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Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for 
measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts 
towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In 
this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding 
muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus 
femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the 
proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by 
WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue 
during gait, Daubechies45 is used in this research to analyze the SEMG signal. 
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1.  INTRODUCTION 

USCLE FATIGUE is a condition when the ability of 
the muscle to contract and produced force is reduced. 
Unlike subjective typical evaluations, which typically 

define the point in time when the subject can no longer 
perform tasks, EMG signal analysis can provide a 
continuous measurement of a muscle’s metabolic state 
throughout a sustained fatiguing contraction [1]. However, 
muscle fatigue threshold cannot be defined as a simple 
function of muscle load magnitude and timing because 
muscle characteristics and capabilities vary from person to 
person.  

The electrical activity of muscles is represented by 
Electromyography (EMG) signal. A muscle is composed of 
many Motor Units (MUs). An EMG signal is realized 
instantly from the muscle or from the skin using surface 
electrodes. Understandingly, it demonstrates noise as well as 
Motor Unit Action Potentials (MUAP). While increasing 
muscle force, the number of MUAP employed at rising 
firing rates is enlarged. The raw EMG signal depicts the 
increment in the Interference Pattern (IP) [2]. The firing 
pulses are normally considered a random function of time, 
which is non-Gaussian in nature [3]. Quantitative analysis of 
the IP is useful in the diagnosis of neuromuscular disorders. 

Undetected muscle fatigue can cause injury. Within static 
sub maximal contractions both amplitude and frequency 
based analysis parameters show time domain changes due to 
muscle fatigue. Progressive muscle fatigue can be tracked 
by monitoring the changes in the characteristic frequencies 
of the EMG spectrum. There are a number of techniques that 
can be used to determine the level of fatigue in a subject. 
Due to recruitment of motor units, the amplitude shows an 
increase, whereas the frequency based mean or median 
frequency of the total power spectrum show a decrease over 
contraction time [4, 5]. The regression coefficient of the 
median or  mean frequency  slope towards lower frequencies  

 
 

can be used as a non-invasive fatigue index for the 
investigated muscle. 

To analyze the frequency components of the EMG signal, 
the mean and median frequencies are the most important 
parameters. Lindstrom et al. [6] have developed a general 
mathematical model of the EMG power spectrum density 
(PSD) and have shown that both the amplitude increase and 
shifts to lower frequencies can be explained by conduction 
velocity changes during sustained contraction. Stulen and 
DeLuca [7] have shown that the characteristic frequencies of 
the PSD such as mean and median frequencies are linearly 
proportional to the conduction velocity. Using spectral 
analysis, Stulen and DeLuca observed a shift in the EMG 
frequency towards lower frequencies. They demonstrated 
that the median frequency parameters of the power spectrum 
provided a reliable consistent estimate of the frequency 
shift. 

In the past years, several computer-aided techniques for IP 
analysis have been proposed including the following: turns 
amplitude analysis [8], decomposition methods [7], and 
power spectrum analysis [9]. Bispectrum analysis, a 
particular form of higher-order spectra (HOS), was used by 
Kaplanis and Pattichis [3] for analyzing the “Biceps 
Brachii” muscle. The analysis revealed that SEMG turn into 
less Gaussian on escalating mean voluntary contraction 
(MVC). Different research works using HOS showed that 
MUAP waveform increased according to the increase in 
load weight where there is no involvement of Motor Units 
(MUs) recruitment in the resting muscle [10-12]. The point 
at which a contraction can no longer be maintained (the 
failure point) has been generally designated as the point at 
which the muscle is said to fatigue [13]. This information 
can also be very useful for identifying muscle fatigue while 
analyzing the SEMG signal. 

