
10.1515/msr-2015-0014

MEASUREMENT SCIENCE REVIEW, Volume 15, No. 2, 2015

An FPGA Architecture for Extracting Real-Time Zernike
Coefficients from Measured Phase Gradients

Steven Moser1, Peter Lee2, and Adrian Podoleanu3

1Embedded Systems Group, University of Kent, Canterbury, United Kingdom, S.J.Moser@kent.ac.uk
2Embedded Systems Group, University of Kent, Canterbury, United Kingdom

3Applied Optics Group, University of Kent, Canterbury, United Kingdom

Zernike modes are commonly used in adaptive optics systems to represent optical wavefronts. However, real-time calculation of
Zernike modes is time consuming due to two factors: the large factorial components in the radial polynomials used to define them
and the large inverse matrix calculation needed for the linear fit. This paper presents an efficient parallel method for calculating
Zernike coefficients from phase gradients produced by a Shack-Hartman sensor and its real-time implementation using an FPGA
by pre-calculation and storage of subsections of the large inverse matrix. The architecture exploits symmetries within the Zernike
modes to achieve a significant reduction in memory requirements and a speed-up of 2.9 when compared to published results utilising
a 2D-FFT method for a grid size of 8×8. Analysis of processor element internal word length requirements show that 24-bit precision
in precalculated values of the Zernike mode partial derivatives ensures less than 0.5% error per Zernike coefficient and an overall
error of <1%. The design has been synthesized on a Xilinx Spartan-6 XC6SLX45 FPGA. The resource utilisation on this device is
<3% of slice registers, <15% of slice LUTs, and approximately 48% of available DSP blocks independent of the Shack-Hartmann
grid size. Block RAM usage is <16% for Shack-Hartmann grid sizes up to 32×32.

Keywords: Singular value decomposition, field programmable gate array.

1. INTRODUCTION

REAL-TIME estimation of optical wavefronts is critical
for using adaptive optics (AO) in diverse fields such

as astronomy, microscopy, and biomedical imaging. In the
biomedical field, modalities such as Optical Coherence To-
mography (OCT) [1] employ AO in high-speed depth re-
solved imaging [2]. OCT, in particular, generates extremely
large data sets which are well suited for parallel processing
techniques, especially if real-time operation is desired. For
this reason interest has grown in utilising Field Programmable
Gate Arrays (FPGA) and Graphics Processing Units (GPU)
for such modalities. Similar situations arise in the large adap-
tive optics systems in modern ground based astronomical ob-
servatories. Li, et al., have shown that the increasing demands
of OCT type systems will be best serviced by FPGA process-
ing [3]. With this being the case, the authors have chosen
FPGAs as our processing platform, as our wavefront sensing
technique will also be applied to OCT type modalities.

Modal wavefront estimation is well known in the fields
of adaptive optics and wavefront sensing [4]. Southwell [5]
shows that Zernike modes make excellent descriptors due to
their orthogonality, definition over a circular pupil, and ability
to capture common aberrations. Generally, Zernike modes are
defined over the polar coordinates (r,θ) and the ith Zernike
mode is defined as

Zmn(r,θ) =

 Rmn(r) m = 0
Rmn(r)cos(mθ) m > 0
Rmn(r)sin(mθ) m < 0

(1)

where i is related to m and n from Noll [6] and Rmn(r) is the
radial polynomial

Rmn(r) =
(n−m)/2

∑
k=0

(−1)k(n− k)!
k!(n+m

2 − k)!(n−m
2 − k)!

rn−2k (2)

Due to the factorial components in (2), direct calculation
of the Zernike modes requires many operations making pro-
cessing in real-time impractical. In this paper, a fast parallel
method for calculating Zernike coefficients from measured
phase gradients is presented. Section 2 reviews the general
modal method for obtaining coefficients via the singular value
decomposition (SVD) of the partial derivatives of the Zernike
modes. Section 3 presents the parallel method as a restruc-
turing of the general modal method by separating the large
matrix multiplication of the singular value decomposition into
inner products; two for each Zernike mode. In Section 4 hard-
ware implementation is presented along with error analysis,
timing and resource utilisation.

