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In this paper, simple algorithms for fast measurement and estimation of the unknown changing frequency, amplitude, and phase 

difference of the sinusoidal signals from two channels with the same frequency, as well as other parameters for evaluation of the 
power quality disturbances, are presented. Parameters are calculated from the DFT coefficients around the component peaks. The 
improvement for reducing the influences of the harmonic components is the estimation with the three-point interpolation and the 
Hann window. 
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1.  INTRODUCTION 

he main consequence of the growth of nonlinear loads is 
the increase in the harmonic content of the power 
network, and this leads to serious power quality (PQ) 

issues. Harmonic pollution is one of the major concerns of 
voltage quality (VQ) and power quality, and many proposals 
for measurement of the power quality events can be found in 
the literature [1]-[2]. Two main categories of PQ 
disturbances can be introduced: variations and events [3], 
belonging respectively to steady state and transient 
phenomena. Variations can be divided into two categories 
defined as harmonic and interharmonic distortions, while 
events comprise interruptions, dips, sags, swells, and so on. 
Requirements for measurement instruments and methods are 
defined in [4]. This standard suggests the realization of a 
measurement instrument based on algorithms in the 
frequency domain. 

Therefore, an accurate estimation of the power supply 
frequency as a basic signal parameter is required even in the 
presence of disturbances. Besides estimation of the 
frequency of the fundamental power component, the 
changing amplitude and phase have to be estimated to 
evaluate the values of the active power P , the apparent 
power , and the reactive power  [5]. The problem of 
measurement and evaluation of the power quality 
disturbances can be reduced to the parameters estimation of 
each spectral component (frequency [7], amplitude [11]) for 
VQ and phase difference for PQ in the presence of the non-
coherency and the noise. 
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2.  SIGNAL ANALYSIS AND ESTIMATIONS 

Non-stationary signals are generally multi-component . 
The sampled version  (1) is obtained in two 
measurement steps. The data cord is extracted from the 
original signal by sampling (

m
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coefficients). 
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Components have time-varying frequencies ( )tfm , 

amplitudes ( )tAm , and phases ( )tmϕ . If the time of 
observation is short enough, we can approximate the change 
in frequency by a linear variation with the frequency slope 

, where  and fms , mf mϕ  are the initial frequency and phase 
of the stationary part of the component. Due to the changing 
frequency and, with this, the non-coherent sampling 
conditions, the problem of leakage effects increases. There 
are several methods to improve coherence, among which the 
most important are: re-sampling of the signal [8], the 
adaptive Fourier analysis [9], the Chirplet transformation 
[10], and so on. This paper presents effective algorithms for 
fast measurement and estimation of the unknown changing 
frequency, amplitude, and phase difference of the signal 
component for tracking the power quality disturbances. 

In the stationary state, the DFT [7] at the spectral line i  is 
given by 
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where ( )∗W  is a spectrum of the window function ( )kw  and 

mmmm iff δθ +=Δ=  is a frequency divided by the 
frequency resolution ( tNf Δ

 (1) 

)=Δ /1 . The displacement term 

mδ  is due to the non-coherency. 
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Fig. 1. Influences on the amplitude DFT coefficients when 
frequency is changing from 21 =θ (a) to 4.22 =θ (c) (the Hann 
window is used). 
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In Fig. 1, the changes in the DFT coefficients when 
frequency is linearly changing are presented. In the local 
maximum of the amplitude part of the DFT, where the short-
range leakage of the window spectrum (the first part in (2)) 
is dominant, the coefficients on the front side – direction of 
the frequency movement – increase (Fig. 1: ( ) ↑= 3iG ) and 

those on the rear side decrease (Fig. 1: ( ) ↓= 1iG ). 
The DFT coefficients are changing according to the curve 

of the main lobe of the window used, if the frequency is 
changing linearly. In the complete figure of changes in 
coefficients, we should also consider the long-range leakage 
parts of the window spectrum (the second part in (2) and 
curve d in Fig. 1.). Considering a single component and 

( ) NNa 1−= π  in (2), this equation can be rearranged. The 
same expression is valid for the rectangular window and the 
Hann window: 
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The long-range leakage contributions (the second part in 
(3)) are frequency and phase dependent. The errors of the 
coefficients, when frequency is changing linearly, have two 
parts: the bias contribution, which is a function of the 
window spectrum main lobe 
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and the long-range contribution with double dependence on 
frequency and phase. The long-range contributions drop 
with increasing relative frequency: 31 θ∝  with the Hann 
window and θ1∝  with the rectangular window.  

