
 

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 4, 2014 

 

 

 183 

 

A Model of the Dynamic Error as a Measurement Result of 

Instruments Defining the Parameters of Moving Objects  

D. Dichev
1
, H. Koev

1
, T. Bakalova

2
, P. Louda

3
 

1
Department of Machine and Precision Engineering, Faculty of Machine and Precision Engineering, 

Technical University of Gabrovo, 4 Hadji Dimitar Street, 5300 Gabrovo, Bulgaria, 

 dichevd@abv.bg, koevh@abv.bg  
2
Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec,  

Studentska st. 2, 461 17 Liberec, Czech Republic, tbakalova@seznam.cz 
3
Department of Material Science, Technical University of Liberec, 2 Studentska Street,  

46117 Liberec, Czech Republic, petr.louda@tul.cz  

 
The present paper considers a new model for the formation of the dynamic error inertial component. It is very effective in the 

analysis and synthesis of measuring instruments positioned on moving objects and measuring their movement parameters. The 

block diagram developed within this paper is used as a basis for defining the mathematical model. The block diagram is based on 

the set-theoretic description of the measuring system, its input and output quantities and the process of dynamic error formation. 

The model reflects the specific nature of the formation of the dynamic error inertial component. In addition, the model submits to 

the logical interrelation and sequence of the physical processes that form it. The effectiveness, usefulness and advantages of the 

model proposed are rooted in the wide range of possibilities it provides in relation to the analysis and synthesis of those measuring 

instruments, the formulation of algorithms and optimization criteria, as well as the development of new intelligent measuring 

systems with improved accuracy characteristics in dynamic mode.  
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1.  INTRODUCTION 

HE DISTINGUISHING FEATURE of the present stage 

of development of measuring equipment is the 

expansion of the area of application of instruments 

measuring physical quantities that change in time. This is 

linked to the emergence of new areas of application of 

measuring instruments and the complication of the 

metrological problems solved with their help. One of these 

areas is very topical today since it is related to the 

development and improvement of measuring equipment that 

determines the parameters characterizing the space-time 

position, the movement mode, etc. of ships, aircrafts and 

road vehicles. The steering effectiveness of these moving 

objects depends on the quality (accuracy, reliability, form 

and rate of presentation) of the measurement information. 

The main characteristic of the quality of the measuring 

instruments is their accuracy. The distinguishing feature of 

the above mentioned measuring instruments is that they 

operate under conditions of dynamic influences determined 

by the movement of the moving objects or the fluctuations 

of the ships, aircrafts and road vehicles, as well as by the 

vibrations in the place where the measuring instruments are 

positioned. 

The above listed movements of the moving objects cause 

inertial forces and moments. The latter establish conditions 

under which the inertial components of the measuring 

instruments positioned on the hull, fuselage or body of the 

moving objects operate in an inertial field of force. Under 

the influence of the latter the inertial components change 

their laws of movement [1]. As a result some energy is 

accumulated and it changes their forecast movement.  The 

accumulated energy determines the own fluctuations of the 

inertial system. However, some external energy is also 

continuously transferred to the system. It defines the forced 

fluctuations. Consequently the overall movement of the 

instrument sensitive elements may considerably differ from 

the nominal one, thus leading to inaccuracy in the 

measurement result. This inaccuracy is quantitatively 

expressed by means of the dynamic error. Actually, this is 

one of the components of the dynamic error but within 

instruments measuring the parameters of moving objects this 

is the main component and it often obtains such values that 

it can be identified with the total dynamic error, i.e., the 

other components have a negligible effect on its formation.  

Due to its specific nature this component is often referred to 

as an inertial component [2]. Research in this area indicates 

[3], [4] that if there are not adequate solutions in the 

metrological procedures of the measuring instruments, the 

inertial component can obtain considerable values which 

lead to the uncertainty of the measurement result. 

Therefore, the inertial component of the dynamic error is 

crucial for the formation of the accuracy parameters of this 

type of measuring instruments. From this perspective, the 

development of an accurate, efficient and logically 

consistent (in relation to metrological processes) model is an 

important condition for the solution of problems related to 

both the analysis and synthesis of the measuring 

instruments.  