2. COEFFICIENTS VIA THE MODAL METHOD

In general, the modal method attempts to reconstruct the
wavefront phase W (x,y) at the sensor plane via a sum of or-
thogonal functions of the form

W (x,y) =
j

∑
i=1

ci Zi(x,y) (3)

where Zi(x,y) is the ith Zernike polynomial and ci is the
weighting coefficient. Note i= 0, the piston term (DC compo-
nent), is omitted as it cannot be determined from phase deriva-
tive measurements [4] and is typically unimportant for these

92

http://dx.doi.org/10.1515/msr-2015-0014
mailto:S.J.Moser@kent.ac.uk

MEASUREMENT SCIENCE REVIEW, Volume 15, No. 2, 2015

Aberrated
Wavefront

Lenslet
Array

CCD Camera

Fig. 1: Components of a Shack-Hartmann wavefront sensor. In this
example the wavefront is sampled by a 4×4 grid of lenslets.

applications. The most common wavefront sensor, the Shack-
Hartmann is shown in Figure 1. A Shack-Hartmann samples
an incoming wavefront with a lenslet array arranged in a regu-
larly spaced Cartesian grid. Zernike polynomials are typically
defined in a polar coordinate system. However, they are repre-
sented here in the Cartesian system to better match the Shack-
Hartmann layout. This method assumes that the measured
phase gradients are available over a circular pupil enclosed
within a square grid. All values outside of that circle are set
to zero, as shown in Figure 2. For purposes of precalculation,
points are generated over an evenly spaced Cartesian grid of
size n× n and converted to polar coordinates for calculation
of the Zernike modes.

Wavefront sensing methods, such as the Shack-
Hartmann [7], or Laser Ray Tracing [8], provide mea-
surements of local phase gradients at the sensor pupil, usually
by division of the pupil into n×n sub-apertures. The gradient
is related to (3) via

Sx =
∂W (x,y)

∂x
=

j
∑

i=1
ci

∂Zi(x,y)
∂x

Sy =
∂W (x,y)

∂y
=

j
∑

i=1
ci

∂Zi(x,y)
∂y

.

(4)

In matrix form (4) may be expressed as

Sxy = Ac (5)

where Sxy is a vector of the measured phase gradients with
alternating x and y values

Sxy =

[
∂W (x1,y1)

∂x1

∂W (x1,y1)

∂y1
. . .

∂W (xn,yn)

∂xn

∂W (xn,yn)

∂yn

]T
(6)

0 n−1

n−1

y

x

Fig. 2: Circular pupil mapped into a square grid. Grey cells outside
the pupil are set to zero.

where T denotes the transposed matrix. A is a matrix of the
partial derivatives of the Zernike modes

A =

∂Z1(x1,y1)

∂x1

∂Z2(x1,y1)

∂x1
. . .

∂Z j(x1,y1)

∂x1

∂Z1(x1,y1)

∂y1

∂Z2(x1,y1)

∂y1
. . .

∂Z j(x1,y1)

∂y1

∂Z1(x2,y2)

∂x2

∂Z2(x2,y2)

∂x2
. . .

∂Z j(x2,y2)

∂x2

∂Z1(x2,y2)

∂y2

∂Z2(x2,y2)

∂y2
. . .

∂Z j(x2,y2)

∂y2

...
∂Z1(xn,yn)

∂xn

∂Z2(xn,yn)

∂xn
. . .

∂Z j(xn,yn)

∂xn

∂Z1(xn,yn)

∂yn

∂Z2(xn,yn)

∂yn
. . .

∂Z j(xn,yn)

∂yn

(7)

and c is a column vector of Zernike coefficients

c =
[

c1 c2 c3 . . . c j
]T . (8)

This may be solved for c, in the least-squares sense, by util-
ising the pseudoinverse A† where A† is obtained via the SVD.
From the SVD, A =Unn Snn V T

nn where the columns of Unn are
the eigenvectors of AAT , the columns of Vnn are orthonormal
eigenvectors of AT A, and Snn is a diagonal matrix, which con-
tains the singular values of A. A† denotes the pseudoinverse
of A which is A† =Unn S†

nn V T
nn. Therefore, the Zernike coeffi-

cients may be obtained via

c = A† Sxy =Unn S†
nn V T

nn Sxy. (9)

A parallel method for solving for the elements of c in real-
time is presented in the following section.

