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This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this 

study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are 

discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in 

the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance 

velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In 

this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated. 
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1.  INTRODUCTION 

The finite element method (FEM) is a numeri-cal technique 

to obtain an approximate solution to a class of problems 

governed by elliptic partial differential equations. [1]. A 

simple and effective FEM can be used for fluid flow and 

temperature flow analysis by developing a MATLAB code. 

The FEM is nowadays used in industrial applications, 

including aeronautical, aerospace, automobile, naval, and 

nuclear construction. A number of general-purpose computer 

codes are obtainable for industrial users of FEM. 

The effect of FEM in the presence of a Poisson’s equation 

for different combinations of velocity boundary conditions 

with prescribed fluid flow and heat flow at the boundaries has 

been analyzed. Such a study is beneficial in the appropriate 

design of many devices and methods, such as mass flow 

meter, ultrasonic flow meter, thermal mass flow meter, and 

variable area meters [2]-[4]. The resultant problem is solved 

using the governing equation. To complete the above goals, 

the paper is structured as follows. Section 2 is devoted to the 

numerical technique for mathematical formulation. The finite 

element analysis is discussed in Section 3. In Section 4 and 

Section 5, the numerical results presented are discussed, and 

some important conclusions follow in Section 6. 

 

2.  NUMERICAL TECHNIQUE 

The goal of the numerical simulations is to determine the 

relationship between the transmitted energy and the changes 

in the flow rate of the pipe. For this numerical analysis, a pipe 

measuring 20 × 50 cm, as shown in Fig.1., is used. The fluid 

flows around a small pipe located in the middle of the domain 

with a uniform velocity V and having a diameter d = 10 cm 

as shown in Fig.1. This small pipe contains an energy source 

that produces q units of energy per surface area of the pipe 

per unit time.  
 

 
 

Fig.1.  Pipe flow system. 

 

The fluid flow is solved using the stream function for a 

specific value of entrance velocities [5]. Once the flow is 

determined, the temperature field can be established by 

solving the temperature governing equation [6].  

The governing equation that governs the two-dimensional 

problem, in general can be obtained from the below relation: 

 

2

*

1

*

Son                                                        

on                                                                                     

in    0

qn
y

Rn
x

R

S

HG
y

B
x

B
y

R
yx

R
x

yyxx

yxyx

=
∂
Φ∂

+
∂
Φ∂

Φ=Φ

Ω=+Φ+
∂
Φ∂

+
∂
Φ∂

+








∂
Φ∂

∂
∂

+







∂
Φ∂

∂
∂

    (1) 

Journal homepage: http://www.degruyter.com/view/j/msr 



 

 

 

MEASUREMENT SCIENCE REVIEW, 18, (2018), No. 2, 59-64 
 

60 

The coefficients Rx, Ry, Bx, By, G, and H are given as 

functions of x and y. The two-dimensional domain is denoted 

by Ω. S is the boundary of the domain, and S1 and S2 are parts 

of that boundary. nx and ny represent the outward normal unit 

vectors on the boundary [7]-[11].  

Poisson’s equation originates from the general governing 

partial differential equation, and it is adequate to describe a 

large number of applied problems including the flow of ideal 

fluids problems. The two governing equations for the flow of 

ideal fluids are shown below: 
 

0
uu yx

y x

∂∂
− =

∂ ∂
                               (2) 

 

0
uu yx

x y

∂∂
+ =

∂ ∂
                               (3) 

 

If we define Ψ such that it identically satisfies the condition 

for incompressible flow, then we have 
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By substituting equations (4) and (5) into the equation (2), 

the stream function of the fluid flow can be written as follows: 
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For steady state two-dimensional convection through a 

constant-property homogenous fluid, the energy equation is 

given by [7]  
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The above equation can also be rewritten as follows: 
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Here, φ is the temperature, k is the thermal conductivity of 

the fluid, and ρCP is the heat capacity of the fluid. ux and uy 

denote the velocity components in x and y directions, 

respectively. Since the time-dependency is beyond the scope 

of this paper, the thermal conductivity of the fluid will be 

assumed to be time-independent and take a constant value 

k = 1.0. Also, the heat capacity ρCP is assumed to be equal to 

1.0. 

In this paper, a two-dimensional steady flow problem is 

solved using the finite element technique. The flow field of 

that fluid then resolves the partial differential equations of 

temperature flow. For both fluid flow and temperature field, 

boundary conditions are applied. The domain of the problem 

is discretized to a large number of elements to promise the 

exactness of the solution. Both the fluid flow and temperature 

field have been reviewed for various values of entrance 

velocity.  

