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The Bayesian theorem is the most used instrument for stochastic inferencing in nonlinear dynamic systems and also the 

fundament of measurement uncertainty evaluation in the GUM. Many powerful algorithms have been derived and applied to 

numerous problems. The most widely used algorithms are the broad family of Kalman filters (KFs), the grid-based filters and the 

more recent particle filters (PFs). Over the last 15 years, especially PFs are increasingly the subject of researches and engineering 

applications such as dynamic coordinate measurements, estimating signals from noisy measurements and measurement 

uncertainty evaluation. This is rooted in their ability to handle arbitrary nonlinear and/or non-Gaussian systems as well as in their 

easy coding. They are sampling-based sequential Monte-Carlo methods, which generate a set of samples to compute an 

approximation of the Bayesian posterior probability density function. Thus, the PF faces the problem of high computational 

burden, since it converges to the true posterior when number of particles NP→∞. In order to solve these computational problems a 

highly parallelized C++ library, called Parallel Bayesian Toolbox (PBT), for implementing Bayes filters (BFs) was developed and 

released as open-source software, for the first time. 

In this paper the PBT is presented, analyzed and verified with respect to efficiency and performance applied to dynamic 

coordinate measurements of a photogrammetric coordinate measuring machine (CMM) and their online measurement uncertainty 

evaluation. 
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1.  INTRODUCTION 

RADITIONAL coordinate measuring machines (CMM) 

were increasingly completed or superseded by mobile, 

dynamic coordinate measuring machines (DMM), such 

as laser tracker or photogrammetry systems (i.e. camera-

based systems). They allow non-contact, in-situ and online 

coordinate measurements of complex moving objects over 

large measurement volumes along with excellent precision 

and high measurement rate directly in the shop-floor [1, 2].  

Typical applications are dynamic motion measurements 

(traveled paths, positions, displacements, velocities, acceler-

ations, jerks, orientations and vibrations), guidance and 

calibration of machines, robot trajectory measurements, 

deformation analysis as well as assembly and inspection of 

parts and structures. 

Often, DMM are portable optical measurement systems, 

which perform online measurements, mostly in unstable 

environments. For these dynamic measurements, i.e. track-

ing the temporal evolution of an object’s position, it is in 

general not possible to model, quantify or compensate 

significant error sources, such as optical aberrations (e.g. 

reflection errors, changing refractive index), imaging errors 

or dynamic errors (e.g. motion artifacts), during the 

measurement process. As a result the obtained measure-

ments exhibit a lower signal-to-noise ratio and reduced mea-

surement accuracy. Furthermore it is not possible to evaluate 

the measurement uncertainty according to the “Guide to the 

expression of uncertainty in measurement” (GUM) due to 

the model imperfection and dynamic characteristic of the 

measurement process. 

A solution to improve the measurement accuracy and 

estimate the uncertainty of such dynamic measurements is 

given by the Bayesian inference. Based on a model of the 

process under investigation, it allows the online computation 

of the probability density functions (PDFs) of the output 

quantities and thus deriving the optimal estimate for them. 

In the first part of this paper the principals of measurement 

uncertainty evaluation according to the GUM and the 

fundamentals of Bayesian estimation theory will be briefly 

restated. The second part of the paper is devoted to 

introduce and demonstrate the Parallel Bayesian Toolbox 

(PBT) and its features in order to implement Bayesian 

estimation techniques in a straightforward and efficient way. 

In order to determine the required computation time for such 

post-processing, several benchmarks for synthetic computa-

tion tasks problems as well as dynamic coordinate measure-

ment tasks will be presented. 
 

2.  BASIC PRINCIPLES OF MEASUREMENT UNCERTAINTY 

EVALUATION 

A measurement result is generally expressed as a single 

measured quantity value and a measurement uncertainty [5, 

definition 2.9]. The de facto international standards to 

evaluate, calculate and express uncertainty in all kinds of 

measurements are the GUM and its extension the GS1 [3, 

4]. These documents provide guidance on the uncertainty 

evaluation as a two-stage process: formulation and calcula-

tion. The formulation stage involves developing a measure-

ment model relating output (measurand) y to input quantities 

x1,…,xN, incorporating corrections and other effects as 

necessary and finally assigning probability distributions to 

the input quantities on the basis of available knowledge. The 

calculation stage consists of propagating the probability 

distributions for the input quantities through the measure-

ment model y=f(x1,…,xN) to obtain the probability distribution 

for the output quantity. From this probability density 

function the expected value and the standard deviation of the 

output quantity as well as the coverage interval are 
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calculated. In order to not go beyond the scope of this paper, 

it is referred to GUM and GS1 [3, 4] for further details of 

the propagation of distribution. 

