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The authors have recently developed a number of instruments for measuring harmonic composition of power grid signals. These 
instruments have a simple, predominantly digital architecture and they are based on an assumption that the frequency of the 
measured signals equals its nominal value (50 Hz, 60 Hz or 400 Hz). This approach has enabled the measurement of a high 
number of harmonics within a single period. However, the internal oscillator in the instrument generates the nominal frequency 
and cannot adapt to frequency changes in the input signal. This paper presents a method for the improvement of the operation of 
the developed instruments in cases when the fundamental frequency drifts from its nominal value as is the case with real power 
grid signals. Based on this method, modified versions of the harmonic measurement instruments have been developed. A 
comparison of the measurement error with and without the application of the proposed method is presented in the paper.  
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1.  INTRODUCTION 

HE IMPORTANCE of power quality indicators such as 
frequency stability, total harmonic distortion factor, 
signal transients, etc., has been recognized for decades 

and widely discussed. The economical impact of the power 
quality concept on the industrial sector [1], [2], and in 
particular on the performance of power electronic devices 
[3], and quality of consumer's life [4], has been the subject 
of long lasting discussions. 

The need for more sophisticated control of "polluted" 
power grids has brought new challenges and restrictions to 
the measurements [5], [6], which include 
frequent/continuous low-cost monitoring of the harmonic 
composition of voltage/current signals in frequency varying 
environments. 

The authors researched the application of the stochastic 
measurement method in power distribution grid where the 
measurement interval and the fundamental frequency are 
strictly defined (20 ms / 50 Hz in Europe, 16.7 ms / 60 Hz in 
U.S.).  

A typical 3-phase power quality instrument measures 3 
voltages (uR, uS, uT) and 4 currents (i0, iR, iS, iT) and for each 
determines the spectral composition in terms of harmonic 
amplitudes and phases or sine and cosine coefficients up to 
the order M. The order M is usually very low (up to 16), but 
recently a need has been raised to increase the number of 
measured harmonics up to 50 or even 100 [7].  

One of the key parameters characterizing power quality is 
the total harmonic distortion factor or THD. The THD is 
defined with (1) as the ratio of the sum of the powers of all 
higher harmonic components P2, P3, P4, etc., to the power of 
the harmonic at the fundamental frequency P1.  

Significant THD values indicate undesirable situations in 
power grids such as peak currents, heating, emissions or 
possible core losses in motors. 
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In measurements based on harmonic amplitudes the THD 

can alternatively be expressed as a ratio of RMS values (2). 
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There are two possible approaches to the problem of 

harmonic amplitude measurements in power grids. The first 
approach is based on the assumption that the fundamental 
frequency in power grid is a well-known parameter which 
never drifts too far from the nominal value. This approach 
then uses a simple, fast, reliable and inexpensive hardware 
to perform the measurement. This is the case in almost all 
applications which rely on the DFT or the FFT and presume 
unchanged fundamental frequency [8], [9]. When the power 
grid fundamental frequency differs from the nominal value 
and the instrument does not adjust to the actual fundamental 
frequency, an error occurs. The measurement results are no 
longer signal’s harmonics but pseudo-harmonics which 
contain error both in amplitude and position on the 
frequency axis. Since the DFT and the FFT suffer from 
many pit-falls [10], an alternative approach can be 
considered, which takes into account the unknown 
fundamental frequency and uses more complex processing 
of time or frequency samples to obtain the true spectrum of 
the signal. While this alternative approach is far more 
advanced, it requests much more expensive and complex 
hardware with demanding signal processing capabilities. 
Many such solutions have been developed based on direct 
measurements in the frequency domain [11], the usage of 
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wavelets [12], application of other specific methodologies 
such as transient analysis [9] and usage of thermal 
converters [13].   

The stochastic measurement method described in [14] and 
[15], and especially its modification described in [16] is 
used to obtain coefficients of the trigonometric polynomial 
expansion of a continuous voltage or current signal over an 
arbitrary interval using signal dithering. These 
measurements are characterized with a high accuracy and 
represent a direct application of the Weierstrass 
Approximation Theorem [17], which is a special case of 
more general Stone-Weierstrass Theorem [18]. The 
dithering technique is widely used to enhance the 
performance of analogue-to-digital converters (ADC) and to 
correct their quantization error [19]. 

