

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013

 315

The Parallel Bayesian Toolbox for High-performance Bayesian

Filtering in Metrology

E. Garcia, T. Hausotte

Institute Manufacturing Metrology, University Erlangen-Nuremberg, 91052 Erlangen, Germany, garcia@fmt.fau.de

The Bayesian theorem is the most used instrument for stochastic inferencing in nonlinear dynamic systems and also the

fundament of measurement uncertainty evaluation in the GUM. Many powerful algorithms have been derived and applied to

numerous problems. The most widely used algorithms are the broad family of Kalman filters (KFs), the grid-based filters and the

more recent particle filters (PFs). Over the last 15 years, especially PFs are increasingly the subject of researches and engineering

applications such as dynamic coordinate measurements, estimating signals from noisy measurements and measurement

uncertainty evaluation. This is rooted in their ability to handle arbitrary nonlinear and/or non-Gaussian systems as well as in their

easy coding. They are sampling-based sequential Monte-Carlo methods, which generate a set of samples to compute an

approximation of the Bayesian posterior probability density function. Thus, the PF faces the problem of high computational

burden, since it converges to the true posterior when number of particles NP→∞. In order to solve these computational problems a

highly parallelized C++ library, called Parallel Bayesian Toolbox (PBT), for implementing Bayes filters (BFs) was developed and

released as open-source software, for the first time.

In this paper the PBT is presented, analyzed and verified with respect to efficiency and performance applied to dynamic

coordinate measurements of a photogrammetric coordinate measuring machine (CMM) and their online measurement uncertainty

evaluation.

Keywords: Particle filter, Kalman filter, Bayesian estimation, parallel high-performance computing, CUDA, open source.

1. INTRODUCTION

RADITIONAL coordinate measuring machines (CMM)

were increasingly completed or superseded by mobile,

dynamic coordinate measuring machines (DMM), such

as laser tracker or photogrammetry systems (i.e. camera-

based systems). They allow non-contact, in-situ and online

coordinate measurements of complex moving objects over

large measurement volumes along with excellent precision

and high measurement rate directly in the shop-floor [1, 2].

Typical applications are dynamic motion measurements

(traveled paths, positions, displacements, velocities, acceler-

ations, jerks, orientations and vibrations), guidance and

calibration of machines, robot trajectory measurements,

deformation analysis as well as assembly and inspection of

parts and structures.

Often, DMM are portable optical measurement systems,

which perform online measurements, mostly in unstable

environments. For these dynamic measurements, i.e. track-

ing the temporal evolution of an object’s position, it is in

general not possible to model, quantify or compensate

significant error sources, such as optical aberrations (e.g.

reflection errors, changing refractive index), imaging errors

or dynamic errors (e.g. motion artifacts), during the

measurement process. As a result the obtained measure-

ments exhibit a lower signal-to-noise ratio and reduced mea-

surement accuracy. Furthermore it is not possible to evaluate

the measurement uncertainty according to the “Guide to the

expression of uncertainty in measurement” (GUM) due to

the model imperfection and dynamic characteristic of the

measurement process.

A solution to improve the measurement accuracy and

estimate the uncertainty of such dynamic measurements is

given by the Bayesian inference. Based on a model of the

process under investigation, it allows the online computation

of the probability density functions (PDFs) of the output

quantities and thus deriving the optimal estimate for them.

In the first part of this paper the principals of measurement

uncertainty evaluation according to the GUM and the

fundamentals of Bayesian estimation theory will be briefly

restated. The second part of the paper is devoted to

introduce and demonstrate the Parallel Bayesian Toolbox

(PBT) and its features in order to implement Bayesian

estimation techniques in a straightforward and efficient way.

In order to determine the required computation time for such

post-processing, several benchmarks for synthetic computa-

tion tasks problems as well as dynamic coordinate measure-

ment tasks will be presented.