Finally, the measurement uncertainty is stated as 

uncertainty budget, which should include the measurement 

model, estimates, and measurement uncertainties associated 

with the quantities in the measurement model, covariances, 

type of applied probability density functions, degrees of 

freedom, type of evaluation of measurement uncertainty and 

the coverage interval. Here, the optimal solution would be 

an analytical calculation of the output PDF. But as this is not 

possible in general, especially for nonlinear dynamic 

processes, sequential Monte Carlo methods are utilized to 

achieve a Bayesian estimation of the output density, as 

described in the next section. 

 

3.  BAYESIAN ESTIMATION 

A measurement process generates disperse (uncertain) 

observations of a true (but unknown) measurand. This is an 

erroneous transformation due to ubiquitous errors. Thus, a 

complete, exact or unique reconstruction of the true 

measurand is always impossible. But using Bayes’ theorem 

it is possible to estimate the true measurand from 

observations, since the functional relation between both is 

preserved. 

This estimation problem can be solved as a sequential 

probabilistic inference problem for nonlinear dynamic 

systems. The unknown measurand (e.g. coordinates) is 

modeled as a state of a dynamic system (e.g. moving object) 

that evolves over time and is observed with a particular 

measurement process. This allows the estimation of 

measurable states (e.g. position) as well as derived or not 

directly measurable states (e.g. velocities, acceleration and 

orientations) of arbitrary dynamic systems in a statistically 

sound way given uncertain, noisy or incomplete observa-

tions. 

The nonlinear dynamic system is described by the general 

discrete-time stochastic state space model 

 

1 1( , ),

( , ),

k k k k

k k k k

− −=

=

x f x v

y h x w
 (1) 

 

where 
k
x  is the hidden system state vector evolving over 

time k ∈ �  (discrete time index) according to the possibly 

nonlinear state transition function kf , the last state 1k−x  

and the process noise 1k−v . The observation ky  related to 

the state vector via the nonlinear observation function kh   

and the measurement noise kw  , which is corrupting the 

measurement of the state. 

This state space model corresponds to a first order hidden 

Markov model [6, 7] with an initial probability density,  
0

( )p x  the state transition probability 
1

( | )
k k

p −x x  and the 

observation probability density ( | )
k k

p y x . Both the state 

transition density and the observation likelihood are fully 

specified by kf  and the process noise probability ( )
k

p v  

and by kh  and the observation noise density ( )
k

p w , 

respectively. The stochastic state-space model, together with 

the known statistics of the noise random variables as well as 

the prior distributions of the system states, defines a 

probabilistic model of how the systems evolves over time 

and how we inaccurately observe the evolution of this 

hidden state. 

The objective is to estimate the hidden system states 
k
x  in 

a recursive fashion (i.e. sequential update of previous 

estimate) as measurement ky  becomes available. This is the 

central issue of the sequential probabilistic inference theory, 

which is also referred to as online, sequential or iterative 

filtering. From a Bayesian perspective, the complete 

solution to this problem is given by the conditional posterior 

density 
1:

( | )
k k

p x y  of the state 
k
x , taking all observations 

{ }1: 1 2
, , ,

k k
=y y y yK  into account (Fig.1.). 

The computation of the Bayesian posterior density 

1:
( | )

k k
p x y  requires the incorporation of all measurements 

1:k
y  in one step (batch processing). A method to recursively 

update the posterior density as new observations arrive is 

given by the recursive Bayesian estimation algorithm, which 

is faster and allows an online processing of data with lower 

storage costs and a quick adaption to changing data 

characteristics. 
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Fig.1.  Recursive Bayesian estimation for dynamic systems. 

 
Using the Bayes theorem and the discrete-time stochastic 

state space model (1), the posterior density can be derived 

and factored into the following recursive update form 

 

1: 1: 1
1:

1: 1: 1

( | ) ( ) ( | ) ( | )
( | ) .

