τ

τ τ

τ τ

τ τ

= +

 = + + 

 
= ∆ + Ω ⋅ + 
 

=

∫

∫

∫

      

      2

      

(9) 

 

where  ( )mR τ  is the autocorrelation function of ( )m t . 

According to the Parseval’s theorem, the power spectral 
density is the Fourier transform of autocorrelation function, 

consequently, the power spectral density of ( )d

kp t  is  

 

2 2 2 2
2

1

2 2 2 2
2

1

2 2
2

( ) ( ) ( ) ( )

cos ( ) cos( ) ( )
4 8

1
cos ( ) ( ) ( ) cos( )

4 8 2
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4

d d j s j
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jk k k k
k m m
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S R e d R R e d

I U I U
R e d

I U I U
S S e d
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τ τ

τ

τ

τ τ τ τ τ

τ τ τ

τ τ
π

∞ ∞− Ω − Ω

−∞ −∞

∞ − Ω

−∞

∞ − Ω

−∞

Ω = =

 
= ∆ + Ω 

 

 = ∆ Ω + ⋅ Ω ⊗ Ω  

=

∫ ∫

∫

∫

       2

       2

       [ ]
2 2

1 1( ) ( ) ( 2 ) ( 2 )
16

k k
k m m m

I U
S S S∆ Ω + Ω− Ω + Ω+ Ω

(10) 

 

where ( )mS Ω  is the power spectral density of ( )m t , which 

is expressed as [40] 
 

2

1

2 2

0

( ) ( )

1 1 sin( 2)
( ) ( ) ( )

2 4 4 ( 2)

j

m m

l
l

S R e d

lN T

N N N T N

ττ τ

π π
δ δ

∞ − Ω

−∞

∞

=−∞
≠

Ω =

  Ω+ Ω
= + + Ω + Ω− Ω 

∫

∑       
  (11) 

 

Substituting (11) into (10), the power spectral density of 

( )d

kp t  is rewritten as 

 

[ ]
2 2 2 2

2

1 1

2 2
2

1 12

2

2 2 2 2
2 1

2
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(12) 

By simulation using MATLAB, the autocorrelation 
functions and power spectral density functions of steady test 

power ( )s

kp t , m-sequence ( )m t , and dynamic test power 

( )d

kp t  are shown in Fig.7. The parameters for simulation 

are listed in Table 1. 

Table 1.  Parameters for simulation in Fig.7. 
 

Parameters Value Parameters Value 

k  a  1f  50 Hz 

aU  220V sf  
6000 
Hz 

aI  5A aφ  0
°  

aϕ  0
°  T  0.02 s 

Length of  
m-sequence N  

1023 Duration NT  20.46 s 

 

 

 

Fig.7.  Autocorrelation functions and power spectral density 
functions of steady test power, m-sequence and dynamic test 
power. 

 

Fig.7.a) and Fig.7.b) present that the steady test power is 
auto correlative, but the power spectrum is sparseness. 
Fig.7.c) and Fig.e) indicate that both autocorrelation 

function ( )mR τ  and ( )d

k
R τ  are similar to the Dirichlet 

function, which show the approximate Gaussian 
distributions of m-sequence and dynamic test power besides 
amplitude random fluctuation and quasi-periodic change 
characteristics, this proves that the characteristics of 
dynamic test power are consistent with that of dynamic 
loads, as mentioned in Section 2. 

For the power spectral density, as shown in (12) and 
Fig.7.f), the power spectrum of the dynamic test power 

( )d

kp t  is discrete spectrum and sparseness in frequency 

domain. The sparse base is FFT base.  
Therefore, it is concluded that the CM algorithm is 

suitable for measuring the electrical energy of m-sequence 
dynamic test power. 

 
4.  ELECTRICAL ENERGY COMPRESSIVE MEASUREMENT 

ALGORITHM 

A.  Electrical energy CM algorithm model 

The discrete expression of ( )d

kp t  in (6) can be written as 

 

1

1

( ) ( )[ cos( ) cos(2 )]
2

          = ( )[ cos( ) cos(2 )]
2

d k k
k s k s k

k k
s k k

I U
p n m nT nT

I U
m nT n

θ

ω θ

= ∆ − Ω +

∆ − +
     (13) 
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where 1 1 sTω = Ω  is the digital frequency, 1s sT f= , sf is 

the sampling frequency, sN  is the number of sampling 

points in a fundamental period T , and 1s sN f f= , n  is an 

integer number and 1,2, ,
s

n N N= ⋅L . 