In this paper we will focus on the stable regime in power 
grids which occurs most of the time and which is the basic 
assumption for power quality measurements. We will also 
take into account the fact that in reality the fundamental 
frequency drifts from the nominal value. However, we will 
show that even with an instrument which incorrectly 
assumes the fundamental frequency to be equal to the 
nominal value and performs measurements of 
pseudo-harmonics, it is still possible to obtain the exact 
signal spectrum using the incorrect measurement results 
under a certain set of conditions. These conditions refer to 
the actual frequency drift and the number of harmonics 
which are required at the instrument’s output. The proposed 
correction algorithm is far less complex, more reliable and 
faster than any other known approach based on the 
assumption of an unknown frequency. A partial solution to 
the problem can be found in case of a purely sinusoidal 
signal [20] but the solution cannot be generalized to the non-
sinusoidal regime. 

The method described in this paper is based on a novel 
result in discovering a very special feature of the considered 
problem: the matrix, which maps the vector of actual 
harmonics into the vector of pseudo-harmonics obtained by 
the measurement, has a tendency to cumulate around the 
main diagonal. This feature enables us to apply an extremely 
efficient algorithm for on-the-fly solving large systems of 
linear equations. The method can be used to completely 
eliminate the error caused by frequency variations and the 
computation can be easily performed within a single period 
of the input signal (before the results for the next period are 
available). The range of applicability is extremely broad and 
covers nearly all cases of harmonic measurements that are of 
interest. The method requires only a simple hardware 
upgrade and requires low processing power, so it can easily 
be implemented into the existing instruments. 
 

2.  SUBJECT & METHODS 
When measuring harmonics, power quality analyzers 

normally presume that the voltage and current signals are 
periodic signals with the fundamental frequency equal to the 
nominal frequency f0 and the corresponding minimal period 
T0. In reality the fundamental frequency varies with changes 
in power consumption although it remains close to f0 as 
shown in [21]. Thus, real signals are actually not periodic 
but almost periodic and therefore do not possess a standard 

Fourier representation. Fortunately, these changes of 
frequency could be considered as slow enough. Thus, we 
can presume that during the interval within which the 
measurement has to be performed the signals remain 
periodic with a fundamental frequency f which has drifted 
from the nominal (expected) value f0 for an amount Δf0. To 
represent such an almost periodic signal with a 
given/assumed error ε we use the well-known Weierstrass 
trigonometric polynomial approximation [17]: 
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where an and bn are coefficients of this polynomial and M is 
the order of the highest harmonic corresponding to the 
choice of ε.  

Assuming that the DC component is not present in a signal 
defined with (3), the THD given with (2) can also be 
calculated using (4): 
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To take into account the varying frequency problem, let  
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be the minimal period corresponding to the actual 
fundamental frequency f. According to [17], an and bn 
coincide with Fourier's coefficients of the signal y(t) and 
could be expressed in the following integral form  
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However, a non-adaptive instrument which measures 

signal y(t) with the period T assuming that T is equal to T0 
will generate pseudo-harmonics: 
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The principal schematic of such an instrument that 

measures 3 voltages and 4 currents is shown in Fig.1. Note 
that this instrument has an internal counter which generates 
reference frequency of 50 Hz (20 ms period) [16]. 
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Fig.1.  The schematic diagram of the multi-channel instrument for 
harmonic measurements obtaining coefficients an and bn. 
 

Substituting (3) into (6) and (7), interchanging the order of 
the sum and the integral and taking into account that b0 is 
identical to zero we can rewrite (8) and (9) as: 
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To simplify the notation, we will use ξ to denote the 

relative variation of fundamental frequency as given in (10). 
 

 0
0

0 ≠
Δ

=
f
f

ξ  (13) 

 
Equations (10) – (12) can be rewritten as (14) – (16) as 

follows: 
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where the coefficients ( )na

kC , ( )na
kS , ( )nb

kC  and ( )nb
kS  are 

given by (17) – (20): 
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Relations (14) – (16) can be regarded as a system of 

equations where nâ  and nb̂  are pseudo-harmonics obtained 
from an incorrect measurement and an and bn are the correct 
values, which have to be reconstructed. Notice that a0 does 
not configure in (15) and (16), and therefore the equation 
(14) can be solved later, when an and bn are recovered. 

Thus, we reduce the problem of the error elimination in 
harmonic measurement, which is caused by the frequency 
variation, onto the problem of solving the system of linear 
equations (15) – (16), which can be represented in the 
following matrix form 
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where A is the matrix of order 2M, given as follows: 
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To solve (21) ξ must be known. However, ξ is not known 
in advance, prior to the measurement interval since the 
actual fundamental frequency f of the measured signal drifts 
for an unknown amount from the nominal value f0 and the 
instrument does not adjust the frequency of its internal 
oscillator to this change.  