3. PARALLEL MODAL METHOD

The proposed parallel method involves separating the x and
y components of (6) and (7). For each element ci in (8) two

93

MEASUREMENT SCIENCE REVIEW, Volume 15, No. 2, 2015

coefficients, cix and ciy, may now be calculated solely from
the x and y components, respectively, as shown in (10)

cix = A†
ix Sx,

ciy = A†
iy Sy

(10)

where

Sx =

[
∂W (x1,y1)

∂x1

∂W (x2,y2)

∂x2
. . .

∂W (xn,yn)

∂xn

]T
, (11)

Sy =

[
∂W (x1,y1)

∂y1

∂W (x2,y2)

∂y2
. . .

∂W (xn,yn)

∂yn

]T
, (12)

Ax =

∂Z1(x1,y1)

∂x1

∂Z2(x1,y1)

∂x1
. . .

∂Z j(x1,y1)

∂x1

∂Z1(x2,y2)

∂x2

∂Z2(x2,y2)

∂x2
. . .

∂Z j(x2,y2)

∂x2

...
∂Z1(xn,yn)

∂xn

∂Z2(xn,yn)

∂xn
. . .

∂Z j(xn,yn)

∂xn

(13)

and

Ay =

∂Z1(x1,y1)

∂y1

∂Z2(x1,y1)

∂y1
. . .

∂Z j(x1,y1)

∂y1

∂Z1(x2,y2)

∂y2

∂Z2(x2,y2)

∂y2
. . .

∂Z j(x2,y2)

∂y2

...
∂Z1(xn,yn)

∂yn

∂Z2(xn,yn)

∂yn
. . .

∂Z j(xn,yn)

∂yn

(14)

and A†
ix and A†

iy are row vectors taken column-wise from A†
x

and A†
y respectively. In this manner, the large matrix multipli-

cation in (9) is decomposed into simple inner products, two
for each desired mode. Finally, ci can be obtained by

ci = cix + ciy. (15)

Assuming the fixed grid size is known a priori each A†
ix and

A†
iy vector may be precalculated and stored in memory. Two

memory elements are required for each Zernike mode, one for
A†

ix and another for A†
iy, allowing ∂x and ∂y to be processed

independently, in parallel. The size of each memory element
will vary directly with the number of sample points in Sxy and
the word length of each precalculated A†

ix and A†
iy values. This

method trades off long calculation times inherent in the direct
method with larger memory requirements due to the necessity
to store the precalculated vectors.

Sx Sy

Fig. 3: Block diagram for top level view of Zernike processing
blocks.

4. HARDWARE IMPLEMENTATION

A hardware implementation was undertaken using a Xilinx
Spartan-6 FPGA device utilising the Simulink System Gen-
erator suite of functions in MATLAB R© [9]. The top level
layout is shown in Figure 3 illustrating the Zernike Coeffi-
cient Processing (ZCP) blocks (labeled X-Tilt, Y-Tilt, Defo-
cus, etc), Address Generator, Sx and Sy inputs and the ci out-
puts. Each block accepts the address input from the Address
Generator block. In each ZCP block 2 ROMs store the pre-
calculated A†

ix and A†
iy values for the given Zernike mode.

Figure 4 illustrates internal elements of the ZCP blocks.
In each, the addr signal cycles from 0 to (n2/2)−1 and then
from (n2/2)−1 back to 0 as each ROM holds half of the sym-
metric A†

ix and A†
iy vectors, respectively (see subsection 4.1).

For the odd ZCP blocks the select signal toggles the negated
signal through the mux when counting down, as shown in Fig-
ure 4.

Each pair of gradients ∂x and ∂y is sent, in parallel, to each
ZCP block. The inner product is formed via a multiply and
accumulate operation, which is implemented using DSP slices
on the FPGA. After the multiply and accumulate stage the cix

94

MEASUREMENT SCIENCE REVIEW, Volume 15, No. 2, 2015

Aiy

Aix

ZCP BLOCK

ROM

ROM

n

n

1212

Fig. 4: Block diagram for a Zernike Coefficient Processor.

and ciy values are summed to produce the final ci. This is only
valid once the entire n2 input pairs are processed.