Let mN  be the total number of sampling points in a m-

sequence cyclical period mT  and m sN N N= ⋅ . The dynamic 

test power vector is defined as 

[ (1), (2), ( ), , ( )]d d d d d

k k k k k mp p p n p N=P K K , which is regarded as the 

original processed signal of a CM matrix, the electrical 

energy of 
d

kP  is calculated by constructing an optimal 

sensing matrix opΦ . 

Based on the CM theory, a general CM algorithm for 

calculating electrical energy of 
d

kP  can be expressed as  

 
q d

k k= ⋅E PΦ                               (14) 

 

where 
q

kE  is the electrical energy measurement vector, q  is 

an integer and ( ) ( ) ( )1 2q

k k k k
E E E q=   E L . 

 

B.  Construction of optimal sensing matrix 

In order to accurately measure the electrical energy, a 

novel sensing matrix opΦ  for the CM algorithm is 

constructed through the system transfer function. 

Let 1 [ (1), (2), , ( )]
mN mh h h N× =h L  be a system impulse 

response vector and 
d

kP be a signal input to the system 1 mN×h , 

the system output can be expressed as the convolution  

 

  ( ) ( ) ( )  : n=1,2,d

k kE n h n p n= ⊗ L                (15) 

 

where ( )kE n  is the discrete electrical energy in the time 

interval [0, snT ]. 

According to the definition of convolution operation, 

equation (15) can be described as two matrices 

multiplication 
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Meanwhile, equation (16) can be simplified as  
 

2 1mN d

k k

− = ⋅E Φ P                               (17) 

 

Equation (17) presents that the general sensing matrix Φ  

is composed of elements ( )h n . Because the aim of the CM 

algorithm is to retain the maximum average electrical 

energy of signal ( )d

kp n , from (16), the maximum energy 
cm

k
E calculated by the CM matrix can be obtained  from the 

maximum element of vector  
2 1mN

k

−
E as 

 

{ }m ax ( )

(1)

(2)
[ ( ) ( 1) (1)]

( )

mNcm

k k k
n

d

k

d

k

m m

d

k m

E E n E

p

p
h N h N h

p N

= =

 
 
 = −
 
 
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K
M

    
       (18)  

 

Equation (18) can be rewritten in a simple form as 

 
cm d

k op kE = ⋅PΦ                                (19) 

 

Equation (19) means that the constructed novel sensing 

matrix 1 1[ ( )] [ ( 1)]
m mop op N m Nn h N nφ × ×= = − +Φ , which is a vector 

form with 1 mN×  and minimum measurement error. From 

(15) and (17), the optimal sensing matrix elements of opΦ  

can be designed by ( )h n  through system steady-state 

optimization method. 

By the discrete-time Fourier transform (DTFT) of (15), the 

frequency domain form of electrical energy is: 

 

( ) ( ) ( )cm d

k kE H P=ω ω ω                       (20) 

 

where ( )H ω  is the DTFT of ( )h n , ( )d

kP ω  is the DTFT of 

( )d

kp n , which is calculated as 
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1

( ) ( )
mN

j n

n

H h n e ωω −

=

= ∑                          (22) 

 

According to the steady-state optimization method, the 
( )H ω  is defined as an optimization variable, the objective 

function and constraint condition in the frequency domain 

are as follows 
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1 2

1 1
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m mN N

cm s

k k

n n

J C E E C Hω ω ω ω
= =
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m mN N
s s j n j nk k m
k k k

n n

I U T
E E e eω ωω − −

= =

= = ∆∑ ∑  

where 
s

kE  is the theoretical steady electrical energy and 

cos( )
2

s k k m
k k

I U T
E = ∆ , the minimum value of performance 

index J  is calculated as 

 

1 2( ) 2 ( ) 0d

k

J
C P C H

H

∂
= + =

∂
ω ω                (24) 
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where 1C  and 2C  are constants, therefore, the general form 

of  ( )H ω  in frequency domain is 

 