On the other hand, the dynamic error models presented in 

specialized literature [3-5] are not concrete enough and do 

not reflect the specific nature of the formation of the 

dynamic error inertial component considered in this paper. 

This circumstance reduces to a great extent the possibilities 

for investigating the characteristics of the dynamic error, as 
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well as for the synthesis of the instruments in relation to the 

block diagram, characteristics and measurement procedure 

according to the dynamic error minimum criteria.  

The abovementioned justifies the elaboration of the 

present paper whose aim is to develop a structural and 

mathematical model of the dynamic error with a view to 

their application in the analysis and synthesis of measuring 

instruments determining the parameters of moving objects.  

 

2.  BASIC CONSIDERATIONS 

The metrological theory related to dynamic measurement 

aims to achieve traceability at the accuracy level required by 

today‘s science. [4]. In this respect the following main tasks 

emerge: 

• transferring the value of the measuring unit from the 

reference to the operating instruments under the conditions 

of metrological traceability; 

• standardizing and defining the dynamic characteristics 

of the measuring instruments; 

• estimating and correcting the dynamic error.  

As it can be seen, dynamic measurements can be 

structured in the common metrological concept of 

measurements but the content of and the methods for 

completing the well-known tasks are specific. For example, 

the analysis of the dynamic errors should be based on a 

number of starting principles which can be summarized as 

follows: 

 

A.  Principal equation. 

The measurement error δΣ, according to VIM, is the 

difference between the measurement result Q and the 

referent value of the quantity under measurement Qrv, i.e. [6] 

 

                             )t(Q)t(Q)t( rv−=Σδ .                         (1) 

 

In (1) the three quantities must be of equal dimension. 

Then error δΣ(t) will be a time variable quantity because the 

dynamics of the measured quantity Qrv(t) follows. When 

measuring the time variable quantity, the error is a 

determined or random function of time. 

 

B.  Measurement mode. 

The three quantities in (1) are unified by the concept of 

dynamic measurement mode. From a mathematical 

viewpoint the formulation of the operating mode is the first 

step of developing the dynamic error models since the time 

component t is introduced by it. The latter is an argument in 

the functions describing the input and output processes and 

the transfer and weighting functions. It defines the 

relationships required to express the basic concepts in the 

dynamic measurements. 

In the present paper, by a dynamic measurement mode we 

mean such a mode where the instrument is able to measure 

the dynamics of the input quantity or there is at least one 

unit in the instrument which operates in this mode, and the 

dynamic error in the result can obtain values which cannot 

be neglected [7]. This formulation of the measurement mode 

is based on the widest possible set of characteristics building 

the measuring environment such as: the nature of the 

measured quantity, the type of the transfer function, the 

duration of the transfer period, the ability of the measuring 

instrument to measure in dynamic mode, the influence of the 

dynamic error on the formation of the measurement result. 

 

C.  Investigation approach. 

When investigating the errors in dynamic measurement 

mode, according to the principal equation (1), it is expedient 

to use the approach applied in static measurements. It 

includes an analysis of the measurement errors, their 

division into separate components, theoretical and 

experimental investigation of each component, a synthesis 

of the total error usually on the basis of the sum of the 

estimates of the separate components. The main 

disadvantage of this approach is determined by the 

unavoidable loss of accuracy at the synthesis stage. On the 

other hand, the possibility for accurate estimation of the 

separate components on the basis of thorough investigation 

of their sources and the possibility for reducing their values 

by introducing adequate methods provide greater advantages 

in comparison with the disadvantage cited above. 

 

D.  Specific nature of the dynamic error. 

The investigation of measurement errors is specific for 

each measurement task. In this respect the characteristics of 

the above described inertial component of the dynamic error 

have their specific nature. Therefore, the development of an 

accurate dynamic error model adequately reflecting the 

physical nature of its formation and possessing algorithmic 

logic in relation to the metrological determination of 

processes is an important precondition for the successful 

implementation of the analysis and synthesis of this type of 

measuring instruments. 

 

3.  STRUCTURAL MODEL 

The present structural dynamic error model is based on the 

set-theoretic description of the measuring system and its 

input and output quantities (Fig.1.). This model differs from 

the dynamic error models described in specialized literature 

[3-5] since the structural solution is subject to the processes 

forming the inertial component. 