A†
2x Vector Symmetry

1950 2050 2150

index
40000 2050

Fig. 5: Symmetry in the A†
2x vector about the midpoint (index =

2048) is apparent. Zoomed in subimage shows the symmetry is even.

4.1. Memory reduction

Precomputation of the SVD matrices trades off computation
time for larger memory usage; therefore, it is imperative that
the inherent symmetry of the Zernike modes be exploited to
keep the stored data to a minimum. Due to the symmetry of

the Zernike modes, A†
ix and A†

iy also exhibit even or odd sym-
metry as shown in Figures 5 and 6. This redundancy enables
storage of only half the A†

ix and A†
iy vectors in memory, signif-

icantly reducing the precomputation trade-off. To accomplish
this in hardware, one counter is used for the forward address-
ing of the inner product multiplications and a second counter
is used for the reverse addressing. A master counter is used as
a controller, enabling each counter as needed. For the A†

ix and
A†

iy’s that exhibit odd symmetry a negation of each element
is performed when the addressing is reversed. This is similar
to the techniques used in direct digital synthesis of symmetric
waveforms [10] and those used by Li, et al., [11] for wavefront
reconstruction on a GPU.

5. RESULTS

To test the design several wavefronts, one of which is shown
in Figure 7, were generated in MATLAB. One arbitrary set of
nine Zernike coefficients zin is shown in Table 1. Note that the
piston term is omitted as discussed in Section 2.

The gradient of the wavefront was calculated, serialized,
and sent to Simulink to simulate outputs from the wavefront
sensor. Inputs are converted from double precision format to
fixed point 12 bit signed values with the binary point at 10
bits. The value of 12 bits was chosen to represent the typical
precision of Shack-Hartmann CCD data, but the model can
easily be scaled to accommodate other values. It is assumed
that the inputs have been normalized to a value between 1 and
-1 as the Zernike modes are also normalized between these
values. Other input word lengths were tested and it was found
that anything above 10 bits had a constant error contribution
of less than 0.1%.

Zernike coefficients were calculated from the simulated
measurements using word lengths of 18, 20, 22, 24, 26, 28,
30 and 32-bits for the precalculated A†

ix and A†
iy values respec-

tively. These were tested to find the smallest word length that
still gave acceptable accuracy (<1% error). For each word

95

MEASUREMENT SCIENCE REVIEW, Volume 15, No. 2, 2015

A†
3x Vector Symmetry

1950 2050 2150

index
40000 2050

Fig. 6: Symmetry in the A†
3x vector about the midpoint (index =

2048) is apparent. Zoomed in subimage shows the symmetry is odd.

length the percent error was calculated via:

%error =
|cini− ci|

cini
×100 (16)

and results are shown in Figure 8. It is clear from the figure
that word lengths above 22-bits ensure error of less than 1%
for each of the 9 modes calculated. The difference in error
between a 24-bit word length and 32-bit word length is small
but not negligible and specific values are shown in Table 1.
The total residual error between the reconstructed and input
wavefronts is on the order of 10−7.

In addition to verifying the proposed method with a sim-
ulated wavefront, experimental data was also utilised. Wave-
front data was processed via the direct computation of Zernike
coefficients in MATLAB and also via the proposed method.
Results are shown in Table 2. For all values the proposed
method agrees very well with the direct method giving per-
cent differences of less than 1%.