Both contributions can be reduced by interpolation of the 
DFT coefficients. It has been shown [7] that the best 
estimation results in reducing long leakage effects are given 
by the three-point estimation using the Hann window. In the 
estimation of the particular component , the three largest 
local DFT coefficients 

m
( )1−miG , ( )miG , and ( )1+miG  

are used for frequency: 
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When the displacement mδ  for the specific component is 
determined, it is also possible to estimate the amplitude by 
summing the largest three local DFT coefficients around the 
signal component in the same manner as in the frequency 
estimation [11]: 
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The price of the effective leakage reduction is an increase 
in the estimation uncertainties related to the unbiased 
Cramér-Rao bounds fixed by the Signal-to-Noise-Ratio for 

the particular component ( )22 2 tmm ASNR σ=  corrupted by a 
white noise with standard uncertainty tσ  [6]. 

In the cases of two-channel acquisition systems for power 
measurements the values of phases of each channel are not 
required. The only value needed is in fact the phase 
difference imum ,, ϕϕ −  of the investigated component from 

channel u and i with the same frequency . The leakage 
effects can be reduced greatly if simultaneousness of the 
sampling on both channels is assumed and the measurement 
time of signals is the same. The assurance of these 
conditions gives equal displacements 

mf

m mium δδδ ==
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,,
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, if the 

measurement frequency is the same θθθ ==, , .  
The component phase can be expressed as [12]: 

( )( ) ( )mmmm iaiG ϕδϕ Δ+−= 11 2
πarg m   (7) 

where ( )miϕΔ  is the disturbing angle due to the long-range 
leakage contributions. Looking for the phase difference of 
two signals with the same frequency, the frequency 
dependent part maδ  can be eliminated: 

( )( ) ( )( ) ( ) ( )mimumimuiu iiiGiG ϕϕϕϕ Δ±Δ−=− 1111 argarg m  

 (8) 
The phase difference can be estimated by the difference in 

the arguments of the largest local DFT coefficients if the 
disturbing angles can be neglected. 
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The single phase can also be estimated with the 
arguments of the three largest local DFT coefficients 
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 (10) 
where the disturbing angle ( )miϕΔ3  is much smaller than 

( )miϕΔ1 . 
The phase difference can be estimated only with weighted 

phase differences of the largest local DFT coefficients of 
both signals. 

( ) ( ) ( )( )1,1,,,1,1,33 4
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 (11) 
Decreasing the systematic errors increases the noise error 

contribution. The Cramér-Rao (CR) lower bound for the 
phase difference [13] is 

( )
iu

iu

SNRSNRN
SNRSNR +

=Δ
π

180degCRB ϕσ  (12) 

The CR bound is achieved with the rectangular window 
under almost coherent sampling conditions but considering 
together systematic and noise error contributions the Hann 
window gives better results. 
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3.  RESULTS OF ESTIMATIONS 
The proposed algorithms using the Hann window in the 

frequency domain were tested by real signals [2], and the 
results have been compared with the time domain estimation 
with the lowest achievable noise, the four-parametric sine-
fitting maximum likelihood estimation (MLE) [14]. For this 
estimation nine iterations have been used with the frequency 
position of the largest local DFT coefficient as the initial 
frequency value. 