 

3.  FINITE ELEMENT ANALYSIS 

The finite element analysis obtains the temperatures, 

stresses, flows, or other desired unknown parameters in the 

FEM by minimizing the energy functional. The energy 

functional consists of all the energies associated with the 

particular FEM. Based on the law of conservation of energy, 

the finite element energy functional must equal to zero. For 

the numerical simulation of a pipe, MATLAB code using a 

mesh generator is developed [12]-[14]. 

A scheme of a main, typical module with discretization is 

shown in Fig.2. The finite element technique involves 

dividing the analysis region into several sub-regions. These 

small regions are the elements, which are linked with adjacent 

elements at their nodes. Mesh generation is a process of 

generating the geometric data of the elements and their nodes, 

and involves computing the coordinate nodes, defining their 

connectivity, and thus, constructing the elements. Here, mesh 

designates aggregates of elements, nodes and lines 

representing their connectivity. Capability and convenience 

of modeling the analysis domain are dominated by the mesh 

generation procedure. The geometric characteristics of 

generated elements affect the overall performance and 

accuracy of the finite element analysis. Therefore, mesh 

generation is one of the most important procedures in FEM. 

The input data for the mesh generator include the number 

of generation loops and some geometric coordinates of 

specific points on each side of each loop. Thus, the total used 

number of elements is discretized into domain element to 

maintain the continuity of the degrees of freedom along the 

edges of the elements. It should be noted, as shown in Fig.3., 

that the sizes of the elements decrease on getting closer to the 

small pipe in the middle so as to ensure the accuracy of the 

solution in this area of concentrated stresses. The mesh 

discretization is provided in both the flow and temperature 

analyses.  

A problem encountered with the two-dimensional problem 

analyses is how to number the nodes such that it minimizes 

the storage needed in the stiffness matrix. The bandwidth of 

the stiffness matrix depends on the way the nodes have been 

numbered. Also, the difference between a good numbering 

scheme and a poor numbering scheme can result in a very 

large difference in bandwidth requirements. Since finite 

element equations are related to each other only through 

common elements, the reduction of the bandwidth needs 

nodes that are connected by common elements that are as 

close in numerical value as possible.  
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Fig.2.  FEM flowchart. 

 

 

 
 

Fig.3.  Mesh discretization. 

 
The line connecting these nodes is referred to as the first 

wave of nodes, as shown in Fig.4. The second wave consists 

of all nodes that link to nodes in the first wave through 

common elements. The nodes in the second wave are then 

given the next consecutive numbers in the new order. This 

process continues until all nodes have been given new 

numbers. Finally, all elements should have node numbers that 

differ by no more than the number of nodes in the lengthy two 

consecutive waves, and even less. The output contains the 

new numbering scheme that will be used in the finite element 

analysis. 

 

 
 

Fig.4.  Wave of nodes. 

 
4.  FLOW ANALYSIS 

Both fluid flow and temperature field can be described by 

the general equation that governs the two-dimensional 

problems. However, the coefficients of the governing 

equation (1) differ from the fluid flow to the temperature field 

such that they satisfy the governing equations given in 

equations (6) and (8) for fluid flow and temperature flow, 

respectively.  

Since the flow analysis is characterized by the Poisson’s 

expression; it is recalled here for convenience. 
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The boundary conditions for the fluid flow analysis are 

illustrated in Fig.5. The x-component of the velocity at the 

entrance and the exit is constant. ux is constant specific value 

for the velocity and y is the y-coordinate of the nodes in that 

boundary. Since the flow is non-viscous and incompressible, 

the x-component of the velocity remains constant at the upper 

and lower boundaries. Thus, the boundary conditions of fluid 

flow at upper and lower boundaries can be given by the 

following relations: 

 

(10)uxΨ =
                                (10) 

 

( 10)uxΨ = −
                               (11) 

 

The values 10 and –10 are the y-coordinates of the nodes on 

upper and lower boundaries, respectively. The y-component 

of the velocity, i.e., uy is constant and equal to zero. Also, it 

is maintained the non-viscosity and incompressibility of the 

fluid. Once the boundary conditions and the coefficients are 

defined, the analysis of the fluid flow is determined. Results 

are attained for altered values of the velocity ux= 0.0, 0.40, 

0.80, and 1.0.  
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Fig.5.  Boundary conditions of the fluid flow. 