5.1. Resource utilization and performance

Resource utilisation was determined for implementation on
a Xilinx Spartan-6 XC6SLX45 FPGA (system clock =
100MHz) via synthesis of the HDL. This platform was chosen
for its relatively low cost and to demonstrate that this design
can be implemented on a general purpose FPGA, though the
design also scales well to larger devices. Table 3 shows the

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−5

0

5

x (normalized pupil units)

Input Wavefront

y (normalized pupil units)

z
(a

rb
 u

ni
ts

)

Fig. 7: Simulated Input Wavefront

32 30 28 26 24 22 20 18
0

1

2

3

4

5

6

7

8

9

Word1Length1fbitsu

P
er

ce
nt

1E
rr

or

Percent1Error1vs.1Word1Length1per1Zernike1Mode

1

y−tilt

x−tilt

y−astig

defocus

x−astig

y−trefoil

y−coma

x−coma

x−trefoil

Fig. 8: Percent Error in Calculated Zernike Coefficients for given
word lengths.

resource utilisation for four grid sizes and 24-bit ROM val-
ues, while Table 4 shows the 32-bit version. FPGA memory
is available in pre-allocated sections of dedicated block RAM
with sizes of 8kbits and 16kbits (RAMB8 and RAMB16 re-
spectively). The tables show that RAMB8 and RAMB16 us-
age is unaffected by word length for grid sizes below 32×32.
Above that, RAMB16 usage increases dramatically. A grid
size of 128× 128 was attempted but was too large to fit on
this device due to the system memory required for synthesis.
DSP48 (specialized processing blocks with embedded multi-
pliers) usage is independent of the grid size chosen, but will
become a limiting factor as more Zernike modes are included
in the calculation. For a 32×32 grid it was found that a maxi-
mum of 28 Zernike modes could be included in the synthesis.

Tables 3 and 4 also show that, other than a slight increase
LUT usage, there is no penalty for utilising 32-bit ROM val-

96

MEASUREMENT SCIENCE REVIEW, Volume 15, No. 2, 2015

Table 1: Numerical error for calculated Zernike coefficients using 24-bit and 32-bit word lengths.

zin ci (24-bit) % error ci (32-bit) % error

-0.6000 -0.600558519 -0.09 -0.600044608 -0.01

0.2000 0.199260473 0.37 0.199770331 0.11

0.7618 0.761454582 0.05 0.761984587 -0.02

-0.2000 -0.200686216 -0.34 -0.200161457 -0.08

0.3000 0.299332142 0.22 0.299838722 0.05

0.1200 0.119457960 0.45 0.119983137 0.01

-0.4500 -0.450639725 -0.14 -0.450115860 -0.03

0.6780 0.677210808 0.12 0.677734435 0.04

0.9230 0.922606468 0.04 0.923126817 -0.01

Table 2: Comparison of measured wavefront reconstruction via the Direct and Proposed method.

Zernike mode Direct Method Proposed Method % Difference

y-tilt -0.0002 -0.0002 0.0

x-tilt -0.0101 -0.0100 0.8

y-astig. 0.0181 0.0180 0.1

defocus -0.0021 -0.0021 -0.7

x-astig. -0.0254 -0.0255 -0.3

y-trefoil 0.0205 0.0206 -0.4

y-coma -0.0025 -0.0026 -0.2

x-coma 0.0017 0.0017 0.5

x-trefoil 0.0080 0.0079 0.2

Table 3: Resource utilisation for 24 bit ROM values compiled for a Xilinx Spartan-6 XC6SLX45.

Grid size
Slice

Registers
Slice LUTs RAMB8 RAMB16 DSP48s

Clock

Cycles

Duration

(µs @ 100MHz)

8×8 1384 2049 18 0 28 57 0.57

16×16 1386 2060 18 0 28 239 2.39

32×32 1388 2068 0 18 28 984 9.84

64×64 1390 2083 0 54 28 4011 40.11

97

MEASUREMENT SCIENCE REVIEW, Volume 15, No. 2, 2015

Table 4: Resource utilisation for 32 bit ROM values compiled for a Xilinx Spartan-6 XC6SLX45.

Grid size
Slice

Registers
Slice LUTs RAMB8 RAMB16 DSP48s

Clock

Cycles

Duration

(µs @ 100MHz)

8×8 1832 4138 18 0 28 57 0.57

16×16 1834 4144 18 0 28 239 2.39

32×32 1836 4160 0 18 28 984 9.84

64×64 1838 4164 0 72 28 4011 40.11

Table 5: Resource utilisation for 32 bit ROM values compiled for a Xilinx Virtex-6 XC6VLX240T-1FFG1156.