There are methods for the estimation of frequency 
disturbances in power grids calculated directly from the 
obtained DFT coefficients, e.g., around component peaks 
[22]. But such an estimate is based on the DFT coefficients 
which are inherently erroneous and, thus, it is not suitable 
for a further correction of the DFT coefficients themselves. 

Nevertheless, the value for ξ can be determined 
independently and in parallel with the pseudo-harmonic 
measurement using a simple frequency extraction circuit 
shown in Fig.2 and made available at the end of each 
measurement interval.  
 

 
 
Fig.2.  The schematic diagram of the frequency extraction circuit 
for obtaining the parameter ξ. 

 
Using the circuitry in Fig.2 ξ can be estimated as 
 

 1MHz 100ˆ
0

−
⋅

=
fN
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where N is the output of the counter in Fig.2.  

Let N0 denote the output of the counter when the actual 
frequency equals the nominal value (f = f0). For N0 the 
parameter ξ̂  equals zero. The minimal value of ξ̂  is thus 
obtained for  

 
 10 ±= NN  (24) 

 
and it equals ±0.5 x 10-6 for f0 = 50 Hz and ±0.6 x 10-6 for 
f0 = 60 Hz. It will be shown later in this paper that these 
values satisfy all practical cases of interest. 

The estimate for ξ obtained from (23) is independent from 
harmonic measurements and it is available after each 
measurement interval, e.g., signal period. It can be therefore 
considered a known parameter available for the population 
of the matrix A and the correction of the measurement 
results by solving (21). 

The following number of multiplications and additions is 
required to create the matrix A in the case when coefficients 
given by (17) – (20) are calculated using Taylor's 
polynomials of 10th order:  

 
 ( )( ) MMM 212275 ++⋅ , multiplications and (25) 
 
 ( )( )12213 +⋅ MM , additions (26) 

For example, when M = 50 the number of multiplications 
is 757700 and the number of additions is 131300. 

Further, we will provide conditions in which A can be non-
singular. Moreover, we will show that under certain 
conditions this matrix is diagonally dominant, which allows 
us to use an extremely efficient tool for solving (21). Unlike 
the general purpose algorithms, such as Gaussian 
elimination, the procedure based on diagonally dominant 
matrices (DDM) has a fast convergence, it is not sensitive to 
small coefficient variations, does not accumulate numerical 
error, does not waste time on performing the column 
permutation and does not require any decision making or 
branching. This means that it can be efficiently applied for 
on-the-fly correction of the measurement results using 
minimal computational resources. 
 

3.  DIAGONALLY DOMINANT MATRICES 
A square matrix X = [xij]N x N is said to be a diagonally 

dominant matrix (DDM) if its elements satisfy the condition 
(27). 
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An important feature of the DDM is its non-singularity. 

For solving the system of linear equations involving a 
DDM, the Jacobi iterative method can be used [23]. 

For a single iteration in a system of order 100 (M = 50 
harmonics) the Jacobi method requires 

 
 ( ) 100002 2 =M multiplications and (28) 
 
 ( ) 100002 2 =M  additions (29) 
 

For the worst case of the parameter ξ, when the matrix A is 
at the edge of being a DDM, and depending on the input 
signal composition, it may take up to 500 iterations to reach 
the error of 0.01 %, which is at least 10 times lower than the 
common harmonic measurement uncertainty of commercial 
power quality analyzers. This number of iterations can be 
achieved even with an embedded PC with modest 1 GFlops. 
Such a device can ensure at least 750 iterations within a 
single period of the input signal (20.0 ms or 16.7 ms). In 
practical cases of interest the number of iterations is usually 
much smaller and far below 100. 