In this research, various WFs are employed to decompose 
SEMG using Discrete Wavelet Transform  (DWT).  Median  
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frequency is considered for the EMG power spectrum 
analysis during an 8-trial walk (slow to fast). Consecutively, 
to take out new parameters that could develop the diagnostic 
character of SEMG, HOS in SEMG signal analysis is used 
in this research. To analyze SEMG signals and to detect 
muscle fatigue during a 3-trial (slow, medium and fast) 
walking process, Bispectrum analysis is introduced. In this 
study, WFs Haar, Daubechies and Symmlet are used for the 
WT.  

Results suggest that a specific WF provides the best 
contrast for the analysis of SEMG signal to identify muscle 
fatigue. According to this research, db45 (Daubechies WF) 
present the best contrast while analyzing the EMG signal 
using both power spectrum and bispectrum. Db45 has been 
used as the main WF to identify muscle fatigue during gait. 
During the study, it was also demonstrated that median 
frequency amplifies with the enlargement of muscle 
contraction. The increase of muscle contraction also makes 
the signal less Gaussian. Furthermore, we have also noticed 
that the Linearity test follows the reverse pattern with the 
measure of Gaussianity. 
 

2.  WAVELET DECOMPOSITION 
The DWT is computed by successive low-pass and high-

pass filtering in the discrete-time domain. The DWT of a 
signal x[n] is calculated by passing it through a series of 
filters. First, the samples x[n] are passed through a low-pass 
filter with impulse response g[n], resulting in a convolution 
y[n] of the two. The signal also goes simultaneously through 
a high-pass filter with impulse response h[n]. The outputs 
give the detail coefficients (from the high-pass filter, 
yhigh[n]) and the approximation coefficients (from the low-
pass filter, ylow[n]). The filter outputs are then down sampled 
(or sub sampled) as given by 

 
                 [ ] [ ] [ ]kngkxny klow −= ∑∞

−∞= 2.                     (1) 

 
                 [ ] [ ] [ ]knhkxny khigh −= ∑∞

−∞=
2.                     (2) 

 
The aptitude of DWT to extract features from the signal is 

reliant on the suitable option of the mother wavelet function. 
Some of the popular standard families of the wavelet basic 
functions are Haar, Daubechies, Coeiflet, Symmlet, Morlet 
and Mexican Hat. Even though there is no well-defined rule 
for selecting a wavelet basis function in a particular 
application or analysis, some properties of the wavelets 
make a specific mother wavelet more suitable for a given 
application and signal type [14]. 

There are some general guidelines to select the wavelets, 
such as Db4 is more suitable for signals that have “linear 
approximation” over the support of four samples, while Db6 
is better suited for a signal approximated by a quadratic 
function over the support of six, coiflet6 provides better data 
compression results while Db4 is more suitable for feature 
extraction [15]. The properties of wavelet functions used in 
this paper are shown in Table1.  

Table 1. Properties of Wavelet Function 
 

 Haar DbN SymN 
Orthogonal Yes Yes Yes 
Time Support [0,1] [0,2N-1] [0,2N-1] 
Frequency Support 1/ω 1/ω0.2N 1/ω0.2N 
Regularity 0 0.2N 0.2N 
Symmetry Yes No Yes 
Zero Moment 1 N N 

 
3.  BISPECTRUM ESTIMATION PROCESS 

The bispectrum is a particular form of HOS. As it is the 
simplest to compute among other HOS forms, it is the most 
accessible. The two-dimensional discrete-time Fourier 
transform of the third order cumulant gives the bispectrum. 

Knowing the frequency components, X(k), of the output 
signal x(k), the bispectrum, Bx(k,l), can be estimated using 
equation (4). 

 

               { }1)(k*X(k)X(l)XEl)(k,Bx +=                (3) 
 

where E{.} denotes the statistical expectation, k,l are the 
discrete frequency components and * denotes the complex 
conjugate. 

Given a set of real observations {x (n)} for n = 0, 1, 2, …. , 
N-1, it is assumed that the data set is stationary. The 
bispectrum estimation algorithm is given as follows [16]. 