In this sense the block diagram is structured in such a way 

that the non-inertial and inertial components building up the 

instrument are provisionally divided in separate modules.  

 

А.  Measurement result.  

To obtain information on the state of the moving object by 

using the measuring instrument (MI), the current values of 

the components of the input coordinates vector [X] are 

measured (Fig.1.). As it is known, the measurement 

procedure cannot be implemented without errors. Therefore, 

the measurement result vector [Y] at the output of MI will 

be formed by   

 

                                 [Y] = [X] + [∆∆∆∆ΣΣΣΣ],                               (2) 

 

where [∆∆∆∆ΣΣΣΣ] is the vector of the total error. 
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Fig.1.  A set-theoretic model of the measuring system. 

 
In terms of the dynamics of the processes forming the total 

error, its vector can be divided into two components – the 

vector of the static error [∆∆∆∆se] and the vector of the dynamic 

error [∆∆∆∆de].  
Vector [∆∆∆∆se] is formed under the influence of the vector of 

the deviations of the non-inertial component parameters 

[∆∆∆∆P], the vector of the influencing quantities [E] and the 

vector of the measured quantity [X] if there is a 

multiplicative component. Then the vector of the signal 

converted by the non-inertial components [Y'] will be 

determined by the functional 

 

                               [Y']=F{[X], [P], [E]},                         (3) 

 

where [P] is the vector of the parameters of the non-inertial 

components. 

 

B.  Dynamic error. 

Actually, some of the components of the above listed 

vectors participating in the formation of vector [∆∆∆∆se] 
determine the occurrence of particular dynamic error 

components. As it has already been mentioned, within the 

present study those components have negligible influence on 

the formation of the dynamic error. Therefore, they will not 

be discussed in this paper. 

The vector of the dynamic error inertial component is 

defined by the functional of the following vector elements: 

 

                   [∆∆∆∆de] = Fde {[X], [ΘΘΘΘ], [M]},                      (4) 

 

where [ΘΘΘΘ] – a vector of the disturbing inertial effects; [M] – 

a vector of the parameters of the inertial components. 

The model in Fig.1. is provisional in relation to the actual 

conversion processes in the measuring circuit but it 

accurately reflects the set-theoretic description which can be 

used as a base for building up the required mathematical 

models. The purpose of the model is to objectify the 

investigation into the influence of the dynamic processes on 

the measurement accuracy. In this way the set of inertial 

components can be viewed as a single block with respective 

input and output parameters, thus resulting in a wide range 

of possibilities for mathematical modeling of the 

determining processes.  

 
4.  MATHEMATICAL MODEL OF THE DYNAMIC ERROR 

The most felicitous estimation of the dynamic error is 

done by means of its root-mean-square model. It is 

determined by the fact that in the presence of a random 

process x(t) at the input of the measuring instrument, the 

dynamic error at its output  

 

                               ( ) ( ) ( )txtytde −=δ                               (5) 

 
will also be a random function of time and the detailed 

information about it cannot be obtained by its instantaneous 

values. Thus, the mathematical model of the dynamic error 

should be based on some average values for which it is aptly 

to use the root-mean-square value [8-10], provided that 

process x(t) possesses the quality of ergodicity, i.e. 

 

( ) ( ) ( )[ ] ( ) ( )[ ]∫ ⋅−⋅=−=
→

T

0

2

0T

2

de dttxty
T

1
limtxtytδ .    (6) 
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The definition of δde(t) as a separate component in the 

measuring system model makes it possible to include it in 

the overall logic of the input-output processes. In this way 

the required mathematical models defining the formation of 

δde(t) in the context of the dynamic conditions of the 

problem, which are closest to the real-life processes, can be 

developed. 

Therefore, the present paper presents a new concept of 

modeling and investigating the dynamic error. This concept 

is based on the mathematical model of function δde(t) as a 

single component possessing certain characteristics and 

participating in the formation of the measurement result. 

Thus the approach chosen provides a possibility not only for 

investigating the characteristics of the dynamic error but 

also for developing algorithms, methods and tools [11] for 

its elimination as a single component. 

