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The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil 
engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of 
these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is 
caused by systematic errors and especially by different random events.  Our method is focused on the elimination of such random events, 
mainly the additive noise.  We use an averaging method based on the Lindeberg–Lévy theorem that improves the final depth resolution to a 
level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit 
value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This 
substantially simplifies the scanning process because the operator can easily determine the required number of scans.  
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1.  INTRODUCTION 

The 3D reconstruction based on laser scanning confocal 
microscopy is an indispensable tool for civil engineering. 
Particularly in civil engineering, many different porous 
materials must be analysed. Common examples include the 
micro fractures in the concrete or the cement paste. However, 
the depth resolution of these scans is substantially influenced 
by additive noise and other disturbing factors. The described 
work is a result of cooperation between the Faculty of Civil 
Engineering and the Faculty of Mechanical Engineering, 
BUT that is focused on the precise evaluation of the concrete 
material properties.  

In this article, we propose a method that eliminates the vast 
majority of the additive noise without degradation of useful 
information. This allows enhancing the depth resolution of 
the scans to the order comparable with horizontal and vertical 
resolution. Firstly, we describe the mathematical apparatus of 
our method. Subsequently, we assess our method with 
statistical evaluation and compare our results with methods 
used in common software tools that are provided with the 
microscopes. 
 
2.  SUBJECT & METHODS 
2.1.  Material and current methods  

Our method follows on the recently published work on 
morphological analysis of fracture surfaces [2], [3] and also, 
porous materials in [1]. The gist of our work is the 
improvement of z-resolution that determines the quality of the 

reconstruction. The overview of common approaches used 
for 3D reconstruction can be found in [6], [9]. 

The z-resolution, i.e. optical sectioning thickness, depends 
on many factors: the wavelength of the used light, pinhole 
size, numerical aperture of the objective lens, refractive index 
of components in the light path, and the assembly of the 
instrument. The degradation of the z-resolution is often 
caused by systematic errors and by random events. 
Systematic errors, for example imperfections of the lens, light 
diffraction, are not random so that they cannot be detected 
and eliminated by existing methods that work only with 
random events. For example, the authors [5] use the weighted 
window function to reduce the Poisson noise in confocal 
scanning. Also, our previous article [7] describes the methods 
to eliminate noise. But the systematic errors are not random 
so these methods are not able to eliminate it.  

Especially, additive noise is added to original values during 
the making, transfer or reproduction of an image. 

In our work, we deal with the random events reduction, 
especially additive noise, to improve z-resolution. 

During measurement, we scan the same point of the sample 
twice with the same conditions. In the case of noiseless 
measurements, we would get two identical results. 
Nevertheless, different values indicate the presence of noise. 
From the mathematical point of view, we consider everything 
what causes this difference as the noise (typically heat 
vibrations, also measurement errors, mechanical oscillations, 
etc.) 
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Let us mention some methods for reducing additive 
noise – Richardson-Lusy algorithm (RLA), Maximum 
Likelihood Estimation (MLE), and Iterative Constrained 
Tikhonov-Miller (ICTM) algorithm [4]. However, these 
methods are limited by the additional assumptions, e.g. 
Poisson distribution of noise [5]. Low-pass filters are 
commonly used to reduce the additive noise as well [9]. The 
key purpose of these filters is the reduction of high spatial 
frequencies in the signal in the sense of the Fourier transform. 
Nevertheless, these filters are not able to differentiate whether 
the high-frequency information is caused by noise or by high 
contrast in the image. Therefore, loss of information 
necessarily ensues.  

Our recent work [7] presents the method based on the 
Lindeberg-Lévy theorem as the pre-processing tool for single 
2D images. In this paper, we introduce the application of this 
approach in confocal scanning to eliminate the random events 
(additive noise) and improve the z-resolution to the same 
values as the xy-resolution. We perform a statistical 
comparison of our results with the standard commercial 
software solution (Olympus software, version 6). The results 
are summarised in Section 3 and in Appendix, Table 4. and 
Table 5. 

