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Rolling element bearings are an important unit in the rotating machines, and their performance degradation assessment is the basis of 

condition-based maintenance. Targeting the non-linear dynamic characteristics of faulty signals of rolling element bearings, a bearing 

performance degradation assessment approach based on improved fuzzy entropy (FuzzyEn) is proposed in this paper. FuzzyEn has less 

dependence on data length and achieves more freedom of parameter selection and more robustness to noise. However, it neglects the 

global trend of the signal when calculating similarity degree of two vectors, and thus cannot reflect the running state of the rolling element 

bearings accurately. Based on this consideration, the algorithm of FuzzyEn is improved in this paper and the improved FuzzyEn is utilized 

as an indicator for bearing performance degradation evaluation. The vibration data from run-to-failure test of rolling element bearings are 

used to validate the proposed method. The experimental results demonstrate that, compared with the traditional kurtosis and root mean 

square, the proposed method can detect the incipient fault in advance and can reflect the whole performance degradation process more 

clearly. 
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1.  INTRODUCTION 

Machinery condition monitoring has received considerable 
attention for many years because a reliable condition 
monitoring system can significantly reduce the huge cost 
due to the unplanned downtime [1]-[2]. Rolling element 
bearings are the most widely used component in the rotating 
machines, and they are also one of the most easily damaged 
mechanical parts. The running state of bearing influences 
the reliable operation of the whole machine. Therefore, the 
bearing condition monitoring is of great importance to keep 
machines running reliably and reduce economical loss. 
Among various condition monitoring methods, the most 
suitable and effective one is vibration analysis because 
vibration signals of rolling element bearings include 
abundant fault information [3]-[4]. 

Diagnosis and prognosis are the two important aspects of 
condition-based maintenance. Performance degradation 
assessment is the base of prognosis which is much more 
efficient than fault diagnosis to achieve zero-downtime 
performance [1]. It requires reflecting the comprehensive 
performance degradation degree based on the extracted 
features and focuses on the vibration trend over a whole 
lifetime while traditional fault diagnosis only needs to be 
capable of identifying different types of faults. To date, 
many researches on the performance degradation assessment 
of rolling element bearings have been carried out, most of 

which are based on the intelligent assessment approaches, 
such as self-organizing map (SOM) [5]-[6], hidden Markov 
model (HMM) [7], support vector data description (SVDD) 
[8]-[10], Gaussian mixture model (GMM) [11] and logistic 
regression (LR) [12]. However, these proposed intelligent 
assessment models may all exhibit their own limitations 
[13]-[14]. For example, ANN-based model operates as a 
“black box” without documentation of qualitative 
information of the model and requires large amount of 
training data [13], HMM-based model needs assumptions 
which are unpractical in the real applications [14] and 
Gaussian process-based model is only suitable for Gaussian 
likelihood and has a heavy computation burden [13]. 

On the other hand, designing proper indicators without 

intelligent models has not received enough attention in 

previous studies, and some existing statistical indicators in 

the time domain have their own advantages and limitations 

as well. For example, the extensively used root mean square 

(RMS) can steadily grow with the defect evolution of the 

bearing, but it is insensitive to the early faults. On the 

contrary, kurtosis and crest factor are sensitive enough to 

impulse defect at the incipient stage but reduce to normal-

like levels as the damage grows [7]. Hence, exploring new 

effective indicators, which can reflect the comprehensive 

degeneration process of rolling element bearings, is valuable 

work [15]. 
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As it is known, vibration signals of a bearing, especially 

when fault occurs, will present non-linear characteristics due 

to the non-linear factors such as stiffness, friction and 

clearance [16]. For this reason, the traditional time and 

frequency domain signal analysis methods based on the 

linear systems, even the advanced signal processing 

methods such as wavelet transform, are usually hard to 

make an accurate assessment of the bearing running states. 

With the development of nonlinear dynamics theory, various 

nonlinear analysis approaches have offered a good 

alternative to identify and predict the complicated non-linear 

dynamic behavior of bearings, among which entropy-based 

parameters, such as appropriate entropy (ApEn), sample 

entropy (SampEn), multi-scale entropy (MSE), and 

hierarchical entropy (HE) have been researched and 

introduced to the field of bearing fault diagnosis [17]-[19]. 