For the estimation of the harmonic distortion, the one-
phase voltage signal has been used with the amplitude 
normalization to U (Fig. 2). The voltage signal was 
sampled with sampling frequency s =f , in one 
period we have 10=N s. From a very large amount 
of samples the samples of 16 periods have been taken into 
investigation, where parameters of the signal change 
significantly. 
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Fig. 2. Distortion of the one-phase voltage signal 

 
First, the frequency of the fundamental component and 

the absolute value of the error  were 
estimated (Fig. 3). The ten periods-window 

Hz50)( est.1, −= ffE
10≈θ  as 

proposed in [4] was used. The estimated value of frequency 
is related to the central point of the window. The window 
has been moved along the time axis and we can notice very 
smooth estimation of the frequency variation by the 
interpolated DFT method (5) in comparison to the four-
parametric sine-fitting method. 
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Fig. 3. Error of the frequency estimation ( ) mHz1fE : a – 
estimation by the three-point estimation; b – estimation by the 
four-parametric sine-fitting method 
 

To improve the dynamic of tracking the frequency, the 
measurement window has to be shortened (Fig. 4.). The 

window can be shortened only to the three periods 3=θ  if 
the second harmonic component is presented in the signal 
due to the width of the Hann window main lobe. We can 
effectively track the frequency with the three-point 
estimation but some small waves can be noticed due to the 
closest second harmonic distortion component (Fig. 4. - 
curve c). 
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Fig. 4. Error of the frequency estimation by the three-point 
estimation: a – 10=θ ; b – 5=θ ; c - 3=θ  

 
The estimation of the amplitude of the fundamental 

component by the three-point estimation (6) was performed 
on the basis of the estimated frequency (5) and was 
compared to the four-parametric sine-fitting method for the 
amplitude (Fig. 5). 
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Fig. 5. The amplitude estimation of the fundamental 
component UA1 : a – estimation by the three-point estimation; b – 
estimation by the four-parametric sine-fitting method 

 
If the measurement interval is shortened (Fig. 6) we can 

notice the same behaviors of the estimations as in the case of 
the frequency estimations. 
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Fig. 6. The amplitude estimation of the fundamental 
component UA1  by the three-point estimation: a – 10=θ ; b – 

5=θ ; c – 3=θ  
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The interpolated DFT method is also very useful for 

estimation of the effective or RMS value of the signal since 
the estimation by the definition 

∫=
T
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U
0

2
rms d1   (13) 

has an error in the case of the non-coherency 
( 1. 1 fTT meas ×≠= ). The leakage error can be reduced by 
the interpolation in the frequency domain. We can compare 
the values of the s  estimation in the time domain by 
(13) and in the frequency domain (Fig. 7) where the 
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three-point interpolation of the DFT coefficients. 

  
 

0 40 80 120 160 200 240 280 320 mst

UU rms

98.0

97.0

99.0

a 

b 

00.1

 
Fig. 7. RMS value of the signal: a – estimation in the frequency 
domain; b – estimation by (13) 

 
Improvements can also be noticed in the phase 

estimations of the fundamental component (Fig. 8), where 
the error of estimation ( ) )Hz502)0(( 1est.,11 ⋅+=−= ttE πϕϕϕ  
was related to the first point at  and then the 
reference value of the phase was increased with time. 
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Fig. 8. Error of the phase estimation ( ) rad1ϕE : a – estimation by 
the three-point estimation; b – estimation by the four-parametric 
sine-fitting method  

 
The proposed algorithms were also tested for power 

estimations (P, S, Q) when voltage and current signals 
suddenly change (Fig. 9).  
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Fig. 9. Voltage, current, and instantaneous power of the one-phase 
load. Amplitudes of the signals g  are normalized to their peak 
values. 