2. BASIC PRINCIPLES OF MEASUREMENT UNCERTAINTY

EVALUATION

A measurement result is generally expressed as a single

measured quantity value and a measurement uncertainty [5,

definition 2.9]. The de facto international standards to

evaluate, calculate and express uncertainty in all kinds of

measurements are the GUM and its extension the GS1 [3,

4]. These documents provide guidance on the uncertainty

evaluation as a two-stage process: formulation and calcula-

tion. The formulation stage involves developing a measure-

ment model relating output (measurand) y to input quantities

x1,…,xN, incorporating corrections and other effects as

necessary and finally assigning probability distributions to

the input quantities on the basis of available knowledge. The

calculation stage consists of propagating the probability

distributions for the input quantities through the measure-

ment model y=f(x1,…,xN) to obtain the probability distribution

for the output quantity. From this probability density

function the expected value and the standard deviation of the

output quantity as well as the coverage interval are

T

10.2478/msr-2013-0047

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013

 316

calculated. In order to not go beyond the scope of this paper,

it is referred to GUM and GS1 [3, 4] for further details of

the propagation of distribution.

Finally, the measurement uncertainty is stated as

uncertainty budget, which should include the measurement

model, estimates, and measurement uncertainties associated

with the quantities in the measurement model, covariances,

type of applied probability density functions, degrees of

freedom, type of evaluation of measurement uncertainty and

the coverage interval. Here, the optimal solution would be

an analytical calculation of the output PDF. But as this is not

possible in general, especially for nonlinear dynamic

processes, sequential Monte Carlo methods are utilized to

achieve a Bayesian estimation of the output density, as

described in the next section.

3. BAYESIAN ESTIMATION

A measurement process generates disperse (uncertain)

observations of a true (but unknown) measurand. This is an

erroneous transformation due to ubiquitous errors. Thus, a

complete, exact or unique reconstruction of the true

measurand is always impossible. But using Bayes’ theorem

it is possible to estimate the true measurand from

observations, since the functional relation between both is

preserved.

This estimation problem can be solved as a sequential

probabilistic inference problem for nonlinear dynamic

systems. The unknown measurand (e.g. coordinates) is

modeled as a state of a dynamic system (e.g. moving object)

that evolves over time and is observed with a particular

measurement process. This allows the estimation of

measurable states (e.g. position) as well as derived or not

directly measurable states (e.g. velocities, acceleration and

orientations) of arbitrary dynamic systems in a statistically

sound way given uncertain, noisy or incomplete observa-

tions.

The nonlinear dynamic system is described by the general

discrete-time stochastic state space model

1 1(,),

(,),

k k k k

k k k k

− −=

=

x f x v

y h x w
 (1)

where
k
x is the hidden system state vector evolving over

time k ∈ � (discrete time index) according to the possibly

nonlinear state transition function kf , the last state 1k−x

and the process noise 1k−v . The observation ky related to

the state vector via the nonlinear observation function kh

and the measurement noise kw , which is corrupting the

measurement of the state.

This state space model corresponds to a first order hidden

Markov model [6, 7] with an initial probability density,
0

()p x the state transition probability
1

(|)
k k

p −x x and the

observation probability density (|)
k k

p y x . Both the state

transition density and the observation likelihood are fully

specified by kf and the process noise probability ()
k

p v

and by kh and the observation noise density ()
k

p w ,

respectively. The stochastic state-space model, together with

the known statistics of the noise random variables as well as

the prior distributions of the system states, defines a

probabilistic model of how the systems evolves over time

and how we inaccurately observe the evolution of this

hidden state.

The objective is to estimate the hidden system states
k
x in

a recursive fashion (i.e. sequential update of previous

estimate) as measurement ky becomes available. This is the

central issue of the sequential probabilistic inference theory,

which is also referred to as online, sequential or iterative

filtering. From a Bayesian perspective, the complete

solution to this problem is given by the conditional posterior

density
1:

(|)
k k

p x y of the state
k
x , taking all observations

{ }1: 1 2
, , ,

k k
=y y y yK into account (Fig.1.).

The computation of the Bayesian posterior density

1:
(|)

k k
p x y requires the incorporation of all measurements

1:k
y in one step (batch processing). A method to recursively

update the posterior density as new observations arrive is

given by the recursive Bayesian estimation algorithm, which

is faster and allows an online processing of data with lower

storage costs and a quick adaption to changing data

characteristics.

1
(,)

(,)
k k k

k k k

−=

=

x f x v

y h x w

1:
1:

1:

Bayesian inference

(|) ()
(|)

()
k k k

k k
k

p p
p

p
=

y x x
x y

y

k
x

k
y

Fig.1. Recursive Bayesian estimation for dynamic systems.

Using the Bayes theorem and the discrete-time stochastic

state space model (1), the posterior density can be derived

and factored into the following recursive update form

1: 1: 1
1:

1: 1: 1

(|) () (|) (|)
(|) .