For comparison, in Table 1 we provide an estimate of the 
time required for the algorithm to execute on various 
platforms in 32-bit arithmetic under the most extreme 
conditions: M = 100 or 80,000 floating point operations and 
assuming maximum 500 iterations [24], [25], [26], [27], 
[28], [29]. We have considered platforms suitable for both 
mainframe (high performance) and for terrain instruments 
(low GFlops/watt ratio). However, the values in Table 1 do 
not include times required for memory fetch operations due 
to the complexity of the issue across different platforms and 
their dependency on the BUS realization. 
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Table 1.  Estimates of algorithm duration on various platforms, for 
correcting 100 harmonic values in 500 iterations 
 

Platform Type GFlops 
Estimate of 
algorithm 
duration 

Intel i5-3570T µP 106 377 µs 
Intel i7-990x µP 90 444 µs 
Intel Core i7-3770 mobile µP 225 178 µs 
Intel Core Duo L7700 mobile µP 14.4 2778 µs 
AMD Opteron 6284 SE embedded µP 346 116 µs 
AMD Radeon HD mobile µP 4300 9 µs 
TI Sitara Cortex-A8 µP 4 10,000 µs 
TI TMS320 C6655 DSP 165 242 µs 
NVidia GTX 690 mobile µP 5621 7 µs 
NVidia Tesla K10 mobile µP 4577 9 µs 
IBM Power A2 mobile µP 204  196 µs 
Altera Stratix IV FPGA 171 234 µs 
Altera Stratix V FPGA 1000  40 µs 
Adapteva Epiphany-IV mobile µP 100 400 µs 

 
Table 2.  Maximum allowed values for frequency drift ξ for 
obtaining diagonally dominant and/or non-singular matrix A 
depending on the number of harmonics M measured 
 

ξmax 

M ξ > 0 
A is DDM 

ξ < 0 
A is DDM 

ξ > 0 
A is non-
singular 

ξ < 0 
A is non-
singular 

1 0.250000 -0.250000 1.000000 -0.999999 
2 0.101882 -0.105962 0.500000 -0.999999 
5 0.033161 -0.035227 0.200000 -0.999999 

10 0.014307 -0.014257 0.100000 -0.999999 
15 0.008649 -0.008684 0.066667 -0.999999 
20 0.006107 -0.006094 0.050000 -0.999999 
25 0.004645 -0.004646 0.040000 -0.999999 
30 0.003731 -0.003730 0.033333 -0.999999 
35 0.003097 -0.003095 0.028571 -0.999999 
40 0.002638 -0.002639 0.025000 -0.999999 
45 0.002293 -0.002291 0.022222 -0.999999 
50 0.002021 -0.002020 0.020000 -0.999999 
55 0.001805 -0.001805 0.018182 -0.999999 
60 0.001628 -0.001627 0.016667 -0.999999 
65 0.001480 -0.001480 0.015384 -0.999999 
70 0.001356 -0.001356 0.014286 -0.999999 
75 0.001250 -0.001250 0.013333 -0.999999 
80 0.001158 -0.001158 0.012500 -0.999999 
85 0.001079 -0.001079 0.011765 -0.999999 
90 0.001009 -0.001008 0.011111 -0.999999 
95 0.000946 -0.000946 0.010526 -0.999999 
100 0.000891 -0.000891 0.010000 -0.999999 

 
It is evident from Table 1 that the state-of-the-art 

technology allows for an easy real time implementation of 
the proposed algorithm regardless of the considered 
platform (µP, mobile µP, embedded µP, DSP, FPGA etc.) 

Further, we will discuss the conditions under which the 
matrix A, whose inverse matrix provides correction of the 
measurement results, is diagonally dominant. This is of 
special interest in cases where modest computational 
resources need to achieve high performance corrections. 

The elements of A are all functions of the parameter ξ. For 
ξ = 0, the matrix A equals the identity matrix 
E = diag(1, 1, ..., 1) and the condition (24) is satisfied. 

As |ξ| becomes greater than zero, absolute values of the 
elements on the main diagonal decrease, remaining close to 
1s, while absolute values of other elements slightly increase. 
Thus, the matrix A disperses from identity matrix to a 
diagonally dominant matrix. Four cases of 100x100 matrices 
A defined with (22) for different values of parameter ξ are 
illustrated in Fig.3.  

Each pixel in Fig.3 represents one coefficient of the matrix 
A. Dark tones indicate higher values of the elements, while 
pale tones indicate smaller values. Black equals to the 
maximum absolute value ±1 and white equals to 0. 

A computer simulation was used to sweep the space of 
possible values for ξ in order to find positive and negative 
limit values for which the matrix A is the DDM depending 
on the number of harmonics M. This implies that between 
these limit values matrix A is non-singular. We have also 
explored the conditions under which the matrix A is non-
singular beyond the interval of diagonal dominancy. The 
results of the simulation are presented in Fig.4 and in 
Table 2. 