( ) ( | )

k k k k k k k
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The computation of the Bayesian recursion essentially 

consists of two steps: the prediction step 

1 1: 1 1: 1
( | ) ( | )

k k k k
p p− − −→x y x y  and the update step 

1: 1 1:
( | , ) ( | )

k k k k k
p p− →x y y x y . The prediction step 

involves using the process function and the previous 

posterior density 
1 1: 1

( | )
k k

p − −x y  to calculate the prior 

density of the state 
k
x  at time k  via the Chapman-

Kolmogorov equation 

 

1: 1 1 1 1: 1 1( | ) ( | ) ( | ) ,k k k k k k kp p p d− − − − −= ∫x y x x x y x  (3) 
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where the state transition PDF is given by
1
 

 

1 1( | ) ( ( , )) ( ) .δ− −= −∫k k k k k k k kp p dx x x f x v v v  (4) 

 

The prior of the state 
k
x  at time k  does not incorporate 

the latest measurement ky , i.e. the probability for k
x  is 

only based on previous observations. When the new 

uncertain measurement ky  becomes available the update 

step is carried out and the posterior PDF of the current state 

k
x  is computed from the predicted prior (3) and the new 

measurement via the Bayes theorem (2), where the 

observation likelihood PDF and the normalizing constant in 

the denominator are given by: 

 

 ( | ) ( ( , )) ( )δ= −∫k k k k k k k kp p dy x y h x w w w  (5) 

 1: 1 1: 1( | ) ( | ) ( | ) .− −= ∫k k k k k k kp p p dy y y x x y x  (6) 

 

The equations (2-6) formulate the Bayesian solution to 

recursively estimate the unknown system states 

(measurands) of a nonlinear dynamic system from uncertain, 

noisy or incomplete measurements. But this is only a 

conceptual solution in the sense that in general the integrals 

cannot be determined analytically. Furthermore, the 

algorithmic implementation of this solution requires the 

storage of the entire (non-Gaussian) posterior PDF as an 

infinite dimensional matrix, because generally it cannot be 

completely described by a sufficient statistic of finite dimen-

sion. Only in some restricted cases a closed-form recursive 

solution is possible. For example with restriction to linear, 

Gaussian systems a closed-form recursive solution is given 

by the famous Kalman filter [8]. In most situations, either 

both the dynamic and the measurement process or only one 

of them is nonlinear. Thus the multi-dimensional integrals 

are not tractable and approximative solutions such as 

sequential Monte Carlo methods have to be used [8]. 

 

3.1.  Sequential Monte Carlo methods 

Sequential Monte Carlo (SMC) methods are stochastic 

sampling-based approaches, whereby the Monte Carlo 

integration with sequential importance sampling (SIS) is 

used to solve the high dimensional integrals of the Bayesian 

recursion. They make no explicit assumption about the form 

of the posterior density and approximate the Bayesian 

integrals with finite sums. These methods have the 

advantage of not being subject to the curse of dimensionality 

as well as not being constrained to linear or Gaussian 

models. The basic idea in SMC methods is to represent the 

Bayesian posterior density 
1:

( | )
k k

p x y  by a set of random 

samples with associated weights 
i

kw  (also referred to as 

particles) and to recursively compute the posterior based on 

these weighted samples, that is 

                                                 
1
 ( )δ ⋅ is the Dirac-delta function. 

 1:
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where 
1:( | )k kp x y  is the true posterior,  ( )q ⋅  is the 

importance sampling density, 
i

kx and 
i

kw  with 

1, ,= K Pi N  are the random samples and associated 

weights, whish normalize to 1i

ki
w =∑ . In every time step 

the samples are drawn from the importance density, since it 

is not possible to sample from the posterior density directly. 

For this reason the choice of ( )q ⋅  is a crucial design 
parameter in SIS methods. The objective is to draw samples 

in the region where the target state lies in (region of 

“importance”) to achieve good state estimations and high 

computational efficiency. With an increasing number of 

particles  NP→∞  the Monte Carlo Approximation becomes 

an equivalent representation of the true posterior density and 

the SMC methods converges to the true Bayesian estimate. 

An intrinsic problem with SIS is the circumstance, that 

after a few iterations, only some particles have significant 

weights, and the others are almost zero, this is called weight 

degeneracy or sample impoverishment problem. In order to 

improve the sample efficiency, usually some kind of 

resampling (selection) scheme is introduced, that avoids the 

problem of degenerate particles. The most common 

resampling strategies are multinomial, systematic, stratified 

or residual resampling [9]. The resampling duplicates the 

particles with high weights with several children, and 

assigns them equal weights. This eliminates particles with 

insignificant weights and chooses more particles in more 

probable regions. In general, the total number of particles is 

kept constant. This method of sampling is termed sampling 

importance resampling (SIR). The resulting algorithmic 

implementation consisting of predicting, updating and 

resampling the particles (weighted samples) is called 

particle filter. The PF is very general and very easy to code 

but faces the aforementioned problem of high computational 

burden, since it only converges to the true posterior when 

the number of particles goes to infinity. Thus, there is a 

direct dependency between the number of particles and the 

achievable estimation accuracy. The more particles were 

used the better is the approximation of the true Bayesian 

posterior density. 