Table 4. shows that the average of seven or eight following 
measurements gives the results comparable with a low-pass 
filtered surface. The accuracy is higher with the increasing 
number of measurements and the correlation reaches the 
approximate value 0.999872 for K=25.  

All sample measurements were made with confocal 
microscope Olympus LEXT OLS 3100. This microscope 
includes a confocal mode which collects the data to the 
Comma Separated Values (CSV) file with step 0.62 µm in the 
z-axis. This value may lead to the conviction that the 
measured surface has the same accuracy. Nevertheless, this 
confidence is quite false in the case of porous materials as is 
shown in Section 3. We use the confocal mode with the field 
of vision 2560× 1920 µm at a pixel resolution of 1024 ×
768 pixels. It follows that the 𝑥𝑥𝑥𝑥-resolution was 2.5 µm. 

We work with the sample of fracture surface of hydrated 
Portland cement paste. For illustrative purposes, several 
specimens consisting of hydrated cement pastes were selected 
from a set of one-year old specimens. Ordinary Portland 
cement was used for their preparation. The specimens were 
mixed with the water-to-cement ratio equal to 0.4, and the 
fresh paste was cast in moulds of the size 2x2x10 cm3. The 
paste was cured at a temperature of 20±2°C, and relative 
humidity of 100 % for three months. The specimens were 
then fractured in the three-point bending arrangement and 
sectioned into small cubes 2x2x2 cm3. The rest of the time the 
cubes were stored under normal laboratory conditions 
(20±2 C, 101 325 kPa, 60±10 % RH).  
 
2.2.  Statistical evaluation 

This section describes the statistical evaluation that is used 
in other sections to evaluate the results. We use these 
parameters: root mean square error, (relative) average 
difference, and Pearson’s correlation coefficient. 

Denote 𝑃𝑃, 𝑄𝑄 results of two different scans of the same 
profile, 𝑃𝑃𝑖𝑖𝑖𝑖 , 𝑄𝑄𝑖𝑖𝑖𝑖 values of pixel [𝑖𝑖, 𝑗𝑗] in profiles 𝑃𝑃, 𝑄𝑄, 𝑊𝑊, and 
𝐻𝐻 width and height of profile matrices of 𝑃𝑃,𝑄𝑄. Then the root 
mean square error is defined as: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1

𝑊𝑊 ∙ 𝐻𝐻
���𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑖𝑖𝑖𝑖�

2
𝐻𝐻

𝑗𝑗=1

𝑊𝑊

𝑖𝑖=1

 

 
The average difference: 
 

𝐴𝐴𝐴𝐴 =
1
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���𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑖𝑖𝑖𝑖�
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the relative average difference: 
 

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐴𝐴𝐴𝐴
𝛥𝛥𝛥𝛥

=
1
𝛥𝛥𝛥𝛥 ∙

1
𝑊𝑊 ∙ 𝐻𝐻

���𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑖𝑖𝑖𝑖�
𝐻𝐻

𝑗𝑗=1

𝑊𝑊

𝑖𝑖=1

 

 
where 𝛥𝛥𝛥𝛥 = 0.62 µ𝑚𝑚 is the used step in the 𝑧𝑧-axis. The value 
RAD indicates how many times the real accuracy is less than 
the step in the z-axis. Finally, Pearson’s correlation 
coefficient 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ ∑ �𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑃𝑃���𝑄𝑄𝑖𝑖𝑖𝑖 − 𝑄𝑄��𝐻𝐻

𝑗𝑗=1
𝑊𝑊
𝑖𝑖=1

�∑ ∑ �𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑃𝑃��2 ∑ ∑ �𝑄𝑄𝑖𝑖𝑖𝑖 − 𝑄𝑄��2𝐻𝐻
𝑗𝑗=1

𝑊𝑊
𝑖𝑖=1

𝐻𝐻
𝑗𝑗=1

𝑊𝑊
𝑖𝑖=1

 

 
where 𝑃𝑃,�  𝑄𝑄� are arithmetic means of profiles 𝑃𝑃;  𝑄𝑄. 
 