1 1

2 2

1
1 1

2

( ) ( ) cos( ) ( )
2 2

( 2 ) ( 2 )
4

k k

d

k k k k

i

j jk k

i i

C C
H P I U i

C C

C I U
e i e i

C

θ θ

ω ω π δ ω π

π
δ ω ω π δ ω ω π

+∞

=−∞

+∞ +∞
−

=−∞ =−∞

= − = − ∆ −

 
+ + − + − − 

 

∑

∑ ∑

2

         2 2

(25) 

 

It is defined 1 24k kC C I U C= −  as a constant, when 

0
k k
θ∆ = = , equation (25) can be rewritten as: 

 

1

1

( ) 2 ( 2 ) ( 2 2 )

( 2 2 )

i i

i

H C i i

i

+∞ +∞

= −∞ = −∞

+∞

= −∞

= − − + −

− − −

∑ ∑

∑

[

            ]   

ω π δ ω π π δ ω ω π

π δ ω ω π
(26) 

 

By the inverse DTFT of ( )H ω , the general form of 

( )h n is 

 

1( ) IDTFT[ ( )] [1 cos(2 )]h n H C nω ω= = −            (27) 

 

As mentioned before, 1 1 12s sT f fω π= Ω = , the ( )h n can 

be also expressed as 
 

14
( ) IDTFT[ ( )] [1 cos( )]

s

f n
h n H C

f

π
ω= = −           (28) 

 

Meanwhile, ( ) ( 1)op mn h N nφ = − + , the general form of ( )
op

nφ  

is 

1

1

4 ( 1)
( ) ( 1) 1 cos( )

4 ( 1)
       1 cos

m
op m

s

s

f N n
n h N n C

f

f n
C

f

π
φ

π

 − +
= − + = − 

 

  − 
= −  

   

      (29) 

 

Therefore, 1
[ ( )]

mop op N
nφ ×=Φ  is the optimal sensing matrix 

with minimum error.  

Finally, the mathematical expression for the calculation of 

electrical energy using the CM algorithm is: 

 

{ }T

1 1

1

[ ( )] [ ( )]

(1)

(2)
[ (1) (2) ( )] ( ) ( )

( )

m
m

m

cm d d

k op k op N k N

d

k

d N
dk

op op op m op k

n

d

k m

E n p n

p

p
N n p n

p N

φ

φ φ φ φ

× ×

=

= ⋅ = ⋅

 
 
 = ⋅ =
 
 
  

∑

P

K
M

    

Φ

(30) 

 

The accuracy of the CM algorithm is evaluated by the 

relative error of 
cm

kE  given in  

 
cm d

k k

d

k

E E
e

E

−
=                              (31) 

 

where 
d

kE  is the reference theoretical electrical energy,  

which is calculated as 

0
( )

T
d d

k on kE N p t dt= ∫                       (32) 

 

where onN  is the number of ( ) 1m r =  in a cyclical period of 

m-sequence. 

 

C.  RIP proof of optimal sensing matrix opΦ  

As mentioned before, the sensing matrix used for the CM 

algorithm must meet the restricted isometry property (RIP). 

In [18], Candes proved that the RIP is equivalent to the fact 

that the sensing matrix is uncorrelated to the sparse base. In 

this section, the opΦ  is proved to satisfy the RIP. 

In Section 3, the FFT base is used as sparse base: 
 

1
mN

mN
Ψ = W                             (33) 

 

where

11

1 ( 1) ( 1)( 1)

1 1 1 1

1

1

m

m m m

m

m m m m

m m m

Nn

N N N

N

N N n N N

N N N

−

− − − −

 
 
 =  
 
  

L

L

M M M O M

L

W W W

W

W W W

is the 

transformation matrix, 
2

m

m

j
N

N e

π
−

=W . 