Due to the bias caused by self-matching, ApEn depends 

heavily on the data length and its estimated value is 

uniformly lower than the expected one, especially as short 

data concerned, and lacks relative coherence as well [20]. In 

order to overcome the shortcomings of ApEn, Richman and 

Moorman [21] developed another related measure of signal 

complexity, viz. SampEn, which is less dependent on dataset 

length and has better relative consistency. However, the 

definitions of similarity between vectors in SampEn and 

ApEn are both based on Heaviside function, whose 

boundary is discontinuous and rigid. Due to the inherent 

flaws of Heaviside function, there still exist problems in the 

validity of the entropy definition. In order to address the 

problems, Chen et al. [22] presented recently a measure of 

complexity named fuzzy entropy (FuzzyEn) by improving 

the original SampEn. In comparison with SampEn, FuzzyEn 

uses fuzzy membership functions to replace Heaviside 

function for making a soft and continuous boundary, which 

makes FuzzyEn well defined at small parameters and 

enables it to change continuously. Nevertheless, the fuzzy 

function used in FuzzyEn by Chen et al. was deemed to lack 

clear physical meanings [23]. Therefore, Zheng et al. [24] 

defined a new fuzzy function and used the optimized one to 

measure the complexity of vibration signals of rolling 

element bearings. However, the limitation of FuzzyEn is 

that it neglects the global characteristics of the signal and 

thus may produce inaccurate results [25]. 

As a bearing runs from a normal condition to a faulty one, 

the vibration signals will present different characteristics 

with the bearing state varying. Moreover, the fault severity 

and growth of rolling element bearings have been proved by 

the previous researches that they are associated with the 

changes of the entropy values (such as ApEn, MSE and HE), 

which makes them attractive tools for monitoring system 

dynamics [17]-[19]. In this study, inspired by these existing 

researches, we modified the algorithm of FuzzyEn to relieve 

the aforementioned limitation and used the improved 

FuzzyEn as an indicator for bearing performance 

degradation. Considering the fact that the global 

characteristics and global trends of bearing vibration signals 

may change as the bearing degenerates gradually, the 

improved FuzzyEn should be more suitable to reflect the 

bearing degradation process over its whole lifetime. The 

effectiveness of the modified FuzzyEn for bearing 

performance degradation evaluation is then investigated 

through experimental data. 

The paper is organized as follows. Section 2 is dedicated 

to the improved FuzzyEn method. The vibration data from a 

laboratory test-to-failure test are employed to validate the 

effectiveness of the proposed method in section 3. In 

section 4, conclusions from this research are presented. 

 

2.  THE IMPROVED FUZZY ENTROPY METHOD 

2.1.  Fuzzy entropy 

SampEn is a refinement of ApEn and is free of bias caused 

by self-matching. Details on the calculation of SampEn can 

be found in previous researches [21]-[23]. The computation 

of the vectors’ similarity in SampEn is defined based on 

Heaviside function, which is discontinuous and makes a 

binary decision on the similarity between vectors according 

to their distance. However, in the real physical world, it is 

hard to decide whether a pattern belongs to a given class 

because boundaries between classes may be ambiguous. 

Hence, FuzzyEn is developed to overcome the drawback of 

SampEn by replacing the Heaviside function with a 

continuous Gaussian type function, which is utilized to 

measure the similarity degree instead of a binary decision. 

The FuzzyEn algorithm can be described as follows [22]: 

1.  For a time series of N points {u(i):1≤i≤N}, form the m-

length vectors, 
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3.  The similarity degree 
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4.  For each 
m

iX , average all the similarity degrees of its 

neighboring vectors 
m

jX  , then designate 
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5.  Define the function )(rmϕ  as 
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6.  Similarly, for the dimension m+1, repeat the previous 

procedures and the )(1 rm+ϕ   is defined as 
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7.  FuzzyEn of the time series is then denoted as 
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8.  Finally, for a finite number of data points N, its 

estimation can be estimated by the statistic 
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Originally, the exponential function was adopted to fuzzily 

measure the similarity between vectors by Chen et al. [22], 

which was defined as 
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In order to make FuzzyEn more physically meaningful, 

Zheng et al. [24] designed a new membership function to 

substitute the original one as 
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In this paper, equation (11) is applied to compute FuzzyEn 

of bearing vibration signals, and an assessment of its 

performance is made. 

 

2.2.  The improved fuzzy entropy 

A change in the definition of the aforementioned FuzzyEn 

is the formation of the vector 
m

iX , which is generalized by 

removing a baseline defined by (2). However, this 

implementation of removing the baseline focuses only on 

the local characteristics of the signal and neglects its global 

trend [25]. As for the bearing vibration signals, their global 

characteristics may vary with the running states of bearings 

deteriorating gradually. Therefore, it may be not enough to 

reflect the bearing performance degradation process 

effectively by using the original FuzzyEn. Based on this 

consideration, we modified (1) as 
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Which means the local mean is removed. In this study, in 

order to reflect the bearing degradation states more 

accurately, equation (12) was utilized to calculate the values 

of FuzzyEn. The modified FuzzyEn is then employed to 

measure the complexity of vibration signals of rolling 

element bearings, and the obtained entropy value is defined 

as the bearing degradation indicator. Finally, the 

performance of the improved FuzzyEn for bearing 

degradation evaluation was assessed with experimental data. 