 

 
 

Fig.3.  Several examples of diagonally dominant matrices A of 
order 100 x 100 for measuring up to M = 50 harmonics 

 

 
 
Fig.4.  Zones of diagonal dominance and of non-singularity of 
matrix A for various combinations of M and ξ  
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The matrix A is diagonally dominant if ξ is within the 
dark-grey zone in Fig.4, i.e. between the limit curves (b) and 
(c). This zone will be called the DDM zone. The matrix A is 
non-singular if ξ is between the limit curves (a) and (d), i.e. 
in the union of light-grey and dark-grey zones. We will call 
it the Non-singularity zone. For the remaining pairs (ξ, M) 
belonging to the white region, which will be named the 
Singularity zone, the measurement results cannot be 
corrected.  

Computer simulation suggests that the limit curve (a) in 
Fig.4 for positive values of ξ can be approximated well 
enough by hyperbole 1 / M. Thus, the region or non-
singularity for positive ξ can be described by the following 
relation: 

 

 1≤⋅ Mξ  (30) 
 

Notice that for negative values of ξ the matrix A is non-
singular for every (ξ, M) in contrast to the situation when 
ξ > 0. This can easily be explained by taking into account 
that for a negative frequency drift of the fundamental 
frequency all the harmonics shift towards lower frequencies. 
Thus, the measured pseudo-harmonics contain all the 
necessary information for the reconstruction of the actual 
spectrum. In contrast to that, a positive frequency drift can 
cause the spectrum to slide outside the measurement region 
(M·f0) and the information about higher order harmonics 
will be lost. When (30) is no longer satisfied, more than M 
harmonics are required to reconstruct the actual spectrum of 
the measured input signal, e.g., M + k. However, k is an 
unknown number since the parameter ξ is not known in 
advance. Therefore, such situation is of no practical interest 
and we will consider that (21) cannot be solved in that case. 

 
4.  DISCUSSION ON THE RANGE OF APPLICABILITY OF THE 

PROPOSED METHOD 
Concerning the DDM zone in Fig.4, it may seem 

discouraging that it is rather narrow. Nevertheless, it turns 
out that the DDM zone covers most of the cases of practical 
interest. The following discussion proves this statement. 
Should one want to measure 50 harmonics and apply the 
correction method using the Jacobi iterative method, e.g., in 
a European power grid, having the fundamental frequency 
of 50 Hz, according to (30), the parameter ξ has to lay 
approximately within the interval ±0.002 (±0.2 %). This 
interval for ξ corresponds to an absolute frequency drift of 
±0.1 Hz, which is hardly to be reached even over a longer 
period.  

Frequency drifts beyond ±0.1 Hz may occur, but they are 
commonly associated to abrupt changes in power 
consumption (up to 10 megawatts) lasting for a rather small 
number of periods [7]. Prolonged frequency excursions 
commonly lead to power failures where different 
measurement procedures must be applied. In stabilized 
power grids these frequency excursions have a very short 
occurrence as it is noticed in [30] and [31].  

Smaller and shorter discrepancies of the frequency can be 
assessed directly [10], [32] and can be used in perturbation 
calculus to estimate the scope of the fundamental frequency 
excursion and its influence on the accuracy of harmonic 
measurements.  

Measurement results performed in power grid in Serbia 
prior to and upon the interconnection with the European 
power system given in [33] demonstrate that the frequency 
is stable enough to guarantee that the matrix A is the DDM 
in the majority of harmonic measurement applications, 
especially where an averaging over significant number of 
periods is performed.  

Even in cases when the matrix A is not strictly a DDM but 
is non-singular (the light-grey zone), according to Fig.4 a 
reduction of the number of harmonics M could relocate the 
pair (ξ, M) within the DDM zone. For example, if the initial 
request is to measure 65 harmonics under the fundamental 
frequency drift of ±0.08 Hz (ξ = ±0.0016), a reduction of the 
number of harmonics from 65 to 60 is sufficient to ensure 
that matrix A is the DDM. 

A strong point of the proposed method is that it requires 
relative frequency changes to be within the interval given 
with (30), and not just an absolute change around 50 Hz or 
60 Hz. This is of interest in cases when an arbitrary bias in 
frequency is present and variations occur around a new 
central frequency. Even within the instruments that can 
adapt to such new central frequency, the proposed method 
allows for a correction of measurement results. The 
correction will always be necessary since the adaptation can 
only be achieved with a finite resolution. A frequency 
extraction circuit such as PLL can be used to come as close 
to the actual fundamental frequency as possible and leave 
out a very small difference between the presumed and actual 
frequency [11]. The method described in [11] can also be 
used to by-pass the correction post-processing of the 
measurement results, but the synchronization circuits in that 
case have to be extremely fast. 