() (|)

k k k k k k k
k k

k k k

p p p p
p

p p

−

−

= =
y x x y x x y

x y
y y y

(2)

The computation of the Bayesian recursion essentially

consists of two steps: the prediction step

1 1: 1 1: 1
(|) (|)

k k k k
p p− − −→x y x y and the update step

1: 1 1:
(| ,) (|)

k k k k k
p p− →x y y x y . The prediction step

involves using the process function and the previous

posterior density
1 1: 1

(|)
k k

p − −x y to calculate the prior

density of the state
k
x at time k via the Chapman-

Kolmogorov equation

1: 1 1 1 1: 1 1(|) (|) (|) ,k k k k k k kp p p d− − − − −= ∫x y x x x y x (3)

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013

 317

where the state transition PDF is given by
1

1 1(|) ((,)) () .δ− −= −∫k k k k k k k kp p dx x x f x v v v (4)

The prior of the state
k
x at time k does not incorporate

the latest measurement ky , i.e. the probability for k
x is

only based on previous observations. When the new

uncertain measurement ky becomes available the update

step is carried out and the posterior PDF of the current state

k
x is computed from the predicted prior (3) and the new

measurement via the Bayes theorem (2), where the

observation likelihood PDF and the normalizing constant in

the denominator are given by:

 (|) ((,)) ()δ= −∫k k k k k k k kp p dy x y h x w w w (5)

 1: 1 1: 1(|) (|) (|) .− −= ∫k k k k k k kp p p dy y y x x y x (6)

The equations (2-6) formulate the Bayesian solution to

recursively estimate the unknown system states

(measurands) of a nonlinear dynamic system from uncertain,

noisy or incomplete measurements. But this is only a

conceptual solution in the sense that in general the integrals

cannot be determined analytically. Furthermore, the

algorithmic implementation of this solution requires the

storage of the entire (non-Gaussian) posterior PDF as an

infinite dimensional matrix, because generally it cannot be

completely described by a sufficient statistic of finite dimen-

sion. Only in some restricted cases a closed-form recursive

solution is possible. For example with restriction to linear,

Gaussian systems a closed-form recursive solution is given

by the famous Kalman filter [8]. In most situations, either

both the dynamic and the measurement process or only one

of them is nonlinear. Thus the multi-dimensional integrals

are not tractable and approximative solutions such as

sequential Monte Carlo methods have to be used [8].

3.1. Sequential Monte Carlo methods

Sequential Monte Carlo (SMC) methods are stochastic

sampling-based approaches, whereby the Monte Carlo

integration with sequential importance sampling (SIS) is

used to solve the high dimensional integrals of the Bayesian

recursion. They make no explicit assumption about the form

of the posterior density and approximate the Bayesian

integrals with finite sums. These methods have the

advantage of not being subject to the curse of dimensionality

as well as not being constrained to linear or Gaussian

models. The basic idea in SMC methods is to represent the

Bayesian posterior density
1:

(|)
k k

p x y by a set of random

samples with associated weights
i

kw (also referred to as

particles) and to recursively compute the posterior based on

these weighted samples, that is

1
 ()δ ⋅ is the Dirac-delta function.

 1:

1

(|) (),
sN

i i

k k k k k

i

p w δ
=

≈ −∑x y x x

(7)

1

1

1

(|) (|)
,

(| ,)

i i i

i i k k k k

k k i i

k k k

p p
w w

q

−
−

−

=
y x x x

x x y

(8)

where
1:(|)k kp x y is the true posterior, ()q ⋅ is the

importance sampling density,
i

kx and
i

kw with

1, ,= K Pi N are the random samples and associated

weights, whish normalize to 1i

ki
w =∑ . In every time step

the samples are drawn from the importance density, since it

is not possible to sample from the posterior density directly.

For this reason the choice of ()q ⋅ is a crucial design
parameter in SIS methods. The objective is to draw samples

in the region where the target state lies in (region of

“importance”) to achieve good state estimations and high

computational efficiency. With an increasing number of

particles NP→∞ the Monte Carlo Approximation becomes

an equivalent representation of the true posterior density and

the SMC methods converges to the true Bayesian estimate.