Fig.6. shows the fluid flow of the different specified values 

of the entrance velocity. As illustrated in the results, the flow 

field is the same for all values of the velocities; however, the 

absolute value of the flow increases with increasing entrance 

velocity. Also, it is noticed that when the velocity ux= 0.0, the 

flow field is static and the stream function is constant all over 

the domain. 

The temperature flow is characterized by the energy 

equation given by equation (8). Here, the coefficients of the 

general governing equation (1), Rx, Ry, Bx, By, G ,and H, take 

the following values; Rx = k, Ry = k, Bx = -ρCPux,       By= - 

ρCPuy, G = 0.0, and H = 0.0. The thermal conductivity k and 

the heat capacity of the fluid ρCP are assumed to have unit 

values. The coefficients Bx and By are functions of velocity 

components ux and uy, respectively. The velocity components 

ux and uy are given by using equations (4) and (5) as 

derivatives of the fluid flow with respect to x and y, 

respectively. 

 

 

 
 

 
 

Fig.6.  Fluid flow for different values of entrance velocity. 
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5.  TEMPERATURE ANALYSIS 

The boundary conditions for the temperature field analysis 

are illustrated in Fig.7. The small pipe in the middle is 

assumed to produce q units of energy per surface area of the 

pipe per unit time. The energy q is considered equal to unity 

at the small pipe and equal to zero at exit, lower boundary and 

upper boundary. The temperature flow φ is considered equal 

to zero at the entrance. Once the boundary conditions and the 

coefficients are defined, the analysis of the temperature field 

is ascertained.  

 

 
Fig.7.  Boundary conditions of the temperature field. 

 

Results are attained for altered values of the velocity,    ux= 

0.0, 0.40, 0.80, and 1.0. Fig.8. shows the flow field of the 

temperature at different specified values of the entrance 

velocity. It is noticed from the results that there is a steep 

decrease in the temperature field with increasing entrance 

velocity. This coincides with the fact that the heat transferred 

by convection is greater than heat transferred by conduction. 

Also, Fig.8. illustrates that the rate of heat transferred through 

the domain is increasing with increasing velocity, which 

results in a decrease in temperature near the heat source in the 

middle of the domain. 

In the present study, the flow is considered to be two-

dimensional with no difference in the span-wise direction. A 

partial differential equation is used to represent the flow 

domain. A series of numerical calculations have been 

conducted, and the results are presented in order to show the 

effects of fluid flow and temperature field on temperature 

distribution in the pipe channel. It should be noted that since 

the pipe size in the flow direction is relatively coarse, the local 

heat transfer is not as accurate or detailed as is the case of the 

x and y directions. However, the resolution is sufficient to aid 

in the design of pipe for industrial applications and also to 

provide information and insight into the fluid flow 

characteristics in the flow direction. In reality, since it is 

difficult to achieve an adiabatic boundary at the inlet and 

outlet of the pipe as assumed in the numerical model, a 

significant portion of the heat loss is transferred to the 

ambient environment, especially for low fluid flow 

conditions. Thus, when evaluating the heat transfer in pipe 

with low fluid flow rates, particular attention should be paid 

to the effects of this heat loss. 

 

 

 
 

 
 

Fig.8.  Temperature field for different values of entrance 

velocity. 
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6.  CONCLUSIONS 

In this paper, the numerical simulation of fluid flow and 

temperature field in a pipe channel for different entrance 

velocity is analyzed using the FEM through solving partial 

differential equations of the fluid flow. The fluid flow is 

expressed by the partial differential equation. The heat 

transfer is analyzed using the energy equation. The flow field 

of that fluid is then used to solve the partial differential 

equations of temperature flow. The flow structure and heat 

transfer characteristics are studied in detail. 

A fundamental and accurate technique is used to compute 

the steady flow problem using the FEM. The formulation is 

based on the differential equation and the energy equation. 

The obtained results show that the fluid flow is characterized 

by a circulation upwards and that the presence of a mode of 

heat transfer is purely conductive. The effect of the presence 

of heat source inside the field of the temperature flow is also 

inspected. According to these results of this work, we can 

conclude that our calculation seems to be in concordance with 

some other works found in the literature for simple 

geometries. However, the simplicity of the measurement 

techniques makes FEM a suitable method for steady flow 

analysis. 

 

NOMENCLATURE 

x,y - Cartesian coordinates 

Ψ - temperature 

k - thermal conductivity 

S - the boundary of the domain 

S1, S2 – part of the boundary 

ρCP  - heat capacity  

q - energy source  

V - velocity 

d - diameter 

Rx, Ry, Bx, By, G, H – coefficients 

ux – velocity of the x component 

uy – velocity of the y component 
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