1. Subdivide the data into G segments of M samples, 
where each segment (N = G × M). The new denotation 
of {x(n)} is xg(m) where m = 0, 1, 2, …. , M-1 and g = 
0, 1, 2, …. , G-1. The sample size (M) is chosen as the 
number of frequency points of the FFT (Fast Fourier 
Transform) for better evaluation. 

2. From each record of any segment, subtract the average 
(mean) value. To achieve a length M for the FFT, add 
zeroes to each division such that M is a power of 2. 

3. Multiply each section by an appropriate data window to 
manage the consequence of spectral leakage. A one-
dimensional Hamming or Hanning window can be used. 

4. Inside each segment, calculate the DFT (Discrete 
Fourier Transform) coefficients. 

5. For the principal domain, compute the probable 
bispectrum by using DFT coefficients. 

The bispectrum estimation of the given data is averaged 
over the ‘G’ pieces. The power spectrum can also be 
expected during the process.  
 

4.  GAUSSIANITY AND LINEARITY 
To quantify the non-Gaussianity of a random process, the 

normalized bispectrum gives the bicoherence B_n(k, l) 
which is estimated by  

 

l)kP(k)P(l)P(l)/ B(k,l) B_n(k, +=          (4) 
 
where B(k, l) is the bispectrum and P(.) is the power 

spectrum. Bicoherence is a mixed function of second- and 
third-order statistics that is the power spectrum and 
bispectrum. The third-order and fourth-order cumulant gives 
the skewness. The skewness function of a linearly filtered 
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non-Gaussian signal is flat but the skewness function of the 
output signal of a non-linear system is not flat [17]. If a 
signal is Gaussian then its bispectrum is zero. The 
theoretical bispectrum of any Gaussian signal is identically 
zero. Researchers reported that the bispectrum is zero for 
any independent and identically distributed signal with a 
symmetric probability density function (pdf) whereas 
skewed signals have an asymmetric pdf whose bispectrum is 
non-zero [18, 19]. It is also reported that any signal which is 
not white has a non-zero bispectrum. The power spectrum 
and bispectrum of a non-Gaussian random signal always 
carry a constant value.  

The test of Gaussianity Sg is based on the mean 
bicoherence power defined as the summation performed 
over the non-redundant region, which is given as 

 
                               ∑= ),( lkBS ng

                                  (5) 
 
The Gaussianity test (actually zero-skewness test) involves 

deciding whether the estimated bicoherence is zero [17, 20]. 
The Linearity test involves deciding whether the estimated 
bicoherence is constant in the bi-frequency domain, 
employing a measure of the difference (dR) between a 
theoretical and an estimated interquartile range R. The 
Gaussianity test is performed to understand muscle 
contraction to identify fatigue. 
 

5.  METHODOLOGY 
Eleven (11) separate EMG data files are used in this 

research. For the simulation of the algorithm, Raw EMG 
signals are collected from Motion Lab Systems, Inc. [21]. 
SEMG is documented from the right “rectus femoris” 
muscle which is taken from a normal subject (teenage male). 
Overall, 800 samples per second are recorded for all analog 
channels. DWT with five different WFs (haar, db2, db45 
sym4 and sym5) is used to decompose SEMG signals. Once 
the WT is done, the wavelet coefficients are used for power 
spectrum and bispectrum analysis.  

FFT techniques are used to attain the power, where 
Hanning window is used with a 128 point FFT. The median 
frequency is considered by finding the middle frequency 
value of the power spectrum. For the bispectrum analysis, 
the signal is segmented at 256 points and 0.51 smoothing. 
The N numbers of wavelet coefficients are used for the 
bispectrum estimation. The N data are divided into G section 
of 256 samples. Sample size 256 is the number of frequency 
points for the FFT. From every record of that segment, the 
average value of each segment is deducted. An appropriate 
data window is multiplied with each segment to manage the 
effect of spectral leakage. A one-dimensional Hanning is 
used for this case. Within each segment, the DFT coefficient 
is computed. Estimated bispectrum is computed by using 
DFT coefficients for the principle domain. Next, the 
bispectrum estimate for the given data is averaged over G 
pieces. Finally, the Gaussianity and Linearity tests are 
executed. The DWT is executed using MATLAB Wavelet 
toolbox and the power spectrum. The bispectrum analysis is 
also achieved with MATLAB.  