An intrinsic problem with SIS is the circumstance, that

after a few iterations, only some particles have significant

weights, and the others are almost zero, this is called weight

degeneracy or sample impoverishment problem. In order to

improve the sample efficiency, usually some kind of

resampling (selection) scheme is introduced, that avoids the

problem of degenerate particles. The most common

resampling strategies are multinomial, systematic, stratified

or residual resampling [9]. The resampling duplicates the

particles with high weights with several children, and

assigns them equal weights. This eliminates particles with

insignificant weights and chooses more particles in more

probable regions. In general, the total number of particles is

kept constant. This method of sampling is termed sampling

importance resampling (SIR). The resulting algorithmic

implementation consisting of predicting, updating and

resampling the particles (weighted samples) is called

particle filter. The PF is very general and very easy to code

but faces the aforementioned problem of high computational

burden, since it only converges to the true posterior when

the number of particles goes to infinity. Thus, there is a

direct dependency between the number of particles and the

achievable estimation accuracy. The more particles were

used the better is the approximation of the true Bayesian

posterior density.

4. PARALLEL BAYESIAN TOOLBOX

The PF faces the problem of high computational burden,
since it converges to the true posterior when number of
particles NP→∞. For typical low dimensional estimation
problems the PF requires 2 to 6 orders of magnitude more
computational throughput than the extended KF (EKF), to
achieve the same accuracy [10].
In order to solve these computational problems and assist
users in efficiently implementing Bayes filters (BFs), a
highly parallelized C++ library, called Parallel Bayesian

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013

 318

Toolbox (PBT) was developed and released as open-source
software, for the first time [11]. The PBT is a very flexible,
high-performance and platform independent

2
 C++ program-

ming library for implementing the most common Bayes
filter - that is PFs, KFs and combinations of both - in an
easily understandable, high level language, following the
MATLAB/Octave programming language, for filtering,
smoothing and predicting applications. This is achieved by
using the Armadillo library [12] for easy coding, optimized
linear algebra libraries

3
 for numerical computations on

central processing units (CPUs) and Nvidia's Compute
Unified Device Architecture (CUDA) framework for
performing computations on graphics processing units
(GPUs). The source code of the PBT can be distributed
and/or modified under the terms of the Berkeley Software
Distribution (BSD) license or the GNU General Public
License (GPL). This dual license allows the usage of the
PBT in open source, but also in proprietary applications.
The PBT was designed and implemented that the follow-
ing requirements are met.

• Free and open source: In order to analyze, modify and
reuse software, its source code has to be available under
an appropriate license.

• Independent and flexible: Software should be indepen-
dent of hard- or software (i.e. independent of CPUs,
GPUs, operating systems, software libraries etc.) and in-
dependent of any particular application (such as tracking,
robotics, signal/image processing, econometrics etc.).

• Performance: For high computational throughput, all
available CPUs and GPUs should be used optimally.

• Modularity: Software should consist of interchangeable,
modular functional units in order to improve customiza-
tion and reusability.

• Simple to code and easy to understand: Source code
must be easy to understand, simple to read and easy to
maintain.

• Matlab/GNU Octave Interface: Software should offer an
interface to Matlab/GNU Octave, because they are de
facto standards for technical computing, data analysis
and algorithm development.
Although there is free and open source software available
for implementing Kalman filters (see [18-19] and references
herein) and/or particle filters (see [20-23] and references
herein), none fulfils all requirements stated above

4
. Espe-

cially the last four criteria are not addressed adequately. In
particular, no software exhibits an easy to use linear algebra
library with bindings to optimized numerical libraries in
order to transparently and optimally uses modern multi-core
CPU/GPU architectures. Also a proper modularization to
easily customize noise sources, resampling or state estima-
tion methods and a Matlab/GNU Octave interface are miss-
ing. Implementing an extra MEX/OCT interface, which
converts data types between Matlab/GNU Octave and the
software library, is an additional tedious and error-prone

2 Currently supported are Microsoft Windows and Linux on 32-bit or 64-bit
processors.
3 Supported libraries are Basic Linear Algebra Subprograms (BLAS), Linear

Algebra PACKage (LAPACK), Automatically Tuned Linear Algebra Software
(ATLAS), AMD Core Math Library and Intel Math Kernel Library (MKL).
4
 A very good overview of KF software is given in [17]. Some libraries for PF

are compared in chapter 7 of the design document of The Bayesian Filtering
Library available under [20].