2.3.  Noise decreasing method 

Proposed noise reduction method is based on the 
Lindeberg-Lévy Central Limit Theorem, which produces 
more accurate results in comparison with low-pass filters and 
can be used without any limitations, unlike RLA, MLE or 
ICTM. 

Consider the noise as the realization of a random variable. 
Then we can say: 
Theorem (Lindeberg-Lévy Central Limit Theorem). Let 
𝑋𝑋1; 𝑋𝑋2; … ;𝑋𝑋𝐾𝐾 be random variables with arbitrary (but the 
same) distribution, the same mean value µ and the same 
(finite) variance 𝜎𝜎2. Then the mean of 𝑋𝑋1;𝑋𝑋2; … ; 𝑋𝑋𝐾𝐾 for 𝐾𝐾 →
∞ converges to the normal distribution with the same mean 
value µ and variance 𝜎𝜎2´ = 𝜎𝜎2 𝐾𝐾⁄ . 

The proof of this theorem can be found in [8] for example. 
Generally, the application of the theorem causes that the mean 
variance of 𝐾𝐾 random variables is 𝐾𝐾-times lower. This will 
be described further. 

Let 𝑃𝑃 be the input profile that consists of the useful 
information 𝑈𝑈 and the noise 𝑁𝑁. The noise 𝑁𝑁 is the realization 
of a random variable with expected values equal to zero. We 
carry out the profile measurements 𝐾𝐾-times, therefore we 
obtain the series {𝑃𝑃(𝑘𝑘)}, 𝑘𝑘 = 1, 2, … ,𝐾𝐾.  Let 𝑈𝑈𝑖𝑖𝑖𝑖be the useful 
information and 𝑁𝑁𝑖𝑖𝑖𝑖(𝑘𝑘) be the random noise in pixel [𝑖𝑖, 𝑗𝑗] in 



 
 
 

MEASUREMENT SCIENCE REVIEW, 17, (2017), No. 6, 273-281 
 

275 

profile 𝑃𝑃(𝑘𝑘). The arithmetic means in [𝑖𝑖, 𝑗𝑗]-th pixel can be 
expressed as: 

 

𝑃𝑃𝚤𝚤𝚤𝚤(𝐾𝐾)�������� =
1
𝐾𝐾 ∙�𝑃𝑃𝑖𝑖𝑖𝑖(𝑘𝑘)

𝐾𝐾

𝑘𝑘=1

=
1
𝐾𝐾 ∙

��𝑈𝑈𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑖𝑖𝑖𝑖(𝑘𝑘)�
𝐾𝐾

𝑘𝑘=1

= 𝑈𝑈𝑖𝑖𝑖𝑖 +
1
𝐾𝐾 ∙�𝑁𝑁𝑖𝑖𝑖𝑖(𝑘𝑘)               

𝐾𝐾

𝑘𝑘=1

 

  (1) 
 

The useful information 𝑈𝑈𝑖𝑖𝑖𝑖  (it is not random) is preserved 
and noise is: 
 

                         𝑁𝑁𝑖𝑖𝑖𝑖 = 1
𝐾𝐾
∙ ∑ 𝑁𝑁𝑖𝑖𝑖𝑖(𝑘𝑘)𝐾𝐾

𝑘𝑘=1                         (2) 
 

Equation (2) denotes that the mean is equal to zero and the 
variance is 𝐾𝐾-times lower. 
 

 
 

Fig.1.  Non-filtered profile reconstructed with Olympus company 
software (step 0.62 µm in the z-axis) technology. 

 
We use different statistical variables to compare our results. 