 
The two-component voltage and current signals were 

simultaneously sampled with frequency kHz50s =f . At 
time instant ms240=t , the signals parameters were 
changed. Before the change, the signals have the following 
parameters: 

( ) ( ),6ππ6sin102ππ2sin100V bbb +⋅++⋅= tftfu  
( ) ( ),4ππ6sin13ππ2sin5A bbb +⋅++⋅= tftfi Hz9.49b =f  

with values of the active power: 
W34,221coscoscos 333111 =+== ∑ ϕϕϕ IUIUIUP

m mmm

mImUm ,,( ϕϕϕ −= ),  
the apparent power: 

VA22,2562
3

2
1

2
3

2
1b =+⋅+== IIUUUIS ,  

and the ‘pure reactive’ power  
∑= m mmmIUQ ϕsinb VAr71,123sinsin 333111 =+= ϕϕ IUIU  

 After the change, the signals have the following new 
parameters: 

( ) ( ),6ππ6sin82ππ2sin90V aaa +⋅++⋅= tftfu  
( ) ( ),4ππ6sin10π2sin4A aaa +⋅++⋅= tftfi  Hz1.50a =f  

with the new values of powers: 
W09.3a =P , VA29.184a =S , and . VAr17.179a =Q

Before and after the signals steps, there are non-coherent 
sampling conditions if we take approximately ten periods in 
the measurement interval as suggested by the standard [4]: 

98.910000Hz9.49 sbbb =⋅=→= fff θ  and 
02.10Hz1.50 aa =→= θf .  

The estimation of the active power by the definition 
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has an error in the case of non-coherency 
( 1. 1 ftNTT meas ×≠Δ== ). The leakage error can be 
reduced by interpolation in the frequency domain if we 
estimate the amplitudes by (6) and the phase differences by 
(9) of the significant components. 
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∑= m mmm IUP ϕcos ,   mImUm ,, ϕϕϕ −=  (15) 

If we have periodic signals the amplitudes and the phase 
differences of all harmonic components  are 
estimated on the basis of well-known frequencies of these 
harmonics . 

Mm ,...,1=

1fmfm ⋅=
The same is valid for the ‘pure reactive’ power (16) and 

also for the apparent power (17): 

∑= m mmm IUQ ϕsin ,  mImUm ,, ϕϕϕ −=  (16) 
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When the window of  sampling points (ten 
signal periods) has been moved along the time axis, the 
active and the apparent powers have been decreased and the 
‘pure reactive’ power has been increased (Figs. 10 I, II, III). 
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I. Changing of the active power 
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II. Changing of the apparent power 
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III. Changing of the reactive power 

( ) VAr17.179VAr71.123 ab =→= QQ

Fig. 10. Changing estimations of the powers: a – estimation in the 
frequency domain by IDFT; b – estimation in the time domain 
((14) for P, (13) for S, and for 22 PSQ −= ); c – the reference 
value 

 
Again, we can notice very smooth estimations of the 

power variations by the interpolated DFT method using 
Equations (5), (6), (9), (15), (16), and (17) in comparison to 

the classical estimation methods by (13) and (14) and much 
closer to the step-like changes of the signals (Figs. 11 I, II, 
III). 

 

mst

WP

0
1 5 0 2 0 0 2 4 0  3 0 0 3 5 0

100

200

a  
b  
c  
d  

 
I. Tracking of the active power 

( W09.3W34.221 ab =→= PP ) 
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II. Tracking of the apparent power 

( VA29.184VA22.256 ab =→= SS ) 
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III. Tracking of the reactive power 

( ) VAr17.179VAr71.123 ab =→= QQ

Fig. 11. Changing estimations of the powers in the frequency 
domain by the three-point IDFT: a – 10=θ ; b – 5=θ ; c - 3=θ ; 
d – the reference value 

 
4.  CONCLUSION 

In this paper, simple algorithms for fast measurement and 
estimation of the unknown changing frequency, amplitude, 
phase difference, and other parameters for evaluation of the 
power quality disturbances are presented. Parameters are 
calculated from the DFT coefficients around the component 
peaks. Whenever disturbances are present in the power 
systems, at least the frequency variations can be taken into 
consideration and the non-coherent measurement conditions 
appear. In all examples of signal parameters estimation and 
tracking, very good behavior of the three-point estimations 
can be noticed and the measurement time can be reduced to 
the three cycles of the power signals. 
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