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Signal processing precision of Coriolis mass flowmeters affects the measurement accuracy directly. To improve the measurement  accuracy 
of Coriolis mass flowmeters, a phase and frequency matching-based signal processing method for Coriolis mass flowmeters is proposed. 
Estimated phase difference is obtained by means of frequency estimation, 90° phase shift, generating reference signals and cross-
correlation. Simulated results demonstrate that the proposed method has better phase difference estimation and anti-interference 
performance than the Hilbert transform method, cross-correlation method, data extension-based correlation method, and quadrature delay 
estimator. Measurement results of Coriolis mass flowmeters verify the effectiveness and superiority of the proposed method in practice. 
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1.  INTRODUCTION 

Coriolis mass flowmeters (CMF) have attracted 

considerable attention because they are widely applied in 

numerous industries such as petroleum, chemistry, and 
pharmacy. CMF are a kind of high-precision flowmeters 

which can measure the mass flow rates of the fluid directly. 

CMF obtain mass flow rates by means of measuring phase 

difference or time delay between two vibration signals 

detected by electromagnetic sensors [1]-[3]. Therefore, 

accurate phase difference estimation is significantly 

important and necessary for CMF. 

To obtain estimated phase difference, the discrete Fourier 

transform (DFT) method [4]-[5] gets frequency estimation 

by calculating DFT of two signals and gains phase 

difference estimation by the subtraction of two DFT phases 

at the estimated frequency. The DFT method has good noise 

immunity. But the inherent defect of DFT called spectrum 

leakage brings the estimation error of phase difference, 

especially for short sinusoidal signals. The cross-correlation 

(CC) method [6]-[8] gets estimated phase difference by 

means of cross-correlation and auto-correlation of two 

signals. This method is computationally efficient and can 

obtain phase difference without the information of signal 

frequency. However, its anti-interference performance is 

poor and its phase difference estimation is biased, which is 

caused by non-integral period sampling. To suppress the 

effect of non-integral period sampling on phase difference 

estimation, the data extension-based correlation (DEC) 

method [9] extends the signals to approach integral period 

sampled signals by two signals’ truncation or shift and 

obtains estimated phase difference by employing the cross-

correlation method. Thus, this method improves the 

estimation performance of phase difference when sampled 

signals are of non-integral period, whereas its anti-

interference performance is still poor because of the noise 

variance of auto-correlation signals. To improve the anti-

interference performance of phase difference estimation, the 

dual quadrature demodulation (DQD) method [2] obtains 

phase difference estimation by means of cross-correlation 

between sampled signals and two generated signals, low-

pass filter. This method is independent of the amplitudes of 

sampled signals and has suppressed the effect of frequency 

doubling terms on phase difference estimation in some 

extent. However, accurate frequency estimation is needed to 

ensure good estimation precision. The Hilbert transform 

(HT) method [10]-[12] completes 90° phase shift of 

sinusoidal signals by their Hilbert transform. Then, 

estimated phase difference is calculated by cross-correlation 

of sinusoidal signals and their Hilbert transform. Compared 

with the CC method and DEC method, the HT method has 

better anti-interference performance. However, end effects 

of Hilbert transform resulting from non-integral period 

sampled signals lead to the bias of the HT method. The 

quadrature delay estimator [13]-[15] (QDE) obtains 

quadrature-phase components of sampled signals by their 

time-shifting and gets phase difference by means of cross-
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correlation of in-phase and quadrature-phase components. 

The QDE method has good estimation performance when 

90° phase shift is exactly performed by choosing the 

sampling period properly, whereas the QDE method shows 

bias if the introduced phase shift is not exactly 90°. 