Let 𝑃𝑃𝚤𝚤𝚤𝚤(𝐾𝐾)�������� be the arithmetic mean of 𝐾𝐾 values in pixel [𝑖𝑖, 𝑗𝑗] 
in K scannings of the same profile. Let 𝑄𝑄𝚤𝚤𝚤𝚤(𝐾𝐾)��������� be the 
arithmetic mean of the following 𝐾𝐾 values in pixel [𝑖𝑖, 𝑗𝑗] in the 
following K scannings of the same profile. 
Denote 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾), 𝐴𝐴𝐴𝐴(𝐾𝐾); 𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾); CORR(K) the root 
mean square error, average difference, relative average 
difference, and correlation of 𝑃𝑃𝑖𝑖𝑖𝑖(𝐾𝐾) and 𝑄𝑄𝚤𝚤𝚤𝚤(𝐾𝐾)��������� , i.e. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾) = �
1
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where 

𝑃𝑃𝑖𝑖𝑖𝑖(𝐾𝐾) = 𝑈𝑈𝑖𝑖𝑖𝑖(𝐾𝐾) +
1
𝐾𝐾
∙�𝑁𝑁𝑖𝑖𝑖𝑖

(𝑃𝑃)(𝑘𝑘)
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It means  
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(𝑄𝑄)(𝑘𝑘)�
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         =  1
𝐾𝐾
∙ � 1

𝑊𝑊∙𝐻𝐻
∑ ∑ �∑ 𝑁𝑁𝑖𝑖𝑖𝑖(𝑘𝑘)𝐾𝐾

𝑘𝑘=1 �2𝐻𝐻
𝑗𝑗=1

𝑊𝑊
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Similarly, 

 
𝐴𝐴𝐴𝐴(𝐾𝐾) = 

            1
𝐾𝐾
∙ � 1
𝑊𝑊∙𝐻𝐻

∑ ∑ �∑ 𝑁𝑁𝑖𝑖𝑖𝑖(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 �𝐻𝐻

𝑗𝑗=1
𝑊𝑊
𝑖𝑖=1 �           (4) 

 
The expression ∑ 𝑁𝑁𝑖𝑖𝑖𝑖(𝑘𝑘)𝐾𝐾

𝑘𝑘=1  in (1), (2) describes the noise. 
Therefore, the expressions under the square root in (3) or 
whole expression in the square brackets (4) also determine 
the noise. This means that 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾) and 𝐴𝐴𝐴𝐴(𝐾𝐾) are 
proportional to 𝐾𝐾 inversely (where 𝐾𝐾 denote the number of  
averaged scans).  

Analogically, we can write: 
 

𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾) =
𝐴𝐴𝐴𝐴
𝛥𝛥𝛥𝛥 =

1
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1
𝑊𝑊 ∙ 𝐻𝐻

���𝑃𝑃𝑖𝑖𝑖𝑖(𝐾𝐾) − 𝑄𝑄𝑖𝑖𝑖𝑖(𝐾𝐾)�
𝐻𝐻
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Correlation can be expressed as: 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐾𝐾)

=
∑ ∑ �𝑃𝑃𝑖𝑖𝑖𝑖(𝐾𝐾) − 𝑃𝑃(𝐾𝐾)���������𝑄𝑄𝑖𝑖𝑖𝑖(𝐾𝐾) − 𝑄𝑄(𝐾𝐾)��������𝐻𝐻

𝑗𝑗=1
𝑊𝑊
𝑖𝑖=1

�∑ ∑ �𝑃𝑃𝑖𝑖𝑖𝑖(𝐾𝐾) − 𝑃𝑃(𝐾𝐾)��������2 ∑ ∑ �𝑄𝑄𝑖𝑖𝑖𝑖(𝐾𝐾) − 𝑄𝑄(𝐾𝐾)��������2𝐻𝐻
𝑗𝑗=1

𝑊𝑊
𝑖𝑖=1

𝐻𝐻
𝑗𝑗=1

𝑊𝑊
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Note, that 0 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐾𝐾), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐾𝐾) < 1 

and we can write 0 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐾𝐾) < 1. 
 
3.  RESULTS AND DISCUSSION 

As mentioned above, the Olympus LEXT OLS 3100 
confocal microscope was used to acquire a CSV data file that 
describes the fracture surface of hydrated Portland cement 
paste (step 0.62 µm in the z-axis). For illustration, we show 
the surface reconstruction using Olympus company software 
in Fig.1. It confirms that reconstruction of porous materials is 
problematic and obviously, the image is also constructed with 
low resolution. 