Grid size
Slice

Registers
Slice LUTs RAMB18 RAMB36 DSP48s

Clock

Cycles

Duration

(µs @ 200MHz)

8×8 1656 (1%) 2557 (9%) 18 (2%) 0 28 (4%) 57 0.285

16×16 1660 (1%) 2561 (9%) 18 (2%) 0 28 (4%) 239 1.195

32×32 1664 (1%) 2566 (9%) 18 (2%) 0 28 (4%) 984 4.92

64×64 1668 (1%) 2572 (9%) 0 36 (9%) 28 (4%) 4011 20.06

Table 6: Resource utilisation for 2D-FFT phase recovery circuit, 8 bit inputs, compiled for a Xilinx Virtex-4 XC4VSX35. Taken from [12].
“XX” indicates that slice LUTs and RAMB8 utilisation was not reported.

Grid size
Slice

Registers
Slice LUTs RAMB8 RAMB16 DSP48s

Clock

Cycles

Duration

(µs @ 100MHz)

8×8 1141 XX XX 4 6 162 1.62

16×16 1667 XX XX 4 6 412 4.12

32×32 2855 XX XX 4 15 1304 13.04

64×64 4613 XX XX 16 15 4516 45.16

128×128 8135 XX XX 64 25 17084 170.84

Table 7: Resource utilisation for 2D-FFT phase recovery circuit, 16 bit inputs, compiled for a Xilinx Virtex-4 XC4VSX35. Taken from [12].
“XX” indicates that slice LUTs and RAMB8 utilisation was not reported.

Grid size
Slice

Registers
Slice LUTs RAMB8 RAMB16 DSP48s

Clock

Cycles

Duration

(µs @ 100MHz)

8×8 1650 XX XX 4 10 162 1.62

16×16 2302 XX XX 4 10 412 4.12

32×32 3992 XX XX 8 22 1304 13.04

64×64 6472 XX XX 24 22 4516 45.16

128×128 11326 XX XX 24 36 17084 170.84

98

MEASUREMENT SCIENCE REVIEW, Volume 15, No. 2, 2015

ues for grid sizes lower than 32× 32 as neither overruns the
pre-allocated RAMB8/16 dimensions. This design also scales
very well to the larger FPGA devices. Table 5 shows the
device utilization for a Virtex-6 XC6VLX240T-1FFG1156
FPGA and demonstrates that the resource utilisation is very
low, consisting of 1% of slice registers, 9% of slice LUTs, 4%
of DSP48s, and <10% of block RAM for the largest grid size.

6. CONCLUSION

The proposed method in this paper compares favorably with
other methods of wavefront coefficient generation previously
published. Rodríguez-Ramos, et. al, utilized a forward
and inverse 2D-FFT method for grid sizes from 8× 8 to
128×128 [12], though in this case performing a full phase re-
covery. In order to make a fair comparison only the time taken
to calculate the Fourier coefficients from the forward 2D-FFT
portion of the recoverer is considered, which is approximately
1.67µs compared to the proposed method’s 0.57µs (both run-
ning with a system clock = 100MHz).

Resource utilisation in the proposed method compares
favourably with that in [12]. The resources consumed by each
2D-FFT block in [12] are shown in Tables 6 and 7, both taken
directly from [12]. Table 6 shows utilisation for 8-bit inputs
while Table 7 is for 16-bit inputs. To generate a complete set
of Fourier coefficients, two such blocks must be used, dou-
bling the resources reported. In each case the resource utili-
sation is less in the proposed method, except in the DSP us-
age for the 8× 8 and 16× 16 grid sizes, where the proposed
method uses 28 DSP48s and [12] uses 12 DSP (8-bit) or 20
DSP (16-bit).

Saunter, et. al, [13] implemented a wavefront reconstruc-
tion scheme, producing Zernike coefficients, using an FPGA
in approximately 1.19 µs for an 8×8 grid of Shack-Hartmann
spots, running at 80MHz. The proposed method achieves
these results in 0.57µs. As a direct comparison, if the pro-
posed method is run at 80 MHz (the same clock speed as the
method in [13]) the results are achieved in 0.7125 µs, an im-
provement of 40%. Specifics of the implementation are not
given by Saunter so a comprehensive comparison is not pos-
sible but, as above, illustrates the competitive nature of this
design.