To improve the measurement accuracy of CMF, a phase 

and frequency matching-based signal processing method for 

Coriolis mass flowmeters is proposed, which is expected to 

eliminate the dependence of phase difference estimation on 

integral period sampling and improve its estimation 

precision. The rest of this paper is organized as follows: in 
section 2, the key idea of phase and frequency matching-

based signal processing method for Coriolis mass 

flowmeters is developed. The proposed method is validated 

by simulations and experiments in section 3 and 4 by 

comparing with the CC, HT, DEC and QDE methods. 

Finally, conclusions are drawn in section 5. 
 

2.  METHOD DEVELOPMENT 

To improve the signal processing precision of CMF, a 

phase and frequency matching-based signal processing 
method for Coriolis mass flowmeters is proposed. The main 

steps of the proposed method are shown in Fig.1. Firstly, the 

CMF signals are sampled and two signals are obtained. 

Secondly, frequency estimation of two CMF signals is 

obtained by means of auto-correlation, generating reference 

signals, constructing error function and calculating its 

minimum. Thirdly, phase difference estimation is obtained 

by means of 90° phase shift, generating reference signals 

and cross-correlation. Finally, the mass flow rate is 

calculated according to estimated phase difference. 

 

Sample two CMF signals

Calculate estimated frequency 

Calculate estimated phase 

difference

Calculate the mass flow rate

 
 

Fig.1.  The main step of the proposed method. 

 
Two noisy real sinusoidal signals for CMF are as follows: 
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where 1( ) cos( )xs t A t   and 2( ) cos( )ys t B t    are 

noise-free signals,  is the sinusoidal frequency, A and B , 

1 and 2 are sinusoidal amplitudes and initial phases, 

respectively, ( )xz t  and ( )yz t are additive white Gaussian 

noise. 

The CMF signals are sampled and two signals are obtained 

as follows: 
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where N  is the sinusoidal length, ( ) ( ) ( )x xx n s n z n  , 

( ) ( ) ( )y yy n s n z n  . 

For sinusoidal signals   cos( )s n A n   , we can 

get the following equation according to linear prediction 

property of sinusoidal signals: 
 

ˆ( ) ( ) 2sin( ) ( )s n b s n b b s n                 (3) 

 

Based on  (3), the n th quadrature-phase component of 

sampled signals  s n  is calculated as follows: 
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where  ˆ0.5 /b round   ,  round t represents the 

integer which is the closest to t . 

According to (4), the quadrature-phase components of 

( )x n and ( )y n are calculated as follows: 
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Equation (5) indicates that signal frequency   should be 

known to obtain ˆ( )x n  and ˆ( )y n . Therefore, to obtain 

signal frequency , the k th auto-correlation signal ( )r k is 

calculated, 
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where k is the lag of auto-correlation signals, k =1,2,… p , 

(0.46 )p round N . 

The expectation value of ( )r k  is  
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Equation (7)  indicates that auto-correlation signals r have 

the characteristics that r have zero initial phase and the 

same frequency with two CMF signals. 

Based on the characteristics of r , reference signals λ are 
generated.  

 

 ˆ ˆ ˆcos( ),cos(2 ),cos(3 )  λ … ˆcos( )K        (8) 

 

The error function between auto-correlation signals r  and 

reference signals λ  is constructed as follows: 
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According to Cauchy inequation, we have ˆ( ) 0J   . 

When qr λ ( q  is a constant), that is to say, auto-

correlation signals r  and reference signals λ have the same 

initial phase and frequency, the error function ˆ( )J  attains 

its minimum. To obtain ̂ , ˆ( ) cos( )k k  is expanded 

into Taylor series at coarse estimation frequency 1 , whose 

first order is preserved and high level terms are ignored. 
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Substituting ( )k  into (9) and making the derivation of 

ˆ( )J   equal zero yields 
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Equation  (5) shows that when ̂ = , the expectation of 

ˆ( )x n  and ˆ( )y n  can be expressed as follows: 
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where 1 b n N b    . 