Median frequency of the power spectrum is used to 
calculate the muscle contraction at various walking trials, 

which is valuable to sense muscle fatigue. Based on the 
normalized bispectrum (bicoherence), the Gaussianity and 
Linearity tests are also carried out for the SEMG signals to 
determine fatigue. The process of power spectrum and 
bispectrum analysis of SEMG is shown in Fig.1.  

 

 
 

Fig.1.  Power Spectrum and Bispectrum Analysis of SEMG 
 

6.  RESULTS 
Fig.2 shows the median frequency of the 8-trial walk (slow 

to fast) using various WFs and Fig.3 shows the Gaussianity 
test of the 8-trial walk (slow to fast) using various WFs, 
where each trial walk lasted 15 minutes. Fig.4 gives the 
median frequency for the 3-trial walk (slow, medium and 
fast, where 1 represent slow, 2 represent medium and 3 
represent fast in the x axis) to determine muscle fatigue and 
Fig.5 shows the Gaussianity test for the 3-trial walk (slow, 
medium and fast, where 1 represent slow, 2 represent 
medium and 3 represent fast in the x axis) to identify muscle 
fatigue. Fig.6 shows the Linearity test for a 3-trial walk 
(slow, medium and fast, where 1 represent slow, 2 represent 
medium and 3 represent fast in the x axis) showing reverse 
pattern of the Gaussianity test. Median frequency and 
Gaussianity test of the muscle rest position and maximum 
contraction position are also represented in Fig.7 and Fig.8 
to verify the performance of WF db45. It is observed that: 

1. Compared to the other WFs, WF db45 presents the 
best contrast in median frequencies as shown in Fig.2. 

2. To make the SEMG signal less Gaussian and linear, 
WF is compared to other WFs. The best contrast in the 
bispectrum analysis is represented by db45, which is 
exposed in Fig.3. 

3. Muscle fatigue is significantly identified when using 
WF db45 during power spectrum analysis as it is very 
clear that during the fast walking trial the spectrum is 
low (Fig.4). 

4. Gaussianity test using db45 shows that the Gaussianity 
increased from trial 1 (slow walking) to trial 3 (fast 
walking) indicating decrease of muscle contraction 
during the trial (Fig.5). The achieved results support 
the outcome of Kaplanis et al. [3], who have also used 
Bispectrum analysis for analyzing the biceps brachii 
muscle, where SEMG becomes less Gaussian with 
increased muscle contraction. 

5. Linearity test follows the reverse pattern of the 
Gaussianity test where the signal becomes more linear 
at trial 2 (medium walking) and less linear at trial 3 
(fast walking) (Fig.6). 

6. Median frequency amplifies with a raise of muscle 
contraction as shown in Fig.7. 

7. SEMG signal distribution is non-Gaussian at the 
muscle’s maximum contraction stage comparing to its 
resting stage (Fig.8). 
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Fig.2.  Median frequency of the 8-trial walk using various WFs 
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Fig.3.  Gaussianity test of the 8-trial walk using various WFs 
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Fig.4.  Median frequency for 3-trial to identify muscle fatigue 
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Fig.5.  Gaussianity test for the 3-trial walk  
to identify muscle fatigue 
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Fig.6.  Linearity test for the 3-trial walk showing reverse pattern  
of the Gaussianity test 
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Fig.7.  Median frequency at the muscle’s rest position and 
maximum contraction position 
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Fig.8.  Gaussianity test at the muscle’s rest position  
and maximum contraction position 

 
 