 

2.3.  Parameters selection 

There are four parameters that need to be selected for each 

calculation of FuzzyEn, which is m, r, N, and n, respectively. 

The parameter m is the length of sequences to be compared. 

Typically, larger m allows more detailed reconstruction of 

the dynamic process [22]. However, a too large m value 

needs a very large N (10m-30m), which is unfavorable in 

many real applications. Generally, m is chosen as 2, and N is 

selected as 2048 in this paper. The width and gradient of the 

boundary of the exponential function are determined by the 

parameters r and n, respectively, viz. the fuzzy similarity 

boundary. A too narrow boundary will result in noticeable 

influence from noise while a too broad one will lead to the 

loss of information. According to the previous studies [18]-

[19], r = 0.1-0.25SD (standard deviation of the original data) 

and n should be small integers. To seek a balance between 

noise robustness and information loss, r = 0.2SD is assigned, 

and n = 2 is selected. 
 

3.  EXPERIMENTAL VALIDATION 

3.1.  Experimental data 

In order to investigate the effectiveness of the modified 

FuzzyEn for the rolling element bearing performance 

degradation assessment, vibration signals from run-to-

failure experiments are analyzed. The bearing vibration data 

is from the prognostic data repository contributed by the 

Center on Intelligent Maintenance Systems (IMS), 

University of Cincinnati [26]. 

The bearing test rig is shown in Fig.1., which consists of 

one shaft, four test bearings, an AC motor and rub belts. 

Four Rexnord ZA-2115 double row bearings were installed 

on one shaft. The shaft was driven by the AC motor and 

coupled by rub belts. The rotational speed was kept 

constantly at 2000 rpm and a radial load of 6000 lbs was 

applied to the shaft and bearing through a spring mechanism. 
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The lubrication of all the bearings was provided by an oil 

circulation system and the flow and temperature of the 

lubricant was regulated by the system. A magnetic plug was 

installed in the oil feedback pipe to collects debris from the 

oil as evidence of bearing degradation. When the 

accumulated debris adhering to the magnetic plug exceeded 

a certain level, an electrical switch closed and the test 

stopped. A PCB 352B33 High Sensitivity Quarts ICP 

accelerometer was installed on each bearing housing to 

collect the vibration signals. The vibration data was 

collected every 10 min at a sampling frequency of 20 kHz 

and the data length was 20480 points. 

 

 
 

Fig.1. Bearing test rig. 
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Fig.2.  Effect of parameter r on the improved FuzzyEn values. 

 

3.2.  Effects of parameter selection 

As mentioned above, the calculation of FuzzyEn depends 

less on dataset length N and a too large m value requires a 

very large N, which is unpractical in many real applications. 

In the present study, based on the aforementioned 

experimental signals, the effects of parameters r and n on 

the computation of the improved FuzzyEn have been 

investigated. The effect of different r (n = 2) on the FuzzyEn 

values is shown in Fig.2., from which it can be seen that the 

larger the r is, the smaller the entropy value is. Although 

they vary with r increasing, the FuzzyEn values keep the 

same variation trend as the r changed. The effect of different 

n (r = 0.2SD) on the FuzzyEn values is given in Fig.3. From 

Fig.3., we can see that the larger the n is, the larger the 

entropy value is. Nevertheless, similarly to r, the FuzzyEn 

values keep the same variation trend with n changing. From 

Fig.2. and Fig.3., it can be observed that the changes of 

parameter r and n have little influence on the bearing 

performance degradation assessment. Considering all the 

above factors, in this paper, m is fixed as 2, and N is chosen 

as 2048 while r = 0.2SD is selected, and n = 2 is assigned. 
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Fig.3.  Effect of parameter n on the improved FuzzyEn values. 

 

3.3.  Results and analysis 

The bearing vibration signals from test 2 are employed for 

analysis. At the end of this experiment, an outer race defect 

was found in bearing 1. There are 984 data files being 

collected in this experiment. The FuzzyEn values of the 

bearing vibration data are then calculated and used as the 

bearing degradation indicator. In order to avoid the 

influence of random factors on the computation of FuzzyEn 

values, each data file is separated into 10 segments (each 

segment length is 2048), and the mean value of FuzzyEn of 

these 10 segments can be obtained. 