work for practitioners and decreases the overall computa-
tional throughput.
The PBT itself uses CMake [13] as cross-platform build
system and consists of five major modules. First, a BF
module that provides all data management and interfaces.
This module receives all measured data and distributes it to
the other parts of the framework. The other modules are the
state space model (SSM), describing the process and
measurement equation, the resampling module implement-
ing all common resampling strategies, the noise sources
module providing sampling and evaluating functions for all
distributions defined in [3, 4] and the state estimation
module for computing a state estimate from the Bayesian
posterior density in every time step. Additionally the tool-
box features interfaces to the numerical computation sys-
tems MATLAB and GNU Octave as well as to the C++
development environment Automotive Data and Time
Triggered Framework (ADTF). The overall architecture of
the PBT is depicted in Fig.2. Example C++ code for
implementing EKF and PF using PBT is given in Fig.3. and
4 respectively. This demonstrates the easy and straightfor-
ward usage of PBT. In the following sections, the main
components and their subsystems will be explained in more
detail.

Fig.2. Architecture of the Parallel Bayesian Toolbox.

A. Bayes Filter module

This module has the role of a coordinator. It provides the

filter algorithm and it organizes the data transfer between all

other modules, as shown in Fig.3. The Bayes filter module

calls the process and measurement function of the SSM in

the prediction and update step, respectively. It is also used

for the computation of the particle weights.

B. State space model

This module contains the dynamic model of the processor

system under investigation and defines its process function

ffun() and measurement function hfun(). The PBT offers

predefined models for simple dynamics like steady state,

linear, circular or kinematic trajectories [14] to assist the

user. Dynamic coordinate measurements of all standard

geometrical elements can be described with these included

models. More complex models can be implemented by the

user. In the case of KFs the user has to provide system, co-

variance and Jacobian matrices of the process and

measurement equations. In the case of PFs the user has to

specify ffun()and hfun() with all noise sources.

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013

 319

C. Resampling module

The resampling module implements multinomial, system-

atic, stratified and residual. The resampling step is only ap-

plied to PFs. It is the only bottleneck in the whole toolbox,

because some calculations cannot be parallelized, such as

computing the cumulative sum.

Fig.3. C++ implementation of EKF using the PBT.

Fig.4. C++ implementation of PF using the PBT.

D. Noise sources module

This module is most useful in the case of PFs. It consists

of random number generators and probability density

functions for numerous distributions. It is intended to help

the user to model arbitrary noise sources in the SSM. For

modeling noise sources/uncertainties according to GUM and

GS1 [3, 4], the PBT includes functions for all PDFs that a

specified in the GUM.

E. State estimation module

In every time step, the state estimation model is used to

compute a state estimate from the particle approximation of

the Bayesian posterior density. The standard estimator in

every filter configuration is the weighted mean estimation.

Other available estimators are median, robust mean, k-

means, mean-shift and best particle estimator. The latter are

especially useful in applications with multi-modal likelihood

functions, e.g. in localization.

5. PERFORMANCE BENCHMARKS

Three different performance benchmarks were performed,

in order to test the computation throughput of linear algebra

calculations in PBT. First, the multiplication of non-square

matrices was analyzed, since this is the most often used

mathematical operation in BFs. Furthermore, in literature is

only the case of square matrices considered. On numerous

systems the matrix-matrix multiplication was performed

with the dimensions d = (3, 15)(100, 500, 2000, 10000). A

representative realized runtime graph is shown in figure 5

(a) and (b). In most configurations CPU and GPU show

relatively equal performance. This is because both are

optimized for these operations. However, the NVIDIA Tesla

GPU generation (or newer generations), specialized for

scientific computations, outperforms all other hardware

configurations. Regarding this, the matrix-matrix multiplica-

tion on GPUs is only useful in combination with new GPU

generations and/or with other operations that are more

computationally intensive, e.g. coordinates transformations

presented next.

Fig.5. Performance comparison of (a)-(b) matrix-matrix multipli-

cation of numerous CPUs, (c) the transformation of Cartesian to

polar coordinates and (d) of Wiener process acceleration model

(DWPA) of numerous CPUs (dashed lines) and GPUs (solid lines).

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013

 320

Second, the performance of the nonlinear transformation

between Cartesian and polar coordinates was analyzed. This

is one of the most often nonlinear transformations in

filtering and localization applications. The results are given

in Fig.4.(c). It can be seen that with increasing number of

vector elements (random numbers) the computation time of

CPUs gets higher, whereas the computation time of GPUs

remains nearly constant. The reasons for this result are the

special function units of GPUs for computing sine and

cosine as well as the high parallelization of modern GPUs.