Fig.2. clearly shows that the reconstructed surface (by 
Olympus software) also contains a huge error. This error is 
clearly visible in Table 3. in Appendix where we compare the 
image section of two subsequent scans of the same area. 

The differences covered the interval −262 𝜇𝜇𝜇𝜇 to 
+114 𝜇𝜇𝜇𝜇. Note that the z-step is 0.62 𝜇𝜇𝜇𝜇. For comparison, 
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we make the reconstruction of the same data using our 
proposed visualization software Micro3D. 

We make five pairs 𝑃𝑃(𝑘𝑘); 𝑄𝑄(𝑘𝑘);  𝑘𝑘 =  1, 2, . . . , 5 of same 
sample measurements. We compute the statistical 
characteristics 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑘𝑘); 𝐴𝐴𝐴𝐴(𝑘𝑘); 𝑅𝑅𝑅𝑅𝑅𝑅(𝑘𝑘) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘);  𝑘𝑘 =
 1, 2, . . . , 5 for each pair of these measurements. For each k,
P(k) and Q(k) are measurements of the same profile, i.e. for 
each 𝑘𝑘 =  1, 2, . . . , 5 the ideal values are: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑘𝑘) = 0;  
𝐴𝐴𝐴𝐴(𝑘𝑘) = 0; 𝑅𝑅𝑅𝑅𝑅𝑅(𝑘𝑘) = 0 %; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = 100 %. As we can 

see from Table 1., the average difference 𝐴𝐴𝐴𝐴 is approximately 
23.5 µ𝑚𝑚, the measurement error is therefore approximately 
38 times higher than the used step 0.62 µ𝑚𝑚. The correlation 
reaches the value 97 %. 

Moreover, we filtered this data using Olympus company 
low-pass filter, and Table 2. presents the same 
characteristics as Table 1. The values of statistical parameters 
are significantly better. However, these filters are not able to 
differentiate whether the high-frequency information is a 
useful signal or the noise. 

Therefore, low-pass filters decrease additive noise but also 
degrade the reconstructed surface. We can see this fact on the 
visualization. The surface reconstructed by Olympus 
Company software is presented in Fig.3. It is evident that low-
pass filters are not suitable for porous materials because of 
the visible surface degradation. 

 

 
 

Fig.2.  Non-filtered profile reconstructed with Micro3D software 
(same data as in Fig.1.) 

 
Table 1.  Comparison of five pairs of the same surface scans, non-

filtered.  (z-step 0.62 µm). 
 

k RMSE AD RAD  CORR  
1 29.9229 23.4072 37.75 0.971787 
2 29.944 23.4163 37.77 0.971762 
3 29.9208 23.3903 37.73 0.971791 
4 29.9884 23.4303 37.79 0.971667 
5 30.0563 23.5059 37.91 0.971549 

Table 2.  The comparison of five pairs of the same surface scans 
filtered using Olympus company low-pass filter. (𝑧𝑧-step 0.62 µm). 

 

k RMSE AD RAD  CORR  

1 6.0940 4.5698 7.37    0.998676 

2 6.1739 4.1664 6.72 0.998642 

3 6.2504 4.6749 7.54 0.998610 

4 6.3048 4.7052 7.59 0.998585 

5 6.4391 4.7829 7.71 0.998529 
 
 

 
 

Fig.3.  Profile from Fig.1. filtered by a common low-pass filter 
(Olympus company software). 

 
 

 
 

Fig.4.  The surface composed of average values given by 25 scans - 
sample S1 (Micro3D software). 

 
 

The following part presents the advantage of the proposed 
noise reduction method using different statistical evaluation. 