The correlation of op
Φ and Ψ is calculated according to 

the minimum rank of 
( 1)m m

op

N N+ ×

 
 
 

Φ

Ψ
: 
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1 1 1

1

1
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N N N
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Nωω

−
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− − −

− −− 
 
    =    
 
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 

L

L

L
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Φ

Ψ
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 (34) 

 

after element transformation to get: 
 

11

11

( 1)

1 ( 1)( 1)

111

cos 2 ( 1)cos 20

0 1 1

0 1 1

m

m m

m m

m m m

m m

m

Nop
N N

N N

N N N

N N

Nωω
−
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Φ
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 (35) 

 

Obviously, the rand of 
( 1)m m

op

N N+ ×

 
 
 

Φ

Ψ
is 1

m
N + , which proves 

that the 
( 1)m m

op

N N+ ×

 
 
 

Φ

Ψ
is a row full rank matrix and each row in 

the matrix is uncorrelated, that is to say, the op
Φ  is 

uncorrelated to the sparse base Ψ . Therefore, the optimal 

sensing matrix with minimum error opΦ  satisfies the RIP 

property. 

 

5.  SIMULATION TESTS AND RESULT DISCUSSION 

In order to evaluate the accuracy of the CM algorithm used 

for electrical energy measurement, using MATLAB, a 

number of simulation tests were carried out in respect to 

different influence factors. 
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A.  Simulation of m-sequence dynamic test signals 

Firstly, simulation was carried out for the realization of m-

sequence dynamic test signals. By setting parameters, the 

mathematical expressions of m-sequence dynamic test 

signals are listed in the following: 

 

( ) 220 sin(100 )s

ku t tπ=                       (36) 

 

( ) ( ) ( ) 5 ( ) sin(100 3)d s

k ki t m t i t m t tπ π= = +        (37) 

 

( ) 550 ( )[1 2 cos(100 3)]d

kp t m t tπ π= − +           (38) 

 

Other simulation conditions are as follows. 

1)  The sampling frequency is 6000 Hz. 

2)  The length of m-sequence in a cyclical period is 31. 

3)  The number of cyclical periods M  is 2 and simulation 

duration is 1.24 s. 

 

 
 

Fig.8.  Simulation waveforms of dynamic test signals. 

The obtained waveforms are shown in Fig.8., which 

contains steady test voltage and current, m-sequence, 

dynamic test current and power. It can be observed that the 

dynamic test current and power have the same 

characteristics as m-sequence. As mentioned before, the 

characteristics are consistent with actual dynamic loads. 

 

B.  Accuracy of CM algorithm under different dynamic test 

signal conditions  

For different m-sequence dynamic test signals, the errors 

of the CM algorithm were evaluated by simulations. The 

common simulation test conditions are as follows: 

1)  The fundamental frequency 1f  = 50 Hz. 

2)  k
U  = 220 V and k

I  = 5 A. 

1)  Different lengths N  of m-sequence in a cyclical period  

Firstly, simulations were performed with different lengths 

of m-sequence in a cyclical period. The cyclical period 

number was set to 3 and sampling frequency was 6000 Hz. 

The errors of the CM algorithm are reported in Table 2. 

2)  Different cyclical period numbers M  of m-sequence  

Secondly, simulations were performed with different 

cyclical period numbers of m-sequence. The length of m-

sequence in a cyclical period was set to 1023 and sampling 

frequency was 6000 Hz. The errors of the CM algorithm are 

reported in Table 3. 

3)  Different sampling frequency 

In addition, simulations were performed with different 

sampling frequency. The 1023N =  and 3M = , the power 

factor was 1.0 and simulation signal time duration was 

61.38 s. The errors of the CM algorithm are reported in 

Table 4. 

As for the results from Table 2. – Table 4., it can be 

proved that with different test conditions, the errors of the 

CM algorithm are superior to 1×10-13. Therefore, the CM 

algorithm shows very good performance for the electrical 

energy measurement of m-sequence dynamic test signals. 

 

 

 
Table 2.  Errors of CM algorithm under different lengths of m-sequence dynamic test signals. 