While CPUs can compute 8 operations in parallel, unspe-

cialized mainstream GPUs can compute 1536 operations at

once (assuming 48 CUDA cores each with 32 threads). This

complies with the results in [15].

Third, the achievable performance of filtering the motion

of a point mass with SIR PF using the discrete Wiener

process acceleration model (DWPA) as kinematic model

[14] was examined. The benchmark results, for this very

often used model, can be found in Fig.5.(d). For small

matrices the runtime per one operation is relatively equal for

GPU and CPU. But beginning with approximately 1000

particles the GPUs are faster than the CPU implementations.

The lower rise of GPU runtime leads to the conclusion that

GPUs should be used for PF configurations with more than

1000 particles, at least. All benchmark results revealed that

using GPUs for computations can yield a significant perfor-

mance improvement, especially for modern GPU architec-

tures.

Fig.6. Measurement setup for dynamic coordinate measurements.

After these systhetic benchmarks the dynamic measure-

ment task of tracking a freely moving target (marker) with a

mobile, photogrammetric stereo-camera system is examined.

The tracking target was moved by a high accuracy XY

linear stage as depicted in Fig.6. along a given trajetory.

1000 data points were recorded and afterwards filtered with

a SIR PF using the former DWPA model. This post-

processing was performed offline. In order to analyze the

runtime for such data processing for later online computa-

tions, a SIR PF was implemented with PBT, Bayes++ [23]

and the Bayesian Filtering Library (BFL) [21]. These are the

only available open source libraries that are under active

development and feature interfaces and modules to imple-

ment particle filters in a comparable way to PBT. The

benchmark results of a single filtering step for all three

libraries are given in Fig.7. Shown are the averaged values

over 10 runs. The following software was used for

compiling the libraries: Microsoft Windows 7 (64-bit),

Microsoft Visual C++ 2008 Compiler, Armadillo 3.2.2, Intel

MKL 10.3 Update 9 (64-bit), CUDA Toolkit v4.2 and Boost

1.45. Because Bayes++ and BFL do not offer bindings for

optimized linear algebra libraries
5
, they are outperformed by

PBT running on CPU as well as on GPU in case of using

more than 500 particles. In the case of few particles the

CPU-based computation outperforms GPU computing, due

to memory data management overhead and memory transfer

time between host and GPU device. But in the long run,

GPU tremendously outperform CPU computing, because the

initial small transfer time occurs only once.

Fig.7. Comparison of runtime of PBT, Bayes++ and BFL.

As mentioned in the beginning of section 4, the PBT

features interfaces to MATLAB and GNU Octave. The

runtime performance of the PBT using the MATLAB MEX

interface was further analyzed in a next experiment. Here,

the same filter task was used to examine the performance

improvement of PBT compared to a native MATLAB

v7.14.0.739 (64-bit) implementation. The tests were run on

Intel Xeon E5620 2.40 GHz CPU with Nvidia Tesla C2075

GPU. The benchmark results in Fig.8. show that PBT-MEX

realizes throughout better computation times than the native

MATLAB implementation. As in figure 7 it can be seen that

in case of more than 2000 particles PBT-MEX on GPU is

superior to PBT-MEX on CPU.

Fig.8. Comparison of runtime of MATLAB and PBT-MEX.

5
 Both use the Boost libraries for linear algebra and statistics,

whereby BFL could also use LTI matrix library and Newmat

library as external matrix libraries, see [21].

MEASUREMENT SCIENCE REVIEW, Volume 13, No. 6, 2013

 321

6. CONCLUSIONS

In this paper the open source Parallel Bayesian Toolbox

(PBT) for implementing Bayes filter was presented. The

toolbox is a very flexible, high-performance and platform

independent C++ programming library for implementing

KFs, PFs and combinations of both filter types. The

presented benchmark results have shown that PBT is the

fastest available open-source library for implementing

Bayesian filtering, currently. Due to the high computational

burden of such filters, the runtime performance is crucial for

realizing an online processing of measured data e.g.

dynamic coordinate measurements as in [16, 17].

For the first time, an open-source library is available that

features a simple MATLAB-like high level language and

efficiently utilize standard CPU/GPU architectures for

implementing high-performance Bayesian filtering without

the need of special computing hardware.