We make sequence of 25 pairs 𝑃𝑃(𝑘𝑘); 𝑄𝑄(𝑘𝑘); 𝑘𝑘 =  1, 2, . . . , 25 
of the sample 𝑆𝑆1 measurements. Consequently, we calculated 
25 pairs of averages of K profiles. 
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𝑃𝑃(𝐾𝐾)������� =
1
𝐾𝐾
�𝑃𝑃(𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

;            𝑄𝑄(𝐾𝐾)������� =
1
𝐾𝐾
�𝑄𝑄(𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

; 

𝐾𝐾 =  1, 2, . . . , 25                                                 
(5) 

 
 

 
 
Fig.5.  The surface composed of average values given by 25 scans - 

sample S2 (Micro3D software). 
 
 

For example, 𝑃𝑃(10)�������� is the profile matrix calculated as the 
arithmetic mean of ten measurements 𝑃𝑃(1); 𝑃𝑃(2),…, 𝑃𝑃(10) of 
the same profile and 𝑄𝑄(10)�������� is the profile matrix calculated as 
the arithmetic mean of other ten measurements 𝑄𝑄(1), 
𝑄𝑄(2),…;, 𝑄𝑄(10) of the same profile. We compute the statistical 
characteristics between 𝑃𝑃(𝐾𝐾)������� and 𝑄𝑄(𝐾𝐾)������� in dependence on the 
value of K. 

Due to the Lindeberg-Lévy Central Limit Theorem, we 
eliminate the noise using (1), (2). Following computation of 
the statistical characteristics 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾), 𝐴𝐴𝐴𝐴(𝐾𝐾), 𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾), 
and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐾𝐾) between 𝑃𝑃(𝐾𝐾)������� and 𝑄𝑄(𝐾𝐾)������� proves that the 
method improves the z-resolution significantly. The results in 
Table 4. show that the average of seven or eight following 
measurements (K=7, 8) gives the results comparable with a 
low-pass filtered surface. The accuracy is higher with the 
increasing number of measurements. The correlation reaches 
the approximate value 0.999872 for K=25. The surface 
composed of average values given by 25 scans is presented in 
Fig.4. 

We make the measurement and the same computations as 
described in previous part for the second sample 𝑆𝑆2 (profile 
of hydrated Portland cement paste). The analogy data to 
Table 4. are in Table 5., and the resulting surface is in Fig.5. 
(analogical to Fig.4.). 

Due to the inverse proportion of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾) and 𝐴𝐴𝐴𝐴(𝐾𝐾) 
predicted in Section 2., measured data was fitted with a 
function 𝑓𝑓(𝐾𝐾) = 𝑎𝑎

𝐾𝐾
+ 𝑏𝑏 by the least squares method. 

We obtain for the first sample data these equations: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾) = 𝑎𝑎
𝐾𝐾

+ 𝑏𝑏 ≈ 27,32
𝐾𝐾

    + 2.63                 (6) 

𝐴𝐴𝐴𝐴(𝐾𝐾) = 𝑐𝑐
𝐾𝐾

+ 𝑑𝑑 ≈ 22,15
𝐾𝐾

+ 1.82                      (7) 
 

The functions (6) and (7) are drawn in Fig.6. The noise 
variance gives the numerators in these equations. The 
additive constant d in (7) describes the difference from a 
supposed inverse proportion. This difference is probably 
caused by some non-random measurement error of the 
microscope. The additive constant depicts that even in the 
case of perfect additive noise reduction (𝐾𝐾 → ∞) it is not 
possible to reconstruct the profile exactly. The limit precision 
is ±𝑑𝑑

2
≈ ±0,9 𝜇𝜇𝜇𝜇. 

The sample S2 values of a, b, c, d in (6), (7) are equal to 𝑎𝑎 =
27.04;  𝑏𝑏 = 2.78;  𝑐𝑐 = 21.92;  𝑑𝑑 = 2.06 and corresponding 
functions are in Fig.7.  
 
 

 
 
Fig.6.  Functions RMSE and AD for sample S1 – reliance of Root 
Mean Square Error and Average Difference on the number of 
averaged scans. 
 