On the ground of the above mentioned, new intelligent 

measuring systems could be developed, whose improved 

accuracy characteristics in dynamic measurement mode are 

formed on the basis of elimination of the dynamic error in 

real time [12]. That measuring method can replace the 

approaches used so far in the measuring instruments since 

they have a number of disadvantages such as: sophisticated 

structure, insufficient reliability in extreme conditions, they 

require special systems to ensure their operation, big size, 

high price, etc. [13]. Hence, the development and 

improvement of those measuring systems could be a 

perspective branch in the field of dynamic measurements. 

The characteristics of function δde(t) depend on the 

qualities of the input processes and the parameters of the 

measuring instrument inertial block. The dynamics of the 

linear inertial systems is determined by linear differential 

equations. In general, the relationship between the output 

coordinate defining the dynamic error and the input 

parameters is described by a system of linear differential 

equations or by an equation of the type  

 

    
( ) ( ) ( ) ( ) ( ) ( ) ( )[

( ) ( ) ( ) ( ) ] .t;tq,...,tq,tq,tq

,tx,...,tx,tx,x;t,...,t,t,tF

)k(

)m()n(

dededede

0=&&&

&&&&&& δδδδ
  (7) 

 
where q(t) are inertial effects. 

Upon measuring the dynamically changing quantity, an 

inverse problem is solved – a recovery of the input signal by 

the signal measured by the instrument. This problem is 

related to the elimination of the dynamic error from the 

measurement result. Upon modeling the dynamic error 

according to the set-theoretic description in Fig.1., the 

structure of the direct problem is used. In this case the 

sought solution (the dynamic error) is the output coordinate. 

The latter depends on the vector of the input coordinates 

[X], the vector of the disturbing inertial effects [ΘΘΘΘ] and the 

vector of the own parameters of the components of the 

inertial block [M]. 

The vector of the input coordinates [X] takes part in the 

formation of the dynamic error by means of its inertial 

characteristics that form along with vector [M] inertial 

forces and moments. The same is true for the vector of the 

disturbing inertial effects [ΘΘΘΘ]. However, this vector does not 

contain informative parameters for the measuring system. 

An important condition for the solution of the problem 
related to the definition of the dynamic error mathematical 
model is that equation (7) should be written in such a way 
that makes it possible to define the coordinate expressing the 
deviation of the inertial components from their nominal 
current position depending on the measured quantity and the 
disturbing effects. If all the coefficients on the left and right 
side of the differential equation are constant, then the 
transfer function W(p) of the inertial block in relation to the 
input quantity x(t) can be presented in the form of a fraction-
rational function in relation to the operator p [14]. If a 
stationary random signal x(t) having known spectral density 

Sx(ω) or a known correlation function Kx(τ) enters at the 
input of the linear inertial block of the measuring instrument 
with a known transfer function W(p), then the output signal 
characterizing, in this case, the dynamic error will also be a 
stationary signal [15]. The spectral density of the established 
output signal can be determined by  
 

                                ( ) ( )ωωδ x

2
SAS

de
⋅= ,                          (8) 

 

where ( ) ( )ωω ⋅= iWА  is the amplitude-frequency function 

of the inertial block.  
Usually at the input of the inertial block not only the 

measured quantity enters but also the disturbing effects q(t). 
In this case, when developing the mathematical model, it is 
necessary to consider all quantities operating at the input. In 
addition, if those quantities are independent and stationary, 
the principle of superposition (superposition of signals) is 
applied, i.e. [15] 
 

               ( ) ( ) ( ) ( ) ( )ωωωωωδ q

2

x

2
SASAS

de
⋅+⋅= , (9) 

 

where Sq(ω) – the spectral density of the disturbing quantity. 