 

4.  PARALLEL BAYESIAN TOOLBOX 

The PF faces the problem of high computational burden, 
since it converges to the true posterior when number of 
particles  NP→∞. For typical low dimensional estimation 
problems the PF requires 2 to 6 orders of magnitude more 
computational throughput than the extended KF (EKF), to 
achieve the same accuracy [10]. 
In order to solve these computational problems and assist 
users in efficiently implementing Bayes filters (BFs), a 
highly parallelized C++ library, called Parallel Bayesian 
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Toolbox (PBT) was developed and released as open-source 
software, for the first time [11]. The PBT is a very flexible, 
high-performance and platform independent

2
 C++ program-

ming library for implementing the most common Bayes 
filter - that is PFs, KFs and combinations of both - in an 
easily understandable, high level language, following the 
MATLAB/Octave programming language, for filtering, 
smoothing and predicting applications. This is achieved by 
using the Armadillo library [12] for easy coding, optimized 
linear algebra libraries

3
 for numerical computations on 

central processing units (CPUs) and Nvidia's Compute 
Unified Device Architecture (CUDA) framework for 
performing computations on graphics processing units 
(GPUs). The source code of the PBT can be distributed 
and/or modified under the terms of the Berkeley Software 
Distribution (BSD) license or the GNU General Public 
License (GPL). This dual license allows the usage of the 
PBT in open source, but also in proprietary applications. 
The PBT was designed and implemented that the follow-
ing requirements are met. 

• Free and open source: In order to analyze, modify and 
reuse software, its source code has to be available under 
an appropriate license. 

• Independent and flexible: Software should be indepen-
dent of hard- or software (i.e. independent of CPUs, 
GPUs, operating systems, software libraries etc.) and in-
dependent of any particular application (such as tracking, 
robotics, signal/image processing, econometrics etc.). 

• Performance: For high computational throughput, all 
available CPUs and GPUs should be used optimally. 

• Modularity: Software should consist of interchangeable, 
modular functional units in order to improve customiza-
tion and reusability. 

• Simple to code and easy to understand: Source code 
must be easy to understand, simple to read and easy to 
maintain. 

• Matlab/GNU Octave Interface: Software should offer an 
interface to Matlab/GNU Octave, because they are de 
facto standards for technical computing, data analysis 
and algorithm development. 
Although there is free and open source software available 
for implementing Kalman filters (see [18-19] and references 
herein) and/or particle filters (see [20-23] and references 
herein), none fulfils all requirements stated above

4
. Espe-

cially the last four criteria are not addressed adequately. In 
particular, no software exhibits an easy to use linear algebra 
library with bindings to optimized numerical libraries in 
order to transparently and optimally uses modern multi-core 
CPU/GPU architectures. Also a proper modularization to 
easily customize noise sources, resampling or state estima-
tion methods and a Matlab/GNU Octave interface are miss-
ing. Implementing an extra MEX/OCT interface, which 
converts data types between Matlab/GNU Octave and the 
software library, is an additional tedious and error-prone 

                                                 
2 Currently supported are Microsoft Windows and Linux on 32-bit or 64-bit 
processors. 
3 Supported libraries are Basic Linear Algebra Subprograms (BLAS), Linear 

Algebra PACKage (LAPACK), Automatically Tuned Linear Algebra Software 
(ATLAS), AMD Core Math Library and Intel Math Kernel Library (MKL). 
4
 A very good overview of KF software is given in [17]. Some libraries for PF 

are compared in chapter 7 of the design document of The Bayesian Filtering 
Library available under [20]. 

work for practitioners and decreases the overall computa-
tional throughput. 
The PBT itself uses CMake [13] as cross-platform build 
system and consists of five major modules. First, a BF 
module that provides all data management and interfaces. 
This module receives all measured data and distributes it to 
the other parts of the framework. The other modules are the 
state space model (SSM), describing the process and 
measurement equation, the resampling module implement-
ing all common resampling strategies, the noise sources 
module providing sampling and evaluating functions for all 
distributions defined in [3, 4] and the state estimation 
module for computing a state estimate from the Bayesian 
posterior density in every time step. Additionally the tool-
box features interfaces to the numerical computation sys-
tems MATLAB and GNU Octave as well as to the C++ 
development environment Automotive Data and Time 
Triggered Framework (ADTF). The overall architecture of 
the PBT is depicted in Fig.2. Example C++ code for 
implementing EKF and PF using PBT is given in Fig.3. and 
4 respectively. This demonstrates the easy and straightfor-
ward usage of PBT. In the following sections, the main 
components and their subsystems will be explained in more 
detail. 
 