 

 
 
Fig.7.  Functions RMSE and AD for sample S1 – reliance of Root 
Mean Square Error and Average Difference on the number of 
averaged scans. 
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4.  CONCLUSIONS 
We have used the field of vision 2560× 1920 µm, a pixel 

resolution of 1024 × 768 pixels so that the 𝑥𝑥𝑥𝑥-resolution was 
2.5 µm. In our case, the z-resolution of input data was 
0.62 µm. The course of the function 𝐴𝐴𝐴𝐴(𝐾𝐾) indicates that 
we can improve the resolution even with low-quality data 
using 4-6 subsequent scans. The usage of 25 scans causes the 
improvement of 𝑧𝑧-axis resolution on the level comparable to 
the 𝑥𝑥𝑥𝑥-resolution. Theoretically, due to additive constant 𝑑𝑑, 
maximal additive noise reduction (𝐾𝐾 → ∞) means that the 
maximal resolution for tested samples is ±𝑑𝑑

2
≈ ±0.9 𝜇𝜇𝜇𝜇, and 

±𝑑𝑑
2
≈ ±1.0 𝜇𝜇𝜇𝜇 , i.e. three and 2.5 times higher resolution in 

comparison with 𝑥𝑥𝑥𝑥-resolution. This method based on the 
Lindeberg–Lévy theorem is able to set the optimal number of 
measurements to get the required depth precision. 
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APPENDIX 
Table 3.  Two submatrices of heights of the same sample points acquired by two subsequent scans (𝑧𝑧-step 0.62 µm) and their differences 

(all in micrometers). 
 

First scanning                        
542.85 562.70 556.07 566.79 553.22 545.08 274.90 554.55 576.03 506.31 518.87 523.18 556.51 
538.57 568.27 560.31 576.65 509.64 516.04 526.16 550.84 543.13 596.15 539.87 570.22 588.08 
588.11 570.42 559.23 558.35 572.98 563.72 541.97 571.48 550.09 492.95 551.80 555.34 571.24 

560.49 577.91 599.61 573.03 586.78 564.28 563.84 587.45 554.41 577.02 577.18 559.52 554.95 
563.75 559.75 624.12 573.59 552.75 521.04 531.06 601.79 574.48 571.30 560.83 560.34 585.82 
552.68 540.69 547.04 563.95 552.87 558.38 568.50 549.32 539.15 559.13 559.33 557.79 536.69 
567.29 580.02 569.31 569.65 553.17 538.72 489.03 519.95 544.29 570.86 573.38 554.37 569.80 
 
Second scanning                        
580.01 531.17 580.64 529.34 545.78 539.43 536.89 603.34 537.14 554.97 548.45 565.95 555.79 
555.20 557.44 556.71 574.78 559.01 571.09 564.41 560.34 582.43 572.75 507.05 538.50 544.71 
519.34 548.63 552.61 559.06 567.07 584.37 559.08 557.77 554.29 569.76 538.78 557.55 542.16 
531.10 577.58 529.96 550.27 575.13 568.18 552.65 533.79 537.70 548.60 566.12 488.60 508.98 
568.32 558.87 510.08 563.84 566.87 573.43 564.06 517.01 514.14 586.94 542.68 515.10 529.12 
545.59 570.74 582.44 581.88 559.33 537.92 565.95 564.70 557.55 580.76 555.95 487.07 561.33 
576.52 564.66 545.22 581.80 525.63 576.65 577.54 563.64 546.92 541.52 529.59 568.95 581.74 
 
Differences 
            

-37.16 31.53 -24.57 37.45 7.45 5.64 
-

261.98 -48.79 38.89 -48.66 -29.58 -42.77 0.73 
-16.63 10.84 3.60 1.86 -49.36 -55.05 -38.25 -9.49 -39.30 23.39 32.82 31.72 43.37 
68.77 21.78 6.62 -0.71 5.91 -20.65 -17.11 13.71 -4.20 -76.80 13.02 -2.21 29.08 
29.39 0.32 69.65 22.76 11.65 -3.89 11.19 53.66 16.72 28.42 11.06 70.92 45.96 
-4.56 0.88 114.04 9.76 -14.13 -52.39 -33.00 84.78 60.34 -15.64 18.14 45.23 56.70 
7.08 -30.04 -35.41 -17.93 -6.45 20.45 2.55 -15.39 -18.40 -21.63 3.37 70.71 -24.64 