Within known spectral density 
de

Sδ , the corresponding 

correlation function can be determined by [16]  
 

                 ( ) ( ) ( ) ττωω
π

τ δδ dcosS
1

K

0

dede
⋅⋅⋅⋅= ∫

∞

. (10) 

 

Then the dispersion of the dynamic error will be: 
 

           ( )0
dede

KD δδ =  or ( ) ωω
π δδ dS
1

D

0

dede
⋅⋅= ∫

∞

.       (11) 

 

Since the dispersion is a root-mean-square form of 

representation of the dynamic error values, the root-mean-

square estimate of the latter can be obtained by  
 

                                   
2

deде
Dδδσ = .                               (12) 

 

Actually, the estimate (12) coincides by meaning with the 

root-mean-square model (6) of the dynamic error but it is 

developed according to the characteristics of the block 

diagram in Fig.1. It is a good reason to reduce the final 

mathematical model of the dynamic error to the following 

equation: 
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dede δσδ = .                               (13) 

 

The maximal values the dynamic error can reach can be 

determined by (13). These values are calculated with the 

help of the formula  

 

                                    
de

H
max

de δσδ ⋅= , (14) 

 

where H is a coefficient that depends on the law according 

to which the ordinates of the process )t(deδ defining the 

dynamic error are distributed.  

The estimates (12) and (13) can be complemented with the 

mathematical expectation M[δde] of the process δde(t), which 

for stationary random time functions is a constant quantity  

[16] and provides significant information on the 

characteristics of the dynamic error.  

To visualize the logic of functioning of the proposed 

model, the process of formation of the dynamic error for a 

specific measuring instrument will be considered. The latter 

is a heelmeter measuring the heel and the roll of a ship. 

These measuring instruments possess sensitive elements of 

inertial qualities which model the local vertical. In this way 

they set the supporting coordinate system in the 

metrological circuit of the instrument. The current values of 

the angles determining the heel and the roll of the ship are 

measured according to the supporting system set. Therefore, 

each deviation of the sensitive element from the actual 

position of the local vertical results in a measurement error. 

The deviations of the sensitive elements are caused by the 

inertial effects determined by the dynamic characteristics of 

the measured quantity and the disturbing effects. Expressed 

in a time function, the deviations are defined as stationary 

random process, and expressed in a mathematical form, 

depending on their degrees of freedom, they are obtained as 

solutions to one or more equations of the type (7). 

When the sensitive element of the heelmeter is a module 

of a fluctuation unit type, its transfer function is expressed 

by  

 

                     ( )
1pT2pT

1
pW

22 +⋅⋅⋅+⋅
=

ξ
.  (15) 

 

where T – the time constant of the instrument; ξ - a relative 

damping factor. 

In the most reduced case the right side of the differential 

equation describing the deviations of the sensitive elements 

according to the measuring coordinate is formed by the 

function  

 

                                     ( ) ( )tztX θ&&⋅= ,                             (16) 

 

where z - the coordinate in the vertical direction of the 

suspension point of the sensitive element with regard to the 

center of gravity of the ship; ( )tθ&&  - the second derivative of 

the process defining the roll of the ship, which in practice is 

the measured quantity. 

Then the spectral density of (16) will be 

             )(Sz)(Sz)(S 422

x ωωωω θθ ⋅⋅=⋅= && . (17) 

 

On the other hand, the spectral density Sθ(ω) of the roll 

process can be approximated accurately enough by  

 

            ( )
4224

2

ba2

b
.

D.2
S

θθ

θθθ
θ ωωπ

µ
ω

+⋅⋅+

⋅
= ,  (18) 

 

where Dθ - the dispersion of the roll fluctuations; 
222

θθθ λµ +=b ; 222

θθθ λµ −=a ; θµ - the damping factor of the 

correlation function of the process θ(t); θλ - the roll 

frequency in calm water. 

According to (8) the spectral density of the dynamic error 

will be: 

 

           

( )

.
ba2

bzD2

T4)T1(

1
S

4224

422

22222de

θθ

θθθ

δ

ωω
ω

π
µ

ωξω
ω

+⋅⋅+

⋅
⋅

⋅⋅⋅
×

×
⋅⋅⋅+⋅−

=

  (19) 

 

After using  (11) and (19), the following is obtained 

 

             

( )

.d
ba2

bzD2

T4)T1(

11

dS
1

D

4224

422

0

22222

0

dede

ω
ωω

ω
π
µ

ωξωπ

ωω
π

θθ

θθθ

δδ

⋅
+⋅⋅+

⋅
⋅

⋅⋅⋅
×

×
⋅⋅⋅+⋅−

⋅

=⋅⋅=

∫

∫
∞

∞

 (20) 

 