 
 

Fig.2.  Architecture of the Parallel Bayesian Toolbox. 

 

A.  Bayes Filter module 

This module has the role of a coordinator. It provides the 

filter algorithm and it organizes the data transfer between all 

other modules, as shown in Fig.3. The Bayes filter module 

calls the process and measurement function of the SSM in 

the prediction and update step, respectively. It is also used 

for the computation of the particle weights. 

 

B.  State space model 

This module contains the dynamic model of the processor 

system under investigation and defines its process function 

ffun() and measurement function hfun(). The PBT offers 

predefined models for simple dynamics like steady state, 

linear, circular or kinematic trajectories [14] to assist the 

user. Dynamic coordinate measurements of all standard 

geometrical elements can be described with these included 

models. More complex models can be implemented by the 

user. In the case of KFs the user has to provide system, co-

variance and Jacobian matrices of the process and 

measurement equations. In the case of PFs the user has to 

specify ffun()and hfun() with all noise sources. 
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C.  Resampling module 

The resampling module implements multinomial, system-

atic, stratified and residual. The resampling step is only ap-

plied to PFs. It is the only bottleneck in the whole toolbox, 

because some calculations cannot be parallelized, such as 

computing the cumulative sum. 

 

 
 

Fig.3.  C++ implementation of EKF using the PBT. 

 

 
 

Fig.4.  C++ implementation of PF using the PBT. 

 

D.  Noise sources module 

This module is most useful in the case of PFs. It consists 

of random number generators and probability density 

functions for numerous distributions. It is intended to help 

the user to model arbitrary noise sources in the SSM. For 

modeling noise sources/uncertainties according to GUM and 

GS1 [3, 4], the PBT includes functions for all PDFs that a 

specified in the GUM. 

E.  State estimation module 

In every time step, the state estimation model is used to 

compute a state estimate from the particle approximation of 

the Bayesian posterior density. The standard estimator in 

every filter configuration is the weighted mean estimation. 

Other available estimators are median, robust mean, k-

means, mean-shift and best particle estimator. The latter are 

especially useful in applications with multi-modal likelihood 

functions, e.g. in localization. 

 

5.  PERFORMANCE BENCHMARKS 

Three different performance benchmarks were performed, 

in order to test the computation throughput of linear algebra 

calculations in PBT. First, the multiplication of non-square 

matrices was analyzed, since this is the most often used 

mathematical operation in BFs. Furthermore, in literature is 

only the case of square matrices considered. On numerous 

systems the matrix-matrix multiplication was performed 

with the dimensions d = (3, 15)(100, 500, 2000, 10000). A 

representative realized runtime graph is shown in figure 5 

(a) and (b). In most configurations CPU and GPU show 

relatively equal performance. This is because both are 

optimized for these operations. However, the NVIDIA Tesla 

GPU generation (or newer generations), specialized for 

scientific computations, outperforms all other hardware 

configurations. Regarding this, the matrix-matrix multiplica-

tion on GPUs is only useful in combination with new GPU 

generations and/or with other operations that are more 

computationally intensive, e.g. coordinates transformations 

presented next. 
 
 

 

 
 
Fig.5.  Performance comparison of (a)-(b) matrix-matrix multipli-

cation of numerous CPUs, (c) the transformation of Cartesian to 

polar coordinates and (d) of Wiener process acceleration model 

(DWPA) of numerous CPUs (dashed lines) and GPUs (solid lines). 
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Second, the performance of the nonlinear transformation 

between Cartesian and polar coordinates was analyzed. This 

is one of the most often nonlinear transformations in 

filtering and localization applications. The results are given 

in Fig.4.(c). It can be seen that with increasing number of 

vector elements (random numbers) the computation time of 

CPUs gets higher, whereas the computation time of GPUs 

remains nearly constant. The reasons for this result are the 

special function units of GPUs for computing sine and 

cosine as well as the high parallelization of modern GPUs. 