-9.23 15.36 24.09 -12.15 27.54 -37.93 -88.51 -43.69 -2.63 29.34 43.79 -14.57 -11.94 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

MEASUREMENT SCIENCE REVIEW, 17, (2017), No. 6, 273-281 
 

280 

Table 4.  Comparison of twenty-five pairs of the same surface measurements. Each measurement in each pair is the average of 𝐾𝐾 =
1, 2. . . , 25 scannings (Sample S1). 

 

K RMSE(K) AD(K) RAD(K)  CORR(K)  
1 29.9206 24.3918 39.34 0.976197 
2 16.1997 12.2270 19.72 0.991638 
3 12.0631 9.1397 14.74 0.995344 
4 9.5787 7.2473 11.69 0.997058 
5 8.0759 6.0922 9.83 0.997907 
6 7.2181 5.4557 8.80 0.998326 
7 6.4875 4.9875 8.04 0.998647 
8 5.9424 4.4872 7.24 0.998864 
9 5.4966 4.1483 6.69 0.999028 
10 5.2196 3.8716 6.24 0.999156 
11 4.9286 3.7250 6.01 0.999260 
12 4.8247 3.5197 5.68 0.999340 
13 4.7255 3.5833 5.78 0.999422 
14 4.4789 3.4893 5.63 0.999498 
15 4.4706 3.4192 5.51 0.999562 
16 4.3470 3.3203 5.36 0.999604 
17 4.2757 3.2708 5.28 0.999649 
18 4.1745 3.1889 5.14 0.999682 
19 4.1218 3.1536 5.09 0.999715 
20 4.0364 3.0038 4.84 0.999749 
21 3.9972 2.9587 4.77 0.999783 
22 3.9334 2.9078 4.69 0.999806 
23 3.8863 2.8604 4.61 0.999828 
24 3.8373 2.8461 4.59 0.999851 
25 3.7989 2.8046 4.52 0.999872 
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Table 5.  Comparison of twenty-five pairs of the same surface measurements. Each measurement in each pair is the average of 𝐾𝐾 =
1, 2. . . , 25 scannings (Sample S2). 

 

K RMSE(K) AD(K) RAD(K)  CORR(K)  
1 29.4196 24.2045 39.65 0.976385 
2 15.8359 12.1613 19.83 0.991685 
3 11.7407 9.1049 14.80 0.995363 
4 9.2811 7.2314 11.72 0.997066 
5 7.7933 6.0879 9.84 0.997909 
6 6.9441 5.4578 8.80 0.998326 
7 6.2208 4.9942 8.03 0.998645 
8 5.6812 4.4989 7.23 0.998862 
9 5.2398 4.1634 6.67 0.999025 
10 4.9656 3.8895 6.22 0.999153 
11 4.6775 3.7444 5.98 0.999256 
12 4.5746 3.5411 5.65 0.999337 
13 4.4764 3.6041 5.75 0.999419 
14 4.2323 3.5110 5.60 0.999495 
15 4.2241 3.4416 5.48 0.999560 
16 4.1017 3.3437 5.33 0.999602 
17 4.0311 3.2947 5.25 0.999647 
18 3.9309 3.2136 5.11 0.999680 
19 3.8788 3.1787 5.05 0.999713 
20 3.7942 3.0304 4.80 0.999747 
21 3.7554 2.9857 4.73 0.999781 
22 3.6923 2.9353 4.65 0.999804 
23 3.6456 2.8884 4.57 0.999827 
24 3.5971 2.8743 4.55 0.999850 
25 3.5591 2.8332 4.48 0.999871 

 
 
 
 
 
 
 
 
 

 