6.  DISCUSSION 
Median frequency is used to measure the shift to lower 

frequencies. This shifting is correlated with the changes in 
the MU and changes in the firing characteristics of the MU 
[22]. In the past, spectral analysis of the SEMG has 
demonstrated a significant change of the spectrum of the 
signal due to muscle fatigue [6, 7]. However, the change 
was small because the shape of the spectrum of SEMG 
varied, so it was difficult to provide an objective and 
numeric parameter to distinguish between SEMG. Recent 
research also demonstrates that using WT, the difference 
between the SEMG corresponding to fatigue muscles and 
non-fatigue muscles is highlighted when using sym4 and 
sym5 WFs [14].  
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From the result obtained in this research during the 8-trial 
walk, it is evident that WF db45 shows the best contrast 
while analyzing SEMG signal using both power spectrum 
and bispectrum. WF db45 provides better contrast in the 
SEMG signal analysis compared to the other WFs, as shown 
in Fig.2. According to Fig.4, the WF haar, db2, sym4 and 
sym5 show similar results in 50 Hz range where there is a 
shift to lower frequencies in the median frequency from trial 
1 (slow walk) to trial 3 (fast walk) indicating muscle fatigue 
as in [6, 7]. The WF db45 shows higher median frequency 
values compared to the other four WFs (haar, db2 sym4 and 
sym5) within the range 50 to 70 Hz. The median frequency 
representing muscle contraction using db45 has significant 
variations in the signal. The shift to lower median frequency 
indicates presence of muscle fatigue during the walking 
trial. In this case, the difference between the SEMG 
corresponding to fatigue muscle and non-fatigue muscles is 
best highlighted when using db45 WF, which is better than 
sym4 and sym5 proposed by Kumar et al. [14], which is 
shown in Fig.2. Gaussianity test as shown in Fig.3 also 
shows that db45 can show significant variation on the 
Gaussianity tests making the SEMG signal less Gaussian 
compared to the other WFs. 

Gaussianity test using db45 from Fig.5 shows that the 
Gaussianity increased from trial 1 (slow) to trial 3 (fast). 
The increase of Gaussianity during the 3-trial walk 
determines that there is decrease of muscle contraction 
indicating muscle fatigue as in [13]. Though there is a rise in 
Sg between trial 1 (slow walk) and trial 3 (fast walk), the 
fatigue will not necessarily be always linear in nature during 
walk. However, when there is fatigue, Sg will fall, which can 
be seen clearly in Fig.5. This also concludes that there is a 
change of MU recruitment during the third walking trial as 
in [10, 12]. A measure of Linearity based on whether or not 
the estimated bicoherence is constant, follows the reverse 
pattern with that of Gaussianity. Fig.6 shows that the 
Linearity test follows the reverse pattern of the Gaussianity 
test where the signal becomes linear at trial 2 (medium 
walk) and less linear at trial 3 (fast walk).  

During this research, a test using the muscle in resting 
position and maximum contraction position was performed 
to check the performance of WF db45. Comparison study of 
Hagberg and Ericson found that mean power frequency was 
lower at low contraction levels when measured against high 
contraction levels [23]. Similar results were also 
accomplished by Moritani et al., where momentous raise in 
SEMG mean/median frequency was found with increasing 
force [24]. These research results showed that for maximum 
contraction level there was considerable raise in the median 
frequency from the resting state of the muscle. The outcome 
by using wavelet db45 [23, 24] is shown in Fig.7. This 
indicates that there are changes in the MU and changes in 
the firing characteristics of the MU [22]. During the 
bispectrum analysis, it was also demonstrated that the signal 
is more Gaussian at rest position and less Gaussian at 
maximum contraction level as in [3] and shown in Fig.8. 

 
7.  CONCLUSION 

The results of this work demonstrate that by using 
wavelets, the difference of muscle contractions and fatigue 

is significantly identified when using wavelet function db45. 
Both the power spectrum and bispectrum analysis showed 
similar results while analyzing muscle fatigue during gait. 
The study also shows that boosted muscle contraction level 
(rest to max) leads to an enlargement in median frequencies 
representing changes in the MUs recruitment. Additionally, 
augment in the muscle’s contraction level (rest to max) 
makes the SEMG less Gaussian and more linear. 
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