While CPUs can compute 8 operations in parallel, unspe-

cialized mainstream GPUs can compute 1536 operations at 

once (assuming 48 CUDA cores each with 32 threads). This 

complies with the results in [15]. 

Third, the achievable performance of filtering the motion 

of a point mass with SIR PF using the discrete Wiener 

process acceleration model (DWPA) as kinematic model 

[14] was examined. The benchmark results, for this very 

often used model, can be found in Fig.5.(d). For small 

matrices the runtime per one operation is relatively equal for 

GPU and CPU. But beginning with approximately 1000 

particles the GPUs are faster than the CPU implementations. 

The lower rise of GPU runtime leads to the conclusion that 

GPUs should be used for PF configurations with more than 

1000 particles, at least. All benchmark results revealed that 

using GPUs for computations can yield a significant perfor-

mance improvement, especially for modern GPU architec-

tures. 

 

 
 

Fig.6.  Measurement setup for dynamic coordinate measurements. 

 

After these systhetic benchmarks the dynamic measure-

ment task of tracking a freely moving target (marker) with a 

mobile, photogrammetric stereo-camera system is examined. 

The tracking target was moved by a high accuracy XY 

linear stage as depicted in Fig.6. along a given trajetory. 

1000 data points were recorded and afterwards filtered with 

a SIR PF using the former DWPA model. This post-

processing was performed offline. In order to analyze the 

runtime for such data processing for later online computa-

tions, a SIR PF was implemented with PBT, Bayes++ [23] 

and the Bayesian Filtering Library (BFL) [21]. These are the 

only available open source libraries that are under active 

development and feature interfaces and modules to imple-

ment particle filters in a comparable way to PBT. The 

benchmark results of a single filtering step for all three 

libraries are given in Fig.7. Shown are the averaged values 

over 10 runs. The following software was used for 

compiling the libraries: Microsoft Windows 7 (64-bit), 

Microsoft Visual C++ 2008 Compiler, Armadillo 3.2.2, Intel 

MKL 10.3 Update 9 (64-bit), CUDA Toolkit v4.2 and Boost 

1.45. Because Bayes++ and BFL do not offer bindings for 

optimized linear algebra libraries
5
, they are outperformed by 

PBT running on CPU as well as on GPU in case of using 

more than 500 particles. In the case of few particles the 

CPU-based computation outperforms GPU computing, due 

to memory data management overhead and memory transfer 

time between host and GPU device. But in the long run, 

GPU tremendously outperform CPU computing, because the 

initial small transfer time occurs only once. 

 

 
 

Fig.7.  Comparison of runtime of PBT, Bayes++ and BFL. 

 

As mentioned in the beginning of section 4, the PBT 

features interfaces to MATLAB and GNU Octave. The 

runtime performance of the PBT using the MATLAB MEX 

interface was further analyzed in a next experiment. Here, 

the same filter task was used to examine the performance 

improvement of PBT compared to a native MATLAB 

v7.14.0.739 (64-bit) implementation. The tests were run on 

Intel Xeon E5620 2.40 GHz CPU with Nvidia Tesla C2075 

GPU. The benchmark results in Fig.8. show that PBT-MEX 

realizes throughout better computation times than the native 

MATLAB implementation. As in figure 7 it can be seen that 

in case of more than 2000 particles PBT-MEX on GPU is 

superior to PBT-MEX on CPU. 

 

 

 
 

Fig.8.  Comparison of runtime of MATLAB and PBT-MEX. 

                                                 
5
 Both use the Boost libraries for linear algebra and statistics, 

whereby BFL could also use LTI matrix library and Newmat 

library as external matrix libraries, see [21]. 
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6.  CONCLUSIONS 

In this paper the open source Parallel Bayesian Toolbox 

(PBT) for implementing Bayes filter was presented. The 

toolbox is a very flexible, high-performance and platform 

independent C++ programming library for implementing 

KFs, PFs and combinations of both filter types. The 

presented benchmark results have shown that PBT is the 

fastest available open-source library for implementing 

Bayesian filtering, currently. Due to the high computational 

burden of such filters, the runtime performance is crucial for 

realizing an online processing of measured data e.g. 

dynamic coordinate measurements as in [16, 17]. 

For the first time, an open-source library is available that 

features a simple MATLAB-like high level language and 

efficiently utilize standard CPU/GPU architectures for 

implementing high-performance Bayesian filtering without 

the need of special computing hardware. 
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