ACKLOWLEDGMENT

The research was supported by the German Research

Foundation (Deutsche Forschungsgemeinschaft) under the

DFG-Project Number WE 918/34-1.

REFERENCES

[1] Schwenke, H., Neuschaefer-Rube, U., Pfeifer, T.,

Kunzmann, H. (2002). Optical methods for

dimensional metrology in production engineering.

CIRP Annals - Manufacturing Technology, 51 (2),

685-699.

[2] Estler, W.T., Edmundson, K.L., Peggs, G.N., Parker,

D.H. (2002). Large-scale metrology – an update. CIRP

Annals - Manufacturing Technology, 51 (2), 587-609.

[3] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and

OIML. (2008). Evaluation of measurement data -

Guide to the expression of uncertainty in measurement

(GUM 1995 with minor corrections). JCGM 100:2008.

[4] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and

OIML. (2008). Evaluation of measurement data -

Supplement 1 to the ‘Guide to the expression of

uncertainty in measurement’ - Propagation of

distributions using a Monte Carlo method. JCGM

101:2008.

[5] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and

OIML. (2008). International vocabulary of metrology

— Basic and general concepts and associated terms

(VIM). JCGM 200:2008.

[6] Cappé, O., Moulines, E., Ryden, T. (2005). Inference

in Hidden Markov Models. Springer.

[7] Fraser, A.M. (2008). Hidden Markov Models and

Dynamical Systems (1st ed.). Society for Industrial and

Applied Mathematics.

[8] Doucet, A., de Freitas, N., Gordon, N. (2001).

Sequential Monte Carlo Methods in Practice.

Springer.

[9] Douc, R., Cappé, O., Moulines, E. (2005). Comparison

of resampling schemes for particle filtering. In Image

and Signal Processing and Analysis : 4th International

Symposium (ISPA 2005), 15-17 September 2005.

IEEE, 64-69.

[10] Daum, F., Huang, J. (2003). Curse of dimensionality

and particle filters. In Aerospace Conference, 8-15

March 2003. IEEE, Vol. 4, 4-1979-4-1993.

[11] Google Project Hosting. Parallel Bayesian Toolbox.

http://code.google.com/p/parallel-bayesian-toolbox/.

[12] Sanderson, C. (2010). Armadillo: An open source

C++ linear algebra library for fast prototyping and

computationally intensive experiments. Technical

Report. NICTA.

[13] CMake home page. http://www.cmake.org/.

[14] Bar-Shalom, Y., Li, X.-R., Kirubarajan, T. (2001).

Estimation with Applications to Tracking and

Navigation : Theory Algorithms and Software. Wiley –

Blackwell.

[15] Rosenband, D.L., Rosenband, T. (2009). A design case

study: CPU vs. GPGPU vs. FPGA. In Formal Methods

and Models for Co-Design : 7th IEEE/ACM

International Conference (MEMOCODE’09), 13-15

July 2009. IEEE, 69-72.

[16] Garcia, E., Hausotte, T., Amthor, A. (2013). Bayes

filter for dynamic coordinate measurements –

Accuracy improvment, data fusion and measurement

uncertainty evaluation. Measurement, 46 (9), 3737-

3744.

[17] Garcia, E., Zschiegner, N., Hausotte, T. (2013).

Parallel high-performance computing of Bayes

estimation for signal processing and metrology. In

Computing, Management and Telecommunications

(ComManTel), 21-24 January 2013. IEEE, 212-218.

[18] Welch, G., Bishop, G. The Kalman Filter homepage.

http://www.cs.unc.edu/~welch/kalman.

[19] Identification and Decision Making Research Group,

University of West Bohemia. Nonlinear Estimation

Framework homepage. http://nft.kky.zcu.cz/nef.

[20] Cambridge University. Sequential Monte Carlo

methods (Particle filtering) homepage. http://www-

sigproc.eng.cam.ac.uk/smc/software.html.

[21] The Orocos Project. The Bayesian Filtering Library.

http://www.orocos.org/bfl.

[22] BiiPS Project. BiiPS (Bayesian inference with

interacting Particle Systems) homepage. http://alea.

bordeaux.inria.fr/biips.

[23] Michael Stevens. Bayes++. Open source Bayesian

Filtering classes. http://bayesclasses.sourceforge.net.

Received August 1, 2013.

Accepted December 12, 2013.