Utilising the high-level Simulink design environment
greatly reduced the development and testing time required to
implement this design. Precomputation of the ROM values
may be done directly in MATLAB and imported into the hard-
ware design with minimal effort. After the initial design was
validated, addition of more Zernike modes, variations in grid
size, or changes in binary word length are trivial. Compila-
tion for simple devices such as the Spartan-6 may be done
directly in MATLAB whereas more complex devices such as
the Virtex-6 require a simple VHDL top-level wrapper to en-
close the design and provide proper clocking. The trade-off
in this approach is somewhat less efficient VHDL (as auto-
matically produced by MATLAB) but the authors feel that the
gain in development time is justified, especially considering

the long development times typically associated with FPGA
design.

In summary, this paper has shown a parallel method of cal-
culating Zernike coefficients from measured phase gradients
and its hardware implementation. Coefficients were fitted to
the phase gradients, in the least-squares sense, via a precom-
puted singular value decomposition. Symmetries in the pre-
computed vectors are exploited to halve the required memory.
Resource utilisation shows heavy usage of DSP slices with
low usage of registers and LUTs. Memory usage is indepen-
dent of word length below grid sizes of 32×32; above which
it increases dramatically. Future work will entail performing
a full phase recovery via another inner product between the
Zernike coefficients and precomputed Zernike modes stored
in ROM. This will allow for visualization of the sensed wave-
front in real-time.

REFERENCES

[1] Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S.,
Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gre-
gory, K., Puliafito, C. A., Fujimoto, J. G. (1991). Optical
coherence tomography. Science, 254, 1178–1181.

[2] Podoleanu, A. (2005). Optical coherence tomography.
British journal of radiology, 78 (935), 976–988.

[3] Li, J., Sarunic, M., Shannon, L. (2011). Scalable, high
performance Fourier domain optical coherence tomog-
raphy: Why FPGAs and not GPGPUs. In IEEE 19th An-
nual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 1-3 May 2011.
IEEE, 49–56.

[4] Cubalchini, R. (1979). Modal wave-front estimation
from phase derivative measurements. Journal of the Op-
tical Society of America, 69 (7), 972–977.

[5] Southwell, W. H. (1980). Wave-front estimation from
wave-front slope measurements. Journal of the Optical
Society of America, 70 (8), 998–1006.

[6] Noll, R. J. (1976). Zernike polynomials and atmospheric
turbulence. Journal of the Optical Society of America,
66 (3), 207–211.

[7] Shack, R. V., Platt, B. (1971). Production and use of a
lenticular Hartmann screen. Journal of the Optical So-
ciety of America, 61 (5), 656.

[8] Navarro, R., Moreno-Barriuso, E. (1999). Laser ray-
tracing method for optical testing. Optics letters, 24
(14), 951–953.

[9] The MathWorks Inc. (2012). MATLAB 7.10.0 (R2012a).
[10] Analog Devices Inc. (1999). A technical tutorial on

digital signal synthesis.
[11] Li, D., Hu, L., Mu, Q., Cao, Z., Peng, Z., Liu, Y., Yao,

L., Yang, C., Lu, X., Xuan, L. (2014). Wavefront pro-
cessor for liquid crystal adaptive optics system based on
graphics processing unit. Optics Communications, 316,
211–216.

99

MEASUREMENT SCIENCE REVIEW, Volume 15, No. 2, 2015

[12] Rodríguez-Ramos, J., Castelló, E. M., Conde, C. D.,
Valido, M. R., Marichal-Hernández, J. (2008). 2D-FFT
implementation on FPGA for wavefront phase recovery
from the CAFADIS camera. In Adaptive Optics Systems,
Proc. SPIE 7015.

[13] Saunter, C., Love, G., Johns, M., Holmes, J. (2005).
FPGA technology for high-speed low-cost adaptive op-

tics. In: 5th International Workshop on Adaptive Optics
for Industry and Medicine. International Society for Op-
tics and Photonics, 60181G.

Received October 15, 2014.
Accepted May 15, 2015.

100