To obtain phase difference estimation of two CMF signals, 

two reference signals ( )h n and ˆ( )h n are generated as 

follows: 
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( )h n and ˆ( )h n  have the same frequency of two CMF 

signals and their quadrature-phase components. Besides, the 

initial phase of ( )h n  is zero and the phase difference of 

( )h n and ˆ( )h n  is 2 / . 

Two cross-correlation signals are calculated through the 

cross-correlation of two CMF signals ( )x n and ( )y n , their 

quadrature-phase components ˆ( )x n  and ˆ( )y n , two 

reference signals ( )h n and ˆ( )h n . 
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When ̂ = , the expectation of 
1R  and 

2R  are 
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Therefore, estimated phase difference of two CMF signals 

are calculated as follows: 
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According to the analysis above, the basic procedure of the 

proposed method is as follows: 

1)  The coarse estimation frequency 1 is calculated by 

utilizing (16), and frequency estimation ̂ is gained by 

utilizing  (6) and (11). 
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2)  The quadrature-phase components of two CMF signals, 

ˆ( )x n  and ˆ( )y n , are calculated by (5). 

3)  Two reference signals, ( )h n and ˆ( )h n , are generated 

in  (13). 

4)  Two cross-correlation signals, 
1R  and 

2R , are 

calculated by  (14). 

5)  Estimated phase difference 
2 1   is obtained by  

(15). 

 

3.  SIMULATIONS 

To verify the effectiveness and superiority of the proposed 

method, simulations for the CC, HT, DEC, QDE methods 

and the proposed method are performed. In simulations, 

signal frequency is 146 Hz, sampling frequency is 2000 Hz, 

1A B  ,  1 0,2  , 2 1
6


   , the noise added 

into the signals is additive Gaussian white noise. All 

simulation results are the average of 1000 times of 

independent runs. 
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Fig.2.  The results of phase difference estimation 

 for different phase differences. 

To evaluate the estimation performance of the proposed 

method under conditions of different phase differences, 

simulations at N =200 and  0.45,0.7   rad are 

performed. The results of phase difference estimation are 

shown in Fig.2. It is shown in Fig.2.a) that the estimated 

phase differences of the proposed method equal actual 

values in the absence of noise while the CC, DEC, HT and 

QDE methods bring estimation errors. It demonstrates that 

the proposed method is unbiased in the absence of noise and 

the CC, DEC, HT and QDE methods are biased even though 

there is no noise. Fig.2.b) shows that  the estimated values 

of the proposed method vary around the vicinity of actual 

phase differences, its errors remain in a small range. 

However, the estimated values of the other four methods are 

far from actual values and their phase difference estimation 

errors are obvious. 

To evaluate the estimation performance of the proposed 

method under conditions of different SNRs, simulations at 

N =200 are performed. The mean square errors (MSE) of 

phase difference estimation are shown in Fig.3.  
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Fig.3.  The results of phase difference estimation 
for different SNRs. 

 
 

It is seen in Fig.3. that affected by non-integral period 

sampled signals, the phase difference estimation 

performance of the CC and HT methods is not improved 

when SNR is larger than 46 dB and 40 dB, respectively. 

Compared with the CC method, the DEC method is less 

affected by non-integral period sampled signals. Due to the 

fact that phase shift of sinusoidal signals could not be 

exactly 2 / , the phase difference estimation of  the QDE 

method is biased and its performance is not improved when 

SNR is larger than 36 dB. The MSE of phase difference 

estimation for the proposed method are always smaller than 

those of the CC, HT, DEC and QDE methods under 
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conditions of different SNRs. Besides, they are becoming 

smaller with the increasing of SNR.  