 
5.  EXPERIMENTAL RESULTS 

A prototype instrument has been made, described in 
Error! Reference source not found. shown in Fig.5. The 
instrument measures 3 voltage and 4 current signals and for 
each obtains coefficients of the trigonometric polynomial 
representation of order 50 with a 16-bit resolution within 
one period of the fundamental frequency. Thus, the 
instrument produces 2 Bytes x 100 coefficients x 7 channels 
x 50 signal periods = 70 kB of measurement data per 
second. It is primarily used for measurements of the power 
grid integral parameters such as active, reactive and 
apparent power. However, the measurement data rate 
indicates that a similar method can also be applied in 
diagnostic instruments such as fault recorders. 
 

 
 
Fig.5.  Integrated stochastic instrument with seven channels 
1-channel instr. with referent input signal 
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Fig.6.  Measurement error of 1-channel stochastic instruments with 
and without the correction method 

 
 

 
 
Fig.7.  Measurement error of 7-channel stochastic instruments with 
and without the correction method 
 
 

 
 
Fig. 8. Measurement error of 7-channel stochastic instruments with 
and without the correction calculus for a rectangular input signal 

The operation of the instrument is, however, based on an 
assumption that the fundamental frequency in power grid is 
always equal to nominal (50 Hz or 60 Hz).  

The authors have applied the proposed method to a 
1-channel integrated stochastic instrument for measuring up 
to 16 harmonics described in [34] and to a 7-channel 
integrated stochastic instrument for measuring up to 50 
harmonics described in [16]. Both instruments have a unique 
ability to measure phase and amplitude of a harmonic with 
an arbitrary small error that is independent on the order of 
the harmonic or the waveform of the input signal [16]. 

The calibration and measurements have been performed in 
the Laboratory for Electrical Quantities at the Faculty of 
Technical Sciences in Novi Sad, Serbia. The measurement 
results for the 1-channel instrument are given in Fig.6. The 
measurement results for the 7-channel instrument are given 
in Fig.7 and Fig.8.  

The results in Fig.6 to Fig.8 have been obtained using 
100 iterations. Since the error is independent of the order of 
the harmonic, only one resulting graph is given for all values 
of M up to 50. The fiducial error on the vertical scale is the 
ratio of the absolute error to the instrument’s full scale. The 
fiducial error is used because the same ADC is applied for 
measuring instances of two different physical quantities – 
voltage and current. Since an input to the ADC can only be 
voltage (Fig.1), each current is being transferred into the 
corresponding voltage using a transresistance circuit. Thus 
the use of the fiducial error allowed for a more uniform 
characterization of the instrument’s measurement 
uncertainty across all seven parameters of interest.  

After applying the proposed correction method in both 
1-channel and 7-channel instrument, the measurement 
uncertainty has become considerably less dependent on 
frequency variations below the criterion given with (30). 

 
6.  CONCLUSION 

A new method has been presented for on-the-fly correction 
of the measurement results of voltage and current harmonics 
in power grids due to the difference between the signal 
actual frequency and the locally assumed reference 
frequency within the instrument with an internal oscillator. 

The idea behind the correction method is based on the fact 
that the matrix which maps the correct values into incorrect 
measurement results has a tendency to cumulate around the 
main diagonal. This fact allows for an application of an 
efficient algorithm for elimination of measurement error 
caused by small frequency drifts that are present in real 
power grid signals. The domain of applicability of the 
method is presented and widely discussed in this paper.  

The authors provided the conditions for the correction 
matrix to be non-singular beyond the interval of diagonal 
dominancy including modification procedures, which 
guarantee diagonal dominancy on the expense of reducing 
the number of required harmonics.  

The method proves to be equally significant both for 
instruments which can and cannot adapt to frequency 
changes as discussed in this paper. The application of the 
proposed method requires modest computational and 
hardware resources, thus it can be easily implemented in 
new measurement equipment, as well as in most of the 
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existing instruments for power quality measurements 
offering lower measurement uncertainty. 

The experimental results showed that by applying the 
proposed method, the fiducial error is substantially lowered 
and almost independent on the frequency drift providing that 
the conditions considered in this paper are met. 
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