The variations of SampEn, FuzzyEn and improved 

FuzzyEn with time are shown in Fig.4., respectively. It can 

be seen that the entropy values of SampEn and improved 

FuzzyEn show a similar trend while the values of original 

FuzzyEn present a different way. The variance trends of 

SampEn and improved FuzzyEn demonstrate that the 

entropy values keep stable for a long-time period when 

bearing is running under normal condition and begin to 

decrease as early fault occurs, which means that the 

vibration signals of healthy bearing are more complex than 

those of faulty bearing. According to the literature [24], this 

can be explained by the fact that the vibration signals under 

normal condition have lower self-similarity because of its 

randomness and irregularity, and the self-similarity will 

increase as the fault appears. As for the original FuzzyEn, 

some of its values in bearing degradation area (nearby the 
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final failure) are much larger than these under healthy 

condition, which will result in mistaken decision. This may 

be due to the fact that it subtracts the local mean during the 

algorithm implementation and thus neglects the global trend 

of bearing vibration signal. In addition, compared with 

SampEn, there exists a smaller range of fluctuation in the 

improved FuzzyEn values during the bearing’s whole 

lifetime, which means improved FuzzyEn presents a better 

statistical stability than SampEn. This is because a fuzzy 

membership function is adopted in improved FuzzyEn to 

define the decision rule for vector similarity while a 

piecewise function is used in SampEn. Therefore, the 

improved FuzzyEn is most suitable for bearing degradation 

assessment. 
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Fig.4.  Comparison of SampEn, FuzzyEn and improved FuzzyEn 

over bearing’s whole lifetime. 
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Fig.5.  The variation of SampEn values with time. 

 

In order to further show the advantage of the improved 

FuzzyEn over SampEn, the corresponding curves with local 

enlargement are illustrated in Fig.5. and Fig.6., respectively. 

From Fig.5. and Fig.6., it can be observed that the SampEn 

values indicate the occurrence of initial degradation at the 

546th data point while the improved FuzzyEn values start to 

decrease at the 533th data point, which means that the 

improved FuzzyEn can detect the incipient degradation 13 

data points in advance. For comparison purpose, another 

two degradation assessment indicators, root mean square 

(RMS) and the kurtosis value, are also calculated and shown 

in Fig.7. and Fig.8., respectively. It can be seen from Fig.7. 

that RMS values indicate the occurrence of degradation at 

the 535th data point, which is two data points behind 

compared with the values of improved FuzzyEn. Moreover, 

the increase of RMS values is less obvious than that of 

improved FuzzyEn. From Fig.8., it can be observed that the 

bearing performance degradation begins at about the 648th 

data point, which is more than 100 data points later than that 

indicated by improved FuzzyEn. In addition, the kurtosis 

values decrease sharply as the occurrence of final failure, 

which makes the prediction of bearing degradation degree 

impossible. 
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Fig.6.  The variation of values of improved FuzzyEn with time. 
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Fig.7.  The variation of RMS values with time. 

 

According to the above analysis, the following can be 

observed: (1) Compared with SampEn and original FuzzyEn, 

the improved FuzzyEn is the most suitable for performance 

degradation evaluation of rolling element bearings. (2) The 

modified FuzzyEn values can assess the bearing 
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performance degradation process over their whole life time 

clearly and effectively. (3) In contrast with kurtosis and 

RMS, the modified FuzzyEn can detect the bearing initial 

degradation in advance, which is of great significance for 

the prognosis in the condition monitoring. 
 

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

20

Data points

K
u

rt
o

si
s

600 650 700

3.5

4

4.5 X: 648

Y: 4.051

 
 

Fig.8.  The variation of kurtosis values with time. 

 

4.  CONCLUSIONS 

In this paper, the FuzzyEn is improved and used as an 

indicator for the performance degradation assessment of 

rolling element bearings. The run-to-failure vibrational 

signals are applied to verify the suitability of the improved 

FuzzyEn method. The experimental results demonstrate that 

the modified FuzzyEn can reflect the bearing degradation 

process effectively and has shown better performance than 

SampEn and original FuzzyEn. Compared with RMS, the 

improved FuzzyEn can indicate the initial degradation two 

data points in advance and presents a more obvious increase. 

In contrast with kurtosis, the improved FuzzyEn can detect 

the occurrence of degradation more than 100 data points 

ahead and shows a clearer and more accurate trend for 

bearing degradation process over its whole lifetime. 
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