 

Power 

factor 

Length of 

m-sequence 

Duration 

[s] 

Theoretical electrical 

energy [Ws] 

Electrical energy calculated 

by CM algorithm [Ws] 

Error 

[×10-14] 

1.0 

0
k
ϕ °=  

0
k
φ °=  

127 7.62 2112.000000000001 2111.999999999920 3.81 

255 15.3 4224.000000000001 4223.999999999830 4.00 

511 30.66 8448.000000000002 8448.000000000724 7.47 

1023 61.38 16896.00000000000 16895.99999999779 11.7 

0.5L 

0
k
ϕ °=  

60
k
φ °=  

127 7.62 1056.000000000000 1056.000000000040 3.81 

255 15.3 2112.000000000000 2112.000000000084 3.95 

511 30.66 4223.999999999999 4224.000000000464 9.32 

1023 61.38 8447.999999999998 8447.999999999020 11.0 

0.8C 

36.87
k
ϕ °=  

0
k
φ °=  

127 7.62 1689.597736249649 1689.597736249695 2.69 

255 15.3 3379.195472499298 3379.195472499350 1.77 

511 30.66 6758.390944998597 6758.390944998667 1.21 

1023 61.38 13516.78188999719 13516.78188999792 4.35 
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Table 3.  Errors of CM algorithm under different cyclical period numbers of m-sequence dynamic test signals. 

 

Power 

factor 

Cyclical period numbers 

of m-sequence 

Duration 

[s] 

Theoretical 

electrical energy 

[Ws] 

Electrical energy 

calculated by  

CM algorithm [Ws] 

Error 

[×10-14] 

1.0 

0
k
ϕ °=  

0
k
φ °=  

1 20.46 5632.000000000001 5631.999999999664 5.98 

2 40.92 11264.00000000000 11264.00000000170 13.3 

3 61.38 16896.00000000000 16895.99999999779 13.2 

4 81.84 22528.00000000000 22527.99999999419 19.9 

0.5L 

0
k
ϕ °=  

60
k
φ °=  

1 20.46 2816.000000000000 2816.000000000085 3.02 

2 40.92 5631.999999999999 5632.000000000822 12.3 

3 61.38 8447.999999999998 8447.999999999020 11.8 

4 81.84 11264.00000000000 11263.99999999747 17.5 

0.8C 

36.87
k
ϕ °=  

0
k
φ °=  

1 20.46 4505.593963332399 4505.593963332376 0.505 

2 40.92 9011.187926664797 9011.187926665107 2.85 

3 61.38 13516.78188999719 13516.78188999792 4.48 

4 81.84 18022.37585332960 18022.37585333065 5.21 

 

 

Table 4.  Errors of CM algorithm under different cyclical sampling frequency. 

 

Sampling frequency 

[Hz] 

Theoretical electrical energy 

[Ws] 

Electrical energy calculated by 

CM algorithm [Ws] 

Error 

[×10-14] 

6000 16896.00000000000 16895.99999999779 13.1 

5500 16896.00000000000 16895.99999999933 8.54 

5000 16896.00000000000 16896.00000000369 13.0 

4500 16896.00000000001 16895.99999999816 12.5 

4000 16896.00000000000 16895.99999999993 10.1 

3500 16895.99999999999 16895.99999999925 9.10 

3000 16896.00000000000 16895.99999999968 8.08 

2500 16896.00000000000 16895.99999999998 7.09 

2000 16896.00000000000 16895.99999999773 7.80 

1500 16896.00000000000 16895.99999999974 7.17 

1000 16896.00000000000 16895.99999999769 7.76 

 

 

 

C.  Comparison against other window-based algorithms  

As we all know, the window-based algorithms are usually 

adopted to design low pass filters for filtering the input 

power and measuring electrical energy by accumulating the 

output power, which can be expressed as 

 

1

( )
mN

w

k

n

E p n
=

=∑ %                                 (39) 

 

where ( )p n%  is the output power of low pass filters. 

 

Table 5.  Coefficients 
da  of three cosine windows. 

 

Window 
0

a  1
a  2

a  

Rectangular 1.00   

Hanning 0.50 0.50  

Blackman 0.42 0.50 0.08 

 

 

 

 

 

The most popular windows are cosine windows, which are 

defined as 

 

2

0

2
( ) ( 1) cos

D

d

d w

dv
w v a

N

π

=

 
= −  

 
∑ ,   0,1, , 1

w
v N= −L     (40) 

 

where wN  is the window length, D is the number of 

window coefficients da  and 1D ≥ . The coefficients da  of 

three kinds of proposed windows are listed in Table 5. [17].  