To evaluate the estimation performance of the proposed 

method under conditions of different signal lengths, 

simulations at SNR=25 dB are performed. The MSE of 

phase difference estimation are shown in Fig.4. It is 

observed in Fig.4. that with the increasing of signal length, 

the MSE of the CC and HT methods show periodical 

damping oscillation. When / (2 )N m   （ m  is an 

integer） , that is to say, signal length satisfies integral 

period sampling, the MSE of the HT method are smaller 

than those of other signal lengths N  . Likewise, when 

1/N m   (
1m  is an integer）, the MSE of the CC 

method are smaller. With the increase of signal length, the 

MSE of the proposed method decrease correspondingly. It 

demonstrates that the proposed method is not affected by 

non-integral period sampled signals. Furthermore, the MSE 

of the proposed method are always smaller than those of the 

QDE, CC, HT and DEC methods. Under conditions of 

different signal lengths, the average MSE of the proposed 

method are 4.8 dB, 3.2 dB, 2.8 dB and 2.1 dB smaller than 

those of the QDE, CC, DEC and HT methods, respectively.  
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Fig.4.  The results of phase difference estimation  
for different signal lengths. 

4.  FIELD EXPERIMENTS 

In order to demonstrate the effectiveness of the proposed 

method to improve the measurement accuracy of CMF, a 

RHEONIK CMF with a RHE08 transmitter was used to test 

the estimation performance of the proposed method. In the 

experiments, the mass flow rates vary from 5 to 15 kg/min, 

the frequency of CMF sensors is about 146 Hz and the 

sampling frequency is 10 kHz. 4000 points of sampled 

signals are used to test the performance of the proposed 

method each time. The time interval t  is calculated as 

follows: 

 

ˆ/ ( )st f                               (17) 

 

According to the principle of CMF, there is a linear 

relationship between time interval t  and mass flow rate 

fM . 

 

0 0fM B t C                             (18) 

 

where the  coefficient
0B  is a fixed constant on the same 

experimental condition, which is dependent on the CMF 

type, measured medium, pipe material, etc. Before the 

experiments, the CMF with a RHE08 transmitter is 

calibrated in a qualified calibration laboratory. Therefore, 

the mass flow rates shown by the CMF are deemed as true 

values. The experimental results are shown in Table 1. The 

results demonstrate that for different flow rates, the 

estimated mass flow rates of the proposed method are closer 

to the actual values than those of the CC, HT, DEC, QDQ 

and QDE methods. The average relative error of the 

estimated mass flow rates for the proposed method is about 

0.3 %, which is smaller than those of the CC, HT, DEC, 

QDQ and QDE methods. Therefore, the proposed method 

contributes to improving the estimation precision of phase 

difference and the measurement accuracy of the CMF. 

 
 

 
Table 1.  Actual and estimated mass flow rates. 

 

 
Mass flow rates 

（kg/min） 

Estimated mass flow rates(kg/min） 

CC DEC HT DQD QDE Proposed 

1 5.88 8.246 8.269 5.867 5.900 5.867 5.870 

2 8.50 10.186 10.189 8.437 8.460 8.452 8.481 

3 10.34 11.691 11.699 10.128 10.154 10.280 10.310 

4 12.13 13.491 13.453 12.029 12.089 12.080 12.105 

5 13.95 15.075 15.073 13.885 13.909 13.893 13.920 
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5.  CONCLUSIONS 

To improve the signal processing precision of CMF 

signals and the measurement accuracy of CMF, a phase and 

frequency matching-based signal processing method for 

Coriolis mass flowmeters is proposed. The proposed method 

obtains estimated phase difference and mass flow rates by 

means of frequency estimation, 90° phase shift, generating 
reference signals and cross-correlation. Theoretical analysis 

demonstrates that the proposed method has completed 90° 

phase shift exactly and obtained unbiased phase difference 

estimation without the special requirement of integral period 

sampling or specific sampling frequency. Simulated results 

under conditions of different phase differences, SNRs and 

signal lengths show that the proposed method is not affected 

by non-integral period sampled signals. Besides, the 

proposed method has better estimation performance of phase 

difference than the CC, HT, DEC and QDE methods. The 

experimental results of mass flow rates for CMF verify the 

effectiveness and superiority of the proposed method. 
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