Since the components in (19) – a transfer function and 

spectral density, are fraction-rational functions of ω, the 

dispersion 
de

Dδ  can be calculated by analytical methods 

without defining the roots of the denominator and 

decomposing the subintegral expression into simple 

fractions. The definition of 
de

Dδ  is reduced to the 

calculation of a table integral of the type [16]  

 

                      
( )

( )
ω

ω

ω
π

d
jH

jM1
J

0

2n ⋅
⋅

⋅
⋅= ∫

∞

,                      (21) 

 

where M(j.ω) and H(j.ω) are polynomials of the following 

structure: 

 

       ( ) ( ) ( ) ( ) ( )
1n

2n2

1

1n2

0 b...jbjbjM −
−⋅−⋅ ++⋅+⋅=⋅ ωωω ; 

       ( ) ( ) ( ) n

1n

1

n

0 a...jajajH ++⋅+⋅=⋅ −ωωω . 

 

In the above expressions 100 −nn b,...,b;a,...,a  are constant 

coefficients depending on the parameters of the sensitive 

element. Polynomial M(j.ω) contains only the even powers 

of (j.ω) and polynomial H(j.ω) – all powers. 
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Then on the basis of (20), the solution of (19) is obtained 

in the type 

                      
R4Q

T
b

g

zbD
D

2

2

2

22

de ⋅+

⋅
+

⋅
⋅⋅

=
ξ
µθ

θ
θθ

δ ,   (22) 

 

where the following expressions are denoted with Q and R 

 

                    22 bT1Q θ⋅−= ;                             (23) 

 

                  ( ) ( )θθθ µξµξ ⋅+⋅⋅+⋅⋅= TTbTR 22 .   (24) 

 

Expression (22) is a good example of the usefulness of the 

proposed dynamic error model. The equations worked out 

on the basis of this model explicitly express the relationship 

between the dynamic error and the parameters influencing 

its formation. Therefore it is possible to not only analyze the 

influence of those parameters on the dynamic error 

characteristics but also to develop methods for the 

parametric synthesis of the measuring instrument in relation 

to its dynamic accuracy. 

The influence of the basic parameters on the size of the 

dynamic error is illustrated in Fig.2. and Fig.3. It can be 

seen that the parameters of the inertial components affect to 

some extent the size of the dynamic error. However, this 

influence is not so considerable, so that the synthesis of 

similar measuring instruments can be based only on the 

optimal selection of the values of those parameters. 

Therefore, the synthesis of this type of measuring 

instruments in relation to the dynamic accuracy should be 

based on other methods. One of these approaches is to 

include additional measurement channels, operating in 

parallel with the main channels, in the metrological circuits. 

The additional channels could have the specific structure of 

correcting devices intended to eliminate the dynamic error.   

 

5.  CONCLUSION 

The proposed dynamic error model developed on the basis 

of a new block diagram has a number of advantages related 

to the analysis and synthesis of measuring instruments 

positioned on moving objects and measuring the basic 

parameters. The effectiveness of the model is due to a new 

concept based on the dynamic error function presented as a 

single component and obtained as a result of the logical 

sequence of the physical processes that form it. This 

approach makes possible the definition of formulae 

specifying the relationship between the dynamic error and 

its determining parameters, which is an important condition 

for the successful solution of the problems emerging at the 

design stage of the measuring instruments viewed in the 

present paper.  

The mathematical model of the dynamic error is developed 

according to its root-mean-square estimate, which is of great 

importance in terms of application since it expands the 

possibilities for formulating optimization algorithms and 

criteria. 

 

The definition of the dynamic error as a specific process 

determined by the input quantities and parameters of the 

measuring instrument provides the required mathematical 

tools in the area of measuring engineering for developing 

new intelligent measuring systems whose improved 

accuracy characteristics in dynamic measurement mode are 

formed on the basis of the dynamic error elimination in real 

time. 
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Fig.2.  Graphic dependences between the dynamic error dispersion 

and the parameters influencing its formation in a function of the 

time constant Т for different values of the dispersion Dθ. 
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Fig.3.  Graphic dependences between the dynamic error dispersion 

and the parameters influencing its formation for different values of 

the damping factor ξ. 
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