The comparisons were performed between the CM 

algorithm and three window-based algorithms through two 

validation test cases and the common conditions are: 

1)  The sampling frequency is 1600 Hz. 

2)  Cyclical periods M = 3.  

3)  k
U = 220 V, k

I = 5 A and power factor is 1.0. 

4)  The window length is 128. 
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1) Different simulation durations  

Firstly, with different lengths of m-sequence in a cyclical 

period, comparisons were completed under several different 

simulation durations. The result is shown in Fig.9. As can be 

seen from the results, for the CM algorithm, the relative 

errors are always small and less than 1×10-13, which are 

much smaller than those of other window-based algorithms.  

2) Different fundamental frequency of dynamic test signals  

Secondly, comparisons were completed with different 

fundamental frequency of dynamic test signals and the 

dynamic test conditions became nonsynchronized. The 

length of m-sequence in a cyclical period is 1023. The 

comparing result is shown in Table 6. 

The above results mean that the CM algorithm 

significantly outperforms the other window-based 

algorithms under nonsynchronous sampling conditions. 

 

 

Fig.9.  Errors of CM algorithm and other window-based 

algorithms. 

 
Table 6.  Errors of CM algorithm and other window-based algorithms. 

 

Fundamental 

frequency [Hz] 

CM algorithm 

[×10-14] 

Rectangular 

window[×10-4] 

Hanning 

window [×10-4] 

Blackman 

window [×10-4] 

Theoretical electrical 

energy [Ws] 

47.00 22.2 5.69 5.63 5.57 17951.99999999813 

47.50 12.7 5.97 5.89 5.82 17423.99999999776 

48.00 12.7 5.97 5.89 5.82 17423.99999999776 

48.50 6.37 6.22 6.12 6.05 16896.00000000000 

49.00 6.37 6.22 6.12 6.05 16896.00000000000 

49.50 6.37 6.22 6.12 6.05 16896.00000000000 

50.00 6.37 6.22 6.12 6.05 16896.00000000000 

50.50 16.7 6.44 6.31 6.23 16368.00000000254 

51.00 16.7 6.44 6.31 6.23 16368.00000000254 

51.50 16.7 6.44 6.31 6.23 16368.00000000254 

52.00 1.61 6.60 6.45 6.38 15839.99999999736 

 

6.  CONCLUSION 

In this paper, firstly, a novel three-phase m-sequence 

dynamic test current and power signals are proposed to 

reflect the main characteristics of actual dynamic loads in 

smart grid, a keying implementation scheme for the 

generation of the dynamic test signals is established, the 

effectiveness of the implementation scheme has been 

verified in experimental environment.  

Secondly, using the steady-state optimization method, an 

optimal  measurement  matrix  with  minimum measurement 

 

error is designed. Moreover, a CM algorithm is proposed for 

accurate electrical energy measurement. Simulation results 

show that the maximum errors of the CM algorithm are 

always lower than 1×10-13, which significantly outperforms 

that of another cosine window-based algorithm. 

The works of this paper can be applied for testing the 

dynamic errors of electricity meters and modifying the 

algorithm in electricity meters to reduce their errors under 

dynamic current conditions.  

 

APPENDIX 

A.  Derivation of ( )
s

kR τ  

In (8), the specific calculation processes of the autocorrelation function ( )
s

kR τ  can be shown as (A1) 

 

1 1 1
0 0

2 2 2 2 2 2
2

1 1 1
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B.  Derivation of ( )
d

kR τ  

In (9), the specific calculation processes of the autocorrelation function ( )
d

kR τ  can be shown as (B1) 

 

0

2 2 2 2 2 2
2

1 1 1

2 2 2 20

1 1 1

1
( ) ( ) ( ) ( ) ( )

cos ( ) cos( ) cos( ) cos( ) cos( )
1 4 4 4

( ) ( )

cos( ) cos(4 2 )
8 8

m

m

T
d s s

k k k

m

k k k k k k
k k k k k

T

m k k k k
k

R m t m t p t p t dt
T

I U I U I U
t t

m t m t dt
T I U I U

t

τ τ τ

τ θ θ
τ

τ τ θ

